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Abstract

Human based vision algorithms for interception of
fly balls in one-dimension have been researched and
studied. We are developing new perceptual strategies
for three-dimensional space that are robust and simple.
Results from simulations have shown the feasibility of
human vision algorithms for catching. This paper dis-
cusses the experimental validation of two perceptual
algorithms: Linear Optical Trajectory (LOT) and the
Optical Acceleration Cancellation (OAC).

1 Introduction

Different spatial perception strategies for intercept-
ing a projectile have been debated. These strategies
are used to determine a path that allows the fielder
to converge to the destination of the projectile. The
strategies assume that humans have a low-level uncon-
scious visual-motor control algorithm that is reliable
and robust.
One strategy, the 3D OAC model describes the

fielder catching a fly ball by selecting a running path,
which achieves a constant optical rate in the image
plane. The fielder runs along a path that horizontally
maintains his alignment with the ball while maintain-
ing a constant change in the tangent of the optical
angle.
Another perceptual strategy is the LOT proposed

by McBeath et al. [1]. The LOT strategy maintains
the optical projection angle ψ to be constant. See
Figure 1. By doing so, the image of the ball always
rises above the fielder guaranteeing that the fielder
travels to the correct destination.
In the present work, experiments are conducted

to validate the 3D OAC and the LOT models and
to demonstrate the behavior of human based visual-
servoing in robotics. The advantages to these strate-
gies are twofold. Firstly, these strategies describe a
path for a projectile that can move in three dimen-
sions. Secondly, they use only optical geometry and
time to compute a fielder’s path to intercept an object,
thus, avoiding complex dynamic analysis.

Figure 1: Linear Optical Trajectory strategy main-
tains a linear optical ball trajectory on the background
scenery. Fielders adjust their path to keep the image
of the ball on the projection plane monotonically ris-
ing along the straight-line trajectory described by the
angle, ψ.

2 Literature Review

There are two perceptual models proposed to ex-
plain catching in 3D. The 3D OAC model states that
the fielder chooses a running path that is laterally
aligned with the ball and his velocity is adjusted so
that the rate of change of the tangent of the vertical
optical angle, tan(α), is constant with respect to time
[2, 3]. If the rate of change of tan(α) increases, the
fielder has run too far forward (or too slowly back-
ward). Similarly, if the rate of change of tan(α) de-
creases, the fielder has run too far backwards. The sec-
ond model, the LOT, proposes that the fielder main-
tains a linear optical trajectory of the ball [1]. The
LOT model maintains a constant optical projection
angle so that there exists an imaginary line on the
background scenery due to the projection of the im-
age of the ball, as viewed by the fielder.
In 1994, Oudejans, Michaels and Bakker proposed

that the catchableness depends on the locomotory ca-



pabilities such as speed and acceleration of the fielder
rather than pure body scaling [4]. Their specification
of catchableness of a fly ball on the basis of vertical
optical acceleration occurs when the optical acceler-
ation is zero at a certain moment. This informs the
catcher that the ball is catchable, assuming that the
fielder is capable of maintaining the current running
speed. Optical acceleration is not just about a ball
trajectory or about action of the fielders, but a combi-
nation of both. In another study, they concluded that
the information source for guidance of locomotion in
the direction of the ball is not detected from the mo-
tion of the ball on the retina [5], but is detected by
head and eye motion.
In robotics, Burgstadt and Ferrier have demon-

strated a mobile robot based on the OAC strategy
[6]. In our previous work, we developed perceptual al-
gorithms in the visual plane for 2D passive and active
OAC. In passive OAC, the camera is always station-
ary (no tilting) and the robot moves to keep the image
constantly rising on the image plane. In active OAC,
however, the tilt of the camera is constantly adjusted
according to the rate at which the center of the ball
moves in the image plane, and the robot moves to
maintain the ball at the center of the image [3, 7, 8].
This paper will first describe the 3D OAC and LOT

mathematically and provide simulations. Next, exper-
imental data from the robot is presented and discussed
in Section 4.

3 Mathematical Modeling and Simulation

3.1 OAC Model in 3 Dimension (OAC 3D)

The fixed global coordinate system is rotated about
the home plate (See Figure 2) and the fielder is mod-
eled as a particle moving in a 2D plane to simplify
the calculations. When the robot initially looks at
the ball, it will align the camera, and the coordinate
system will be rotated by an amount

θ = tan−1

(
(yfi − ybi)
(xfi − xbi)

)
. (1)

This new coordinate system will be fixed during the
entire interception task. For example, in the new co-
ordinate system, the robot’s position will be adjusted
in order to keep the CCD image of the ball constantly
rising in the x′ direction and keep the image of the ball
centered in the y′ direction. If the robot rotates dur-
ing the interception task, the camera will be panned
in the opposite direction to keep the orientation of the
camera fixed during the entire task. It is important to
note that experimentally, the ball will rise in the CCD
image plane and the fielder will not calculate or know
the exact global position of the ball. For simulation
purposes, the following equations are derived for the
OAC model.

tanα = C ′t (2)

x′
f = x′

b +
z′b
C ′t

(3)

y′
f = y′

b. (4)
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Figure 2: The fixed, global coordinate system is ro-
tated by an angle θ to make the calculations much
simpler. In the the new (x′, y′) coordinate system, the
x′ axis is initially aligned with the ball and the robot.
Fielders maintain the lateral alignment in the y′ direc-
tion. As the fielders move forward or backward based
on the OAC strategy in the x′ direction, the image
plane is also allowed to move accordingly so that the
distance between the fielder and the image plane is
always constant.

The height of the ball is calculated in the plane that
passes through the y′ axis (zimageOAC) or in the plane
that moves (forward or backward) with the fielder
(zccdOAC). The moving plane is always orthogonal to
the x′ axis. See Figure 2.

zimageOAC = x′
fC ′t (5)

zccdOAC = x′
f (0)C

′t = A(constant)t (6)

C ′ =
z′b(0.3s)

0.3(x′
f (0.3)− x′

b(0.3))
(7)

The constant C ′ is calculated just after the ball
starts on its motion. We chose to use a value of 0.3
seconds corresponding to 4 frames. A proportional
controller is used to adjust the robot’s position. The
equations for the robot velocities in x′ and y′ direc-
tions are derived.

ẋ′
f = Kpx

((
zb

x′
f − y′

b

)
D − at

)
(8)

ẏ′
f = Kpy(y′

f − y′
b) (9)



3.2 Fixed LOT and Moving LOT Model

Aboufadel developed a mathematical description of
the LOT model in world coordinates [9], but it is very
complicated because a rotated coordinate system was
not used. In the rotated coordinate frame, the LOT
image plane (vertical plane) is aligned with the y′ axis.
The robot adjusts its position to keep the image of the
ball monotonically rising along the vector described
by the angle ψ, which lies on the LOT image plane.
In this analysis, the LOT image plane does not move
forward or backward. It is fixed.

tanψ = C ′
2 (10)

x′
f =

C ′
2x

′
b

C ′
2 − z′

b

y′
b

(11)

y′
f = y′

b (12)

C ′
2 =

z′b(0.3)x
′
f (0.3)

y′
b(0.3)(x

′
f (0.3)− x′

b(0.3))
(13)

zimageLOT = x′
f tan(α) (14)

zccdLOT = x′
f (0) tan(α) (15)

The same proportional controller is used to control
the robot based on the fixed LOT strategy.

ẋ′
f = Kpx

((
zb

x′
f − y′

b

)
x′

f − y′
bC

′
2

)
(16)

ẏ′
f = Kpy(y′

f − y′
b) (17)

It is important to note that time does not appear
in the equations for the LOT model. Also, if the ball
is hit directly at the fielder, the LOT model breaks
down due to a singularity. The height of the ball in the
fixed image plane is given by zimageLOT . The height
of the ball in the CCD-image plane that moves with
the fielder is given for reference purposes.
The LOT algorithm is different if the fielder keeps

the ball moving in a straight line in the moving image
plane. As the fielder moves forward or backward, the
image plane moves keeping a fixed distance D from
the fielder. The constraint is due to the constant focal
distance of the camera. The controller for the moving
LOT algorithm (more realistic) is shown below.

tanψ = C ′
2 (18)

x′
f = x′

b +
Dz′b
C ′

2y
′
b

(19)

y′
f = y′

b (20)

D = x′
f (0) (21)

zmovingccdLOT = D tan(α) (22)
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ẏ′
f = Kpy(y′

f − y′
b) (24)

3.3 Simulation

Because the robot has nonholonomic constraints, a
non-linear look-ahead controller is used. The velocities
obtained from above equations are substituted into the
look ahead-controller to determine the translational
velocity and the angular velocity of the robot,(

v

θ̇

)
=

[
cos(θ) sin(θ)

− sin(θ)/l cos(θ)/l

] (
ẋ′

f

ẏ′
f

)
(25)

where l is the look ahead distance from the center of
the robot.
In these simulations, the ball trajectory is xb = 75t,

yb = 10t, and zb = −64t2 + 256t. The fielder’s initial
position is xf = 270 and yf = 70. The constants, C ′
and C ′

2, are calculated in the rotated frame at 0.3s
right after the ball is hit, and remain fixed.
The ball trajectory, as well as the fielder’s trajec-

tory are shown in Figure 3. The ball and fielder’s tra-
jectories are projected in the (x,y) plane. See Figure 4.
Different initial positions for the fielder are explored
and shown in Figure 5. The OAC and moving LOT
models determine straighter paths.
The ball trajectory is first rotated into the (x′, y′)

frame and then the algorithm is used to calculate the
fielder’s trajectory. All data is then rotated back to
the original (x, y) coordinate system for the purpose
of presentation.
In the next simulation, wind is introduced and the

ball trajectory is no longer a perfect parabola. The
fielder takes an initial look at the ball after 0.3 sec
and the values for C ′ and C ′

2 are used throughout the
simulation, even though the path of the ball changes.
The altered ball trajectory and different fielder’s tra-
jectories are projected in the (x,y) plane and are shown
in Figure 6.

0
50

100
150

200
250

300

0

20

40

60

80
0

50

100

150

200

250

300

x

Ball and Fielder Trajectories Based on 3D OAC and LOT strategy

y

z

Figure 3: The ball and the fielder’s trajectories are
shown.
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Figure 4: The ball and the fielder’s trajectories: the
OAC (green), the Moving LOT (dotted black), and
the Fixed LOT (red) are projected in the (x, y) plane.
The OAC and the Moving LOT algorithms determine
a straight path to the destination. The Fixed LOT
(red) shows a curved path.
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Figure 5: The ball and the fielder’s trajectories: the
OAC (green), the Moving LOT (dotted black), and the
Fixed LOT (red) are projected in the (x, y) plane. The
three initial fielder’s positions are (270,10), (450,10)
and (100,70). The ball is intercepted with different
starting points.

4 Experiment

4.1 Set Up

A Nomad Super Scout from Nomadic Technologies
Inc. with an additional pan-tilt mechanism from Di-
rect Perception is used. The computer on the robot
runs Linux as the operating system and controls the
drive wheels, the pan-tilt and the PCI frame grabber.
The code is written in the C language. The center
of mass of the balloon is obtained from a standard
calculation.

4.2 Validation

If the balloon moves in a perfect parabolic trajec-
tory, a unique case, then both the OAC and the Mov-
ing LOT describe similar paths. The image of the
center of the balloon captured by a stationary robot
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Figure 6: The ball and the fielder’s trajectories: the
OAC (green), the Moving LOT (dotted black), and the
Fixed LOT (red) are projected in the (x, y) plane. The
three initial fielder’s positions are (450,10), (350,150)
and (100,70). The wind causes all paths to deviate,
but the ball is intercepted.

at an ideal position follows a linear trajectory, which
agrees with the LOT strategy. See Figure 7. More-
over, the increment of the center of the balloon in the
vertical direction in the image plane is constant which
agrees with the OAC strategy. See Figure 8. In this
unique case, it is concluded that the image trajectory
moves in a straight line and also rises at a constant
rate.
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Figure 7: The center of the balloon on the image plane
captured by a stationary robot at the the ideal inter-
ception point. The trajectory follows a linear path
that satisfies the LOT model.

4.3 Experiment 1, 3D Active OAC Model

In this experiment, we implement the 3-D active
OAC Model described earlier in the paper. During the
initial motion of the balloon, the camera is panned so
that the image of the balloon is approximately in the
center of the view. This motion is analyzed to obtain
the rate at which the center of the balloon rises, and
the camera is actively tilted at this rate during the en-
tire task. The robot is programmed using the active
control algorithm which keeps the desired position of
the balloon always at the center of the image [4]. As
the robot rotates in a certain direction, the camera is
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Figure 8: The height of balloon in the y direction rises
linearly on the image plane which satisfies the OAC
strategy.

panned in the opposite direction to keep the orienta-
tion of the y′ plane fixed.
In the first trial, the balloon travels in a parabolic

path such that it heads in front and to the right of the
robot. At the start of the experiment, the center of the
balloon is very close to the desired center in the x′ di-
rection, thus the angular velocity of the robot is small.
See Figures 9 and 10. Also, at the start, the center of
the balloon is above the desired center by 80 pixels in
the y′ direction. This causes the robot to accelerate
backward. As the robot moves back and the camera
is tilted up at a constant rate, the actual center of the
balloon in the image drops to the right of the robot
causing it to slow down and start turning right. Once
the image of the balloon is below the desired center,
the robot starts accelerating forward while maintain-
ing the lateral alignment with the balloon in the fixed
y′ plane.
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Figure 9: The centroid of the balloon in the x direction
(top) and the centroid of the balloon in the y direction
(bottom). Case 1.
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Figure 10: Translational velocity of the robot (top)
and the angular velocity of the robot (bottom).

In the second trial, the balloon moves in a parabolic
path such that it heads behind and to the right of the
robot. See Figure 11.
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Figure 11: The centroid of the balloon in the x di-
rection (top) and the centroid of the balloon in the y
direction (bottom). Case 2.

4.4 Experiment 2, LOT

In the LOT strategy, the trajectory of the balloon
in the image plane follows a straight line. In the first
few frames, the robot calculates the rates at which the
center of the balloon moves horizontally and vertically.
The camera is panned and tilted with the same rates



and the robot moves to maintain the balloon at the
center of the image. Because the focal distance of the
camera is not changed, the second LOT strategy (mov-
ing LOT) is employed. In the first case, the balloon
heads in front of the robot. See Figure 12.
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Figure 12: The centroid of the balloon in the x di-
rection (top) and the centroid of the balloon in the y
direction (bottom). Case 1.

In the second experiment, the balloon heads behind
and to the right of the robot. In this case, the robot
first moves backward and also turns so that the image
of the balloon is always in the view of the robot. See
Figure 13.

5 Conclusion

We are investigating perceptual principles such as
constant image rate (OAC), and angular constancy in
the image plane (LOT), and applying these principles
to navigational pursuit. With these principles, control
algorithms for visual-servoing will allow mobile robots
to intercept projectiles with complicated and varying
trajectories. We developed algorithms using both the
OAC and the LOT models proposed by psychologists
in three dimensions.
The OAC algorithm implemented on the robot is

capable of maintaining the lateral error between the
ball and the robot close to zero, and is able to move
backward or forward to cancel the optical accelera-
tion. The LOT strategy keeps the position of the ball
straight in the image plane using only geometric data,
and it also maintain the lateral error between the ball
and the robot close to zero.
In the simulation with a perfect parabolic trajec-

tory, the image of the ball not only rises at a con-
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Figure 13: The centroid of the balloon in the x di-
rection (top) and the centroid of the balloon in the y
direction (bottom). Case 2.

stant rate on the image plane but also the position of
the ball on the moving image plane follows a straight
line. We believe the multi-disciplinary research be-
tween perceptual psychology and robotics will help us
develop navigational algorithms that will be robust,
powerful, and simple.
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