SELF-EXPLAINING WITH COMPUTER

INTERFACE

Can a Computer Interface Support
Self-explaining?
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Previous research has shown that when an experimenter or a tutor prompts students to self-explain orally,
generating such self-explanations is effective for learning. If self-explanations are readily produced by

» | prompting, then it would be trivial to implement an automated prompting system using a computer inter-
face. In an attempt to replicate previous research using a human prompter with spoken self-explanations,
two experiments were designed using a computer prompter with typed self-explanations. The first exper-
iment tested the effectiveness of spontaneously typed self-explaining while using a computer interface
without prompting. The results showed that the amount of self-explaining was surprisingly low, given the
amount observed in past research, Typing seems to have caused the students to paraphrase the materi-

als instead.The second experiment tested the effectiveness of an automatic computer prompter, as compared to a human prompter using
the same interface. Automatic prompting was just as effective as human prompting, and prompting did increase the amount of typed self-

explanations and leaming.

The construction of explanations to oneself, while
studying a worked-out example problem (Chi & Bas-
sok, 1989; Chi, Bassok, Lewis, Reimann, & Glaser,
1989; Chi & VanLehn, 1991) or while studying a text, is
a domain-general learning strategy (Chi, DeLeeuw,
Chiu, & LaVancher, 1994). Chi et al. (1989) demon-
strated that the successful problem solvers sponta-
neously generated more self-explanations when
studying the domain material (e.g., physics) than the
less successful students. Furthermore, the successful
students generated more self-explanations that could
be inferred from Newton’s three laws, whereas the
less successful students generated very few principle-
based explanations. These findings suggest that suc-
cessful students, when attempting to learn procedural
knowledge, spontaneously generated more and
deeper explanations to themselves, even though they
came into the learning situation with equivalent prior
knowledge as the less successful students. The benefi-
cial outcome of the process of constructing explana-
tions, with the goal of increasing one’s understanding,
is called the self-explanation effect (Chi, 2000).

Moreover, students can be prompted to generate
more self-explanations than they might produce spon-
taneously. Chi et al. (1994) contrasted the learning of
students who were prompted by an experimenter
against the learning of a control group. The prompted
students gained more in terms of their pre-test to post-
test difference. Furthermore, the difference in learning

between the two groups was more pronounced for
the more difficult questions. Restricting analysis
within the prompting group, an analysis of Good and
Poor students suggested they both increased at the
same rate (32% versus 30% respectively).

Computer Interface and Self-explanation

Because elicitation by a human prompter can be
expensive, one obvious application of self-explaining
is a computer system that prompts the student to self-
explain while learning the domain material (Chietal.,
1994). Research that explores the effectiveness of com-
puter support for self-explanation have generally
found an increase in learning (Aleven & Koedinger,
2000; Aleven, Koedinger, & Cross, 1999; Howie &
Vicente, 1998; Renkl, 1997). For example, Aleven et al.
(1999) found a positive learning gain for students
using their PACT geometry tutor. The participants
were required to select their reasons for each step of
the problem solving solution from a glossary (or
menu) of geometry rules and definitions. Aleven et al.
(1999) found the students who were required to pro-
vide a reason for their solutions to the geometry prob-
lems did significantly better on post-test than students
in the control condition. Occasionally, some studies
have found mixed results (Conati & VanLehn, 1999,
2000). For example, Conati and VanLehn (1999, 2000),
using a similar menu-selection method of self-
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explaining, found such prompting to be helpful only
for some population of students, but not others. We
will hypothesize in Experiment 1 why menu-selection
is not always an effective means of generating self-
explanations.

Instead of learning in a procedural domain (e.g.,
physics or geometry), the present study investigated
the effects of self-explaining in a conceptual domain:
the circulatory system. The students were asked to
read a passage that covers the path of blood as it cir-
culates throughout the human body. Components of
the heart, such as the various chambers and valves, are
described in terms of their structure, function, and
location. The overall goal for the student was to
develop a mental model that approximates the scien-
tifically accepted model. For instance, some believe
the heart pumps the blood out to the body and back,
without making any reference to pulmonary circula-
tion, nor differentiating the chambers within the heart.
This naive “Single-Loop” model is contrasted with the
scientifically accurate “Double-Loop” model in which
the blood receives its oxygen from the lungs.

To facilitate comparisons with earlier studies (Chi et
al., 1994; Chi, Siler, Jeong, Yamauchi, & Hausmann,
2001; Jeong, 1998; Wathen, 1997), the learning and
assessment materials were taken from Chi et al. (1994).
A few important differences exist between the present
study and the original study by Chi et al. (1994). First,
the materials used in the original study were designed
for eighth graders, whereas the present study used
college undergraduates. However, it has been shown
that these materials are challenging even to college
students, since some of them do maintain incorrect
mental models after reading the text used in the pre-
sent study (Jeong, 1998). Second, in an effort to include
only the textual material relevant to circulation, the
materials used for the present study were a subset of
Chi et al. (1994). Details of the blood and other organs
were excluded. Finally, the present study selected a
representative subset of the original assessment ques-
tions.

Experiment 1

One possible reason why some populations do not
benefit from menu-drive self-explanation is that
choosing from a menu of explanations is not construc-
tive. Those students who found the menu selection
systems to be beneficial might be covertly self-
explaining anyway regardless.of its implementation
(menu selection, spoken, typed, or otherwise). There-
fore, the goal of the first experiment is to test the
hypothesis that allowing students to be more genera-
tive (i.e., free-form typing) might allow for greater self-

explaining and thereby learning, than selection from a
menu (used in these other studies). The first experi-
ment attempted to replicate the results from Chi et al.
(1989), to measure the degree to which students will
spontaneously generate explanations via the key-
board, while using a computer interface.

It is important to replicate the self-explanation effect
in the typed modality because it is not clear what the
effect of typing on self-explaining will be. Several rel-
evant differences exist between speaking and typing.
First, less effort is required to speak one’s thoughts
than to type a thought (Lebie, Rhoades, & McGrath,
1996). Second, one might be less embarrassed about
saying incomplete or incoherent ideas because spo-
ken speech does not leave an enduring trace (Clark,
1999). Finally, the ease of speaking allows ideas to flow
quickly and naturally without being monitored,
whereas one might filter many ideas before they are
typed. This lack of filtering might explain why spoken
self-explanations tend to be fragmented and incom-
plete (Chi, 2000).

Design
Conditions

Two conditions were contrasted. The spontaneous
self-explanation condition served as the experimental
condition, while the read-only condition provided a
baseline measure of learning.

Spontaneous self-explanation. Students in the sponta-
neous self-explanation condition were asked to read
the material and try to understand the circulatory sys-
tem as best as possible. They were encouraged to
“type comments to themselves,” which was analo-
gous to generating self-explanations. There were no
time constraints on this control condition. The time
spent reading the text and typing comments was mea-
sured.

Read-only. The control group, the read-only condi-
tion, was not given the opportunity to type any com-
ments during the learning phase of the experiment.
Instead, the read-only condition was presented with
one sentence for a fixed amount of time. The presen-
tation time for each individual sentence was the aver-
age reading time for each corresponding sentence in
the self-explanation condition. The average reading
time from the self-explanation condition was used to
control for time-on-task. The reason for including this
control condition was to replicate the self-explanation
effect (Chi et al., 1989), while controlling for time-on-
task (Renkl, 1997). If a gain in learning is observed for
the students who self-explain, over and above the stu-
dents who merely read the text on their own, then the
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results will provide evidence that self-explaining in a
computerized environment can be effective.

Method
Participants

Each condition included 10 students, for an overall
total of 20 participants. All participants were selected
from a pool of undergraduate psychology majors, and
they were given course credit upon completion of the
experiment. Because the study required the partici-
pants to type during the pre-test, the learning phase,
and the post-test, students who were selected to par-
ticipate were average typists. However, no formal
evaluation of typing speed was assessed.

Materials

Text. The text consisted of a passage of 62 sentences,
taken from a popular biology textbook chapter on the
human circulatory system (Towle, 1989). Each sen-
tence was presented individually via a 17-inch, color
computer monitor. Students’ typed statements were
captured and stored in a spreadsheet, and were later
segmented and coded.

Assessment materials. The pre-test consisted of two
parts: the blood-path drawing was administered first
and vocabulary test followed. The blood-path draw-
ing served to capture the student’s mental model of
the circulatory system. It consisted of drawing, while
explaining aloud, where and how the blood circulates
throughout the body. A vocabulary test required the
participant to define 21 terms relating to the circula-
tory system.

To assess the degree to which each group learned
during the experiment, the same blood-path and
vocabulary test were re-administered for the post-test.
In addition to these two tasks, a set of questions was
used to assess the knowledge gained by the students
during the tutoring sessions. The questions were
designed to reflect a range of difficulty (see Figure 2, p.
458 from Chi et al., 1994 for evidence of question diffi-
culty). The easiest set of questions (Category 1) is con-
sidered “verbatim questions.” The answers to these
questions were often explicitly stated in one of the
sentences in the text. Category 2 questions were more
difficult because the reader was required to make
some inferences between sentences of the text. Cate-
gory 3 questions were much more difficult because
the students were not only required to generate infer-
ences from the text, but they also needed to integrate
their background knowledge with their inferences.
Category 4 questions were the most difficult, requiring

the students to generalize their knowledge to health
related issues concerning the cardiovascuiar system.

Procedure

Pre-test

Before beginning the experimental session, students
provided the experimenter with self-report SAT-verbal
scores. Then the students were administered a pre-
test, which consisted of the blood-path drawing and
the vocabulary test. For the blood-path drawing, the
students were given an outline of the human body
and asked to explain how the blood travels through-
out the body. Their explanations were tape recorded
and later analyzed. Upon completion of the blood-
path drawing, the students moved to the computer
where they were administered the vocabulary test.
Each term was presented one at a time, and the partic-
ipants were required to type their definitions into a
field located at the bottom of the computer interface.
After completing the pre-test, the students began the
learning phase of the study.

Learning Phase

Students from both conditions read the material,
which was presented on a computer monitor. As
stated previously, different groups were told to read or
type comments. Both conditions had the same inter-
face and read the same text. The interface consisted of
a field at the top of the screen where the text appeared.
At the bottom of the screen, labeled “Student Mes-
sage,” contained a field where the student could type
his or her comments. When finished typing, the stu-
dent clicked the “Submit” button for the next sentence
from the text. When the learning phase was over, the
computer prompted the student to alert the experi-
menter.

Post-test

After the learning session, a three-part post-test was
administered to measure the students’ knowledge: the
blood-path drawing, with the vocabulary test and the
Category 1-4 questions presented via computer.

Resuits
Scoring the Tests and Mental Models
For the vocabulary test, each of the 21 vocabulary

words was scored on a 3-point scale. A definition was
given a “2” if the answer was complete; a “1” was
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assigned to a definition that was partially correct, but
left out a significant relationship or structure; and a
“0” was provided for any answer that was factually
wrong or left blank. The Category 1-4 questions were
graded on a 1- or 2-point scale. If the answer only
required one idea or relationship, then one point was
assigned. If the answer had two parts, then two points
were assigned.

Students tend to represent the circulatory system
according to one of seven different versions of the sci-
entifically correct model of the circulatory system.
Mental model categories six and seven approximate
the correct Double-Loop model, with minor variations
between them. Details of how mental models are cap-
tured from protocols are described in Chi et al. (1994).
Briefly, the characteristics of each mental model are
searched for in the protocol. For example, if the stu-
dent mentioned that the heart provides blood to the
lungs, then there is evidence that the student under-
stands that the lungs are involved in circulation (i.e., a
mental model of four or higher). Further evidence is
sought to ascertain whether or not the student under-
stands that the lungs are for the oxygenation of blood.
After a student’s mental model is captured, each men-
tal model was categorized. For instance, a student’s
model was characterized as category six, or also called
the Double-Loop (1) model, if all the constituent pieces
of the heart were mentioned, but in the wrong loca-
tions. If the model matched exactly to the scientifi-
cally correct model, then the student’s model was
scored as a seven, or Double-Loop (2) model.

Equivalent Groups

Overall, the spontaneous self-explanation and the
read-only groups were equal in terms of ability and
pre-test knowledge. There were no reliable differences
between groups in terms of their self-reported SAT-
verbal scores (#(18) = 0.42, p = 0.68), pre-test vocabu-
lary (#(18) = 0.002, p = 0.97), as well as pre-test mental
model (p = 0.56, Wilcoxon Two-sided Test). Therefore,
because the groups were equivalent in pre-test knowl-
edge and ability, the remaining analyses were con-
ducted without statistically controlling for these
variables.

Pre-test to Post-test Learning

Three measures were used to measure learning: the
vocabulary test, the mental model analysis, and the
Category 14 questions. For the vocabulary test, both
groups significantly improved their understanding of
the terms that describe the circulatory system (see
Table 1). Both groups, however, gained about the same

amount (around 24%) of vocabulary, which was a sig-
nificant increase within each condition (p < 0.0001 for
each group), but not between conditions.

Table 1

Pre-test and Post-test Performarnce on the Vocabulary Test
for the Spontaneous Self-Explanation (SSE) and Read-
Only (RO) Conditions

Pre-test Post-test
p value for
Condition _n M 5D M SD paired t-test
SSE 10 481% 134 729% 122 0.0001
RO 10 483% 132 71.7% 9.6 0.0001

Note. There were no reliable differences between the
two groups for either the pre- or post-test.

For the mental model analysis, both conditions
started with relatively similar pre-conceptualization of
the circulatory system. That is, the distribution of the
types of mental models of the students in each group
was roughly the same, in that 60% of the students in
both groups started out with a Single-Loop model,
consistent with the results reported in Chi (2000) (see
Table 2). After reading the text about the circulatory
system, both the read-only group and the spontaneous
self-explanation group improved their mental model
scores (80% to 60% respectively finished with a Dou-
ble-Loop (1) model).

Table 2

Percentage of Mental Models During Pre-test and Post-
test for the Spontaneous Self-Explanation (SSE) and
Read-Only (RO) Conditions

Mental Model
Category Pre-test Post-test
Name # | RO [SSE | RO | SSE
No Loop 1
Ebb and Flow 2 120% | 10%
Single-Loop 3 160% | 60% 20%
Single-Loop w/
Lungs 4
Multiple Loops |5 [10% [ 10%
Double-Loop (1)] 6 110% [ 20% [80% [ 60%
Double-Loop (2)} 7 20% | 20%

Note. Definitions for the mental models can be found
in Table 4 of Chi et al. (1989). Double-Loops (1) and
(2) are the most scientifically accurate models of the
circulatory system.

To provide a more sensitive test of learning, Verba-
tim (Category 1) questions were differentiated from
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Integration (Category 2—4) questions. The mean scores
for the Verbatim (Category 1) and Integration (Cate-
gory 2—4) questions are shown in Table 3, and subject
to an analysis of variance (ANOVA), with Condition
(read-only and spontaneous self-explanation) as a
between groups variable and Question (Verbatim and
Integration) as a within-groups variable. Although
previous literature suggests that self-explanation is
beneficial for learning, there was again no evidence
that the students in the spontaneous self-explanation
condition learned any better than the read-only con-
dition. If anything, the read-only group performed
(slightly, but not reliably) better on the more difficult
questions than the spontaneous self-explanation
group, which parallels the mental model findings.

Table 3

Percentage of Correct Answers on the Verbatim (Category
1) and Integration (Category 2-4) Post-test Questions for
the Spontaneous Self-Explanation (SSE) and Read-Only
(RO) Conditions

of self-explaining; it seems that the students were
more likely to paraphrase the material. Students
typed, on average, 24.4 paraphrasing statements.
Because paraphrasing dominated the content of the
protocol, it was the only variable that positively corre-
lated with learning, but only with Verbatim questions
(r=0.68, p=0.03).
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Figure 1. The average number of statements made by partici-
pants in the spontaneous self-explanation {SSE) condition dur-

Verbatim Questions __ Integrafion Questions ing the learning phase of the study.
Condition  n M 5D M 5D
SSE 10 61.7% 13.7  31.2% 107 Discussion
RO 10 60.0% 179  384% 117
p value for Prior studies on the self-explanation effect have tra-
main effects 0.82 0.17

Note. The interaction between Question (Verbatim
and Integration) and Condition (SSE and RO) was
not significant.

Frequency of Self-explanation

Because previous literature predicted a benefit for
self-explanation, the lack of difference between the
two groups was surprising. To see whether students
did in fact self-explain, the typed protocols were ana-
lyzed according to the coding scheme outlined in Chi
et al. (1994). The protocols were analyzed for the fol-
lowing contents: self-explanations, paraphrases, and
meta-cognitive statements. Self-explanations are state-
ments of inference, which went beyond the informa-
tion explicitly stated in the text. Paraphrases were
defined as a verbatim summary of the currently pre-
sented sentence. Meta-cognitive statements were
utterances that commented on the state of the learner’s
knowledge or understanding.

The frequency data for spontaneous self-explana-
tion condition are presented in Figure 1. The data indi-
cate that there were very few self-explanations during
the learning phase. On average, about 1.0 self-expla-
nation was generated across the 62 sentences. Instead

ditionally asked students to self-explain orally. Stu-
dents who self-explained the most often do better on
later post-test measures. Because students generated
very few self-explanations, the present study did not
obtain the self-explanation effect. Two reasons might
account for the lack of effect. First, the qualitative
analysis revealed a lack of explicit self-explaining,. It is
therefore not surprising that the spontaneous self-
explanation and the read-only groups showed similar
learning outcomes because the students in the self-
explanation condition did not engage in any construc-
tive activities. Instead, they predominantly
paraphrased, and such paraphrasing correlated only
with verbatim knowledge. This correlation further
confirms the assumption that paraphrasing only
enables students to learn shallow knowledge, and this
is why paraphrases originally were not considered to
be self-explanations (Chi et al., 1989).

The second possible reason for the lack of the self-
explanation effect is a difference in the modality by
which the students self-explained. Past research asked
participants to self-explain orally, while the present
study asked students to type their comments. Gener-
ating comments in the typewritten format seems to
inhibit self-explaining, for the various reasons enter-
tained above. For example, in typing, students might
have filtered out what they would spontaneously say
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orally. Confirmation for this interpretation can be
noted in the completeness and accuracy of their para-
phrases, whereas oral self-explanations typically tend
to be fragmented and incoherent. Another possible
reason that typing can inhibit self-explaining is that it
uses more cognitive capacity (Gentner, 1988). In fact,
the students who typed while learning did worse
(although not significantly worse) than the students
who were asked merely to read the text. Having to
type may have reduced their cognitive resources for
learning.

Because very little self-explaining was observed in
the spontaneous self-explanation condition, a second
experiment was conducted to overcome the limita-
tions of keyboarding by prompting the students to
self-explain.

Experiment 2

While self-explaining is particularly effective for
good students, not all students engage in constructive
activities when left to their own devices. Chi et al.
(1994) provided evidence for the benefit of eliciting
students to engage in self-explaining using content-
free prompts. Using a conceptual domain, they found
that students who were prompted to generate self-
explanations had higher gain scores (pre- to post-test),
had deeper understanding, and answered a greater
number of the harder questions correctly, than stu-
dents who were not prompted to self-explain. The
amount of gain was the same for both the high and
low ability students (as measured by the California
Achievement Test). Thus, the benefit of self-explaining
can be elicited by using simple content-free prompts.
Content-free prompts are powerful because they can
be employed across different content domains, and
they can be implemented easily as a general interface.

A similar result was obtained by King (1994). King
taught peer-learning groups to ask questions using
generic “question stems” that linked the to-be-learned
material to their background knowledge. Although
these question stems themselves were content-free,
the peers often had to add content words in order to
complete these question stems. King found that
groups who used the question-stem prompts learned
more than the control groups on most post-test mea-
sures.

Because prompting students to give explanations
either to themselves or to their peers is helpful for
learning, the question thus arises: Can automated
prompting be just as effective or must a human
prompter be involved (either an experimenter, as in
Chi et al., 1994, or a peer, as in King, 1994)? Because
computers do not yet have full natural language

understanding, automating prompting means that the
prompts must be administered in a pseudo-random
fashion (i.e., without a pedagogical basis). In the Chi et
al. (1994) study, the experimenter prompted the stu-
dent to self-explain when he or she became silent.
However, it is also possible that the experimenter
prompted at times when the experimenter thought
that the student was confused. If this was true, then
knowing when to prompt the student required the
experimenter to understand what the student had
said. Therefore, to discriminate whether prompting
alone (and thereby motivating the students to be con-
structive) was important or whether the timing of the
prompting was also important, two different prompt-
ing techniques were employed in this second experi-
ment, one by a human and one by a computer. The text
materials, procedure, and interface used are identical
to the first experiment. However, the read-only condi-
tion was not included because the critical comparison
was between human and computer prompting.

Thus, the main difference between the first and sec-
ond experiments is the introduction of content-free
prompting. For the human prompting, a methodology
from research on human-computer interaction was
used. The prompter and student were putin a Wizard
of Oz situation because they were seated in separate
rooms, and the student was not told in advance
whether he or she was speaking to a human or com-
puter (Dahlbéck, Jonsson, & Ahrenberg, 1993). The
reason for withholding this information was to control
for the effects of talking with a human versus a com-
puter, over and above the differences in prompting.
The traditional use of the Wizard of Oz methodology
is for “rapid prototyping” where a computer system is
designed to interact as if it were human (Maulsby,
Greenberg, & Mandler, 1993). A similar orientation
was taken in the present study, but with a slight dif-
ference. Instead of prototyping a potential computer
tutoring system, our intent was to empirically investi-
gate specific features of a tutorial dialog that are
hypothesized to be important for learning. In particu-
lar, it is conceivable that human prompters (such as
tutors) are more likely to prompt when they think the
students are confused or have incomplete under-
standing. Similar approaches have been taken by Fox
(1991). Fox suggested that back-channel feedback,
such as eye-gaze, facial expressions, and pauses are all
linguistic devices used by human tutors to diagnose
student confusion (for further support, see Anderson,
2002; Gluck, 1999).

The present learning situation restricted non-lin-
guistic communication by asking a human to prompt
a student through a dialog box. The prompter, how-
ever, was only able to ask the student questions that
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appeared at the top of a pre-configured list of prompts
(for examples of the types of prompts used, see
Appendix C of Chi et al., 2001). The effects of free-form
typing on tutorial dialogs have already been shown to
be effective (Hume, Michael, Rovick, & Evens, 1996),
whereas constraining the tutor in a specific way has
received little attention.

Design
Participants

Each condition included 10 students, for an overall
total of 20 participants. All participants were selected
from the same pool of undergraduate psychology
majors, and they were given course credit upon com-
pletion of the experiment. None of the participants
from the first study were recruited for the second
experiment. Again, students who were selected to par-
ticipate had adequate typing skills; however, no for-
mal evaluation of typing speed was assessed.

Materials

Prompts. The prompts used in the second experi-
ment were taken from a set of content-free prompts
that were transcribed from actual tutorial dialogs (Chi
et al.,, 2001). All content words were removed from
the prompts. An example of a content-free prompt
includes, “Could you explain how that works?”

Conditions

The computer interface used in the first experiment
was modified to include a method for prompting the
student to self-explain while learning. The student
interface was basically identical to the one used in the
first experiment, except that a field in the middle of the
screen, labeled “Messages,” periodically displayed a
prompt selected by either a human or the computer,
depending on the experimental condition. How and
when the prompt is displayed in the human prompt-
ing condition will be described in the next section.

Human prompting. During the learning phase of the
experiment, a TCP/IP connection was created
between the student’s interface and the prompter’s
window. The conversational flow was as follows (see
Appendix A for two protocol excerpts). First, the com-
puter automatically presented a sentence from the text
at the top of the student’s and prompter’s screen. After
the student read the sentence, she had two options
available. She could either type a comment to the
prompter, or she was instructed to type “ok” to signal
that she had nothing to say. When the student clicked

the “submit” button, the prompter was then able to
read what the student wrote. If the prompter decided
to ask a question, he clicked on the “send” button,
which was located next to the corresponding prompt.
The prompter’s communicative abilities, however,
were constrained because he was not able to type in a
free-form way. Instead, he could only ask the student
a question by sending a prompt from the top of a list of
content-free prompts. The prompter was free to decide
when he wished to prompt the student, although he
was told to encourage students to self-explain if they
did not type many comments for several consecutive
sentences. When the prompter was finished, he
clicked on a different button to tell the student to go
onto the next sentence.

Automatic prompting. The automatic prompting con-
dition used a computer program called the automatic
prompting system (APS).! The dialog pattern found in
the human prompting condition also holds for the
automatic prompting group, and it was used to create
the sequence of prompting for this condition. During
the human prompting condition, a log of the dialog
was generated for each individual sentence. The auto-
matic prompting condition was yoked to the human
prompting condition in terms of the number of
prompts for each sentence on a sentence-by-sentence
basis. For example, if the human prompter gave Stu-
dent A two prompts for sentence 14, then the com-
puter program (APS) also gave two prompts at
sentence 14 to Student B.

The reason for yoking the students on a one-for-
one basis across the two conditions was to determine
if the prompts that were generated in the human
prompting condition were tailored for the student at
that particular time. We assumed that the dialog pat-
terns for each individual should be different because
each person has a different understanding of the cir-
culatory system. For example, suppose Student A in
the human prompting condition said she understood
that lungs re-oxygenate the blood. She might not need
a prompt during the passage that deals with oxygena-
tion (e.g., sentence 15-16). However, if Student B, from
the automatic prompting condition, believed the
blood enters the lungs to supply oxygen to the lungs,
then that student’s dialog will be different. Because the
background knowledge of each student is different,
our assumption was the observed dialog patterns
reflected those differences. Therefore, the prompting
obtained in Student A’s protocol should not help Stu-
dent B. The differences in learning should reflect a dif-
ference between well-timed prompting, versus
arbitrary (or “automatic”) prompting.
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- Results
Equivalent Groups

Both human prompting and automatic prompting
groups were equivalent in terms of their self-reported
SAT-verbal scores (#(18) = 1.22; p = 0.24), pre-test
vocabulary (#(18) = 0.22; p = 0.83), and pre-test mental
model (p = 1.00, Wilcoxon Two-sided Test). The
amount of time spent during the learning phase of the
experiment was the only reliable difference between
the human (M = 49.7 min.) and automatic prompting
(M =32.5min.) conditions (t(18) = 3.79, p = 0.001). One
reason why the groups were different could be attrib-
utable to an artifact of network traffic, as well as the
reading and response time of the prompter. Because
the computer stored the content-free prompts in mem-
ory, the time between the student input and computer
response was nearly instantaneous.

Pre-test to Post-test Learning

The human (M =23.1, SD = 11.67) and automatic (M
= 25.0, SD = 14.90) prompting groups both increased
their vocabularies from pre- to post-test (see Table 4).
However, the groups did not differ from each other on
the post-test vocabulary test.

Table 4

Pre-test and Post-test Performance on the Vocabulary Test
for the Human Prompting (HP) and Automatic Prompt-
ing (AP) Conditions

Pre-test Post-test
p value for
Condition _n M SD M SD  paired t-test
HP 10 493% 123 724% 16.1 0.0002
AP 10 51.7% 169 75.7% 20.6 0.0005

Note. There were no reliable differences between the v

two groups for either the pre- or post-test.

Similarly, 70% of the human and the automatic
prompting groups started the experiment with a Sin-
gle-Loop model of the circulatory system. After the
learning phase, the two groups did not differ on their
post-test mental model drawings. The gain between
pre-test and post-test mental models were equivalent
in the two groups (p = 0.92, Wilcoxon Two-sided Test),
essentially 80% of the students acquired the Double-
Loop model (see Table 5).

Table 5

Percentage of Mental Models During Pre-test and Post-
test for the Human Prompting (HP) and Automatic
Prompting (AP)

Mental Model

Category Pre-test Post-test

Name # |HP | AP |HP | AP
No Loop 1
Ebb and Flow |2
Single-Loop 3 |70% | 70% 10%
Single-Loop w/

Lungs 4 10%
Multiple Loops [ 5 [30% ]20% [10% | 10%
Double-Loop (1) 6 10% |60% | 30%
Double-Loop (2)| 7 20% | 50%

Note. Definitions for the mental models can be found
in Table 4 of Chi et al. (1989). Double-Loops (1) and
(2) are the most scientifically accurate models of the
circulatory system.

Similarly, both groups performed equally well on
the Verbatim and Integration questions, and there was
no interaction between condition and question type.
The post-test measures for the prompting conditions
were the same for Verbatim and Integration learning.
Because the students in the automatic prompting con-
dition learned as effectively as students who were
prompted by humans, the two different types of
prompting were collapsed into one group, called the
prompted self-explanation (PSE) condition.

Correlation of Self-explanation and Learning

There was a reliable correlation between the
amount of self-explanations and Integration learning
(r = 0.38, p = 0.10, one-tailed test), but not Verbatim
learning for the prompted self-explanation condition.
On the other hand, paraphrasing was not correlated
with either Integration (r = - 0.14, p = 0.56) or Verbatim
(r = -0.10, p = 0.66) learning. The results found here
provide direct evidence for the claim, made in earlier
studies (Chi et al., 1989; Chi et al., 1994), that para-
phrasing is not a constructive activity and thereby
does not contribute to overall learning of a conceptual
domain. At best, it contributes to verbatim knowledge,
as shown in Experiment 1.

Discussion
The evidence from the second experiment suggests

that learning from a computer interface can be effec-
tive when prompted either from a human or com-
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puter. Furthermore, self-explaining significantly
increased when it was prompted, rather than occur-
ring spontaneously. For instance, when the data from
Figure 1 (spontaneous self-explanation) is replotted
against the amount of prompted self-explanation con-
dition (see Figure 2), it is clear that the students gener-
ated more self-explanation when prompted.
However, paraphrasing remained high and did not
differ between experiments.

w
o
o

0 SSE
M PSE

Average Number of Statements

Self-Explanation

Paraphrase Metacognitive

Figure 2. The average number of statements made by partici-
pants during the learning phase of the study in the sponta-
neous self-explanation {SSE) and prompted self-explanation
{PSE) conditions.

The effect of self-explaining with the computer
interface was particularly effective for the students
who produced a large amount of self-explanations.
When restricting the analyses to only the upper quar-
tile of self-explainers (n=5 participants) in the
prompted self-explanation condition, they produced
more self-explanations (M = 12.00, SD = 2.55) than the
lower three quartiles of self-explainers (M = 4.67, SD =
2.38) (+(18) = 5.87, p < 0.0001). The amount of self-
explanations for the upper quartile correlated strongly
with Integration (r = 0.92, p = 0.03) but not with Ver-
batim learning (r = 0.18, p = 0.77), thus replicating the
effectiveness of self-explanations, especially for deep
understanding (Chi et al., 1994). Although only 12.0
self-explanations were produced on average by the
high explainers (which was still significantly less than
prior studies on oral self-explanation), a significant
correlation with deep learning was observed.

These results are encouraging for two related rea-
sons. The effects of prompting did not seem to depend
on whether the prompting came by way of a com-
puter or human; therefore, implementing an auto-
matic prompter is trivial and can be incorporated into
many learning environments. Even though the
prompting system does not have natural language
understanding, and was administered in a somewhat
arbitrary fashion, learning benefits were still observed.

Although a formal analysis of the prompter was not
conducted, he did provide a few justifications for
prompting the students. The conditions under which
the prompter asked a question included times when
the student was relatively passive, when the student
did not integrate across sentences, and when the
prompter thought the student might be able to antici-
pate the next topic in the text. A talk aloud protocol
from the prompter would be an interesting method-
ological extension of the present study.

General Conclusion

When given the opportunity and some general
encouragement, students in earlier studies were found
to spontaneously generate a great number of self-
explanations orally. Table 6 summarizes the number of
explanations generated orally in two different studies
(Chi et al.,, 1989; Wathen, 1997), using basically the
same text materials as used here (see Table 6). In con-
trast, when given the opportunity and some general
instructions to type their explanations, the students in
the first experiment, when left to their own devices to
learn conceptual material, generated very few expla-
nations. Instead, they predominantly paraphrased the
text. According to prior research, it is possible that stu-
dents paraphrase the to-be-learned material just as
much as the students in the current study (for example
Table 3 from Chi et al., 1989 shows that 32% of the suc-
cessful and 42% of the less successful students” utter-
ances were paraphrases). However, the clear
difference is the relative lack of self-explaining here.

Table 6
A Comparison of the Amount of Spoken or Typed Self-
Explanations Across Studies Using the Same Material

Study n Frequency  Percentage
Chi et al. (1994)
Low 4 290 28.7%
High 4 87.0 86.1%
Wathen (1997)
Talk-Individuals 18 342 69.8%
Present Study
SSE 10 1.0 1.6%
PSE 20 6.5 10.3%
High PSE 5 12.0 194%

Note: The percentage of self-explanations generated
equals the average frequency divided by the number
of opportunities to self-explain (i.e., the number of text
sentences). SSE=spontaneous self-explanation;
PSE=the combined human and automatic prompting
groups; and High PSE=upper quartile of the prompted
self-explanation group.
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The contrast between spoken self-explaining and
typed self-explaining demonstrates that the amount of
typed self-explanation is still far below what we might
expect for spontaneously spoken self-explaining. This
is most dramatically demonstrated by the fact that the
highest quartile of self-explainers from Experiment 2
generated 1.5 times less self-explanation statements
than the lowest group from Chi et al. (1994). The dif-
ference between spoken and typed self-explaining
suggests two future studies. The first could compare
average against expert typists, and the second could
contrast verbal self-explaining against typed self-
explaining.

The reason why students do not interact with the
material in a deep way might be explained by the
resource demands that typing places on the student.
For example, expert typists are able to correct gram-
mar, check the spelling, and even carry on conversa-
tions while transcribing a document, whereas the
novice transcribers cannot {Gentner, 1988). In contrast,
oral speaking is an automated task in which less time
is spent on planning and execution. Therefore, self-
explaining might be easier to do when speaking than
during typing.

Besides the labor and resource intensive nature of
keyboarding, there may be other reasons why stu-
dents avoid self-explaining and prefer to paraphrase
instead, as compared to actually speaking. One reason
might be that keyboarding provides a record of what
the students typed. Their input into the computer
appears on the screen after they are finished typing,
and it is inferred from the experimental instructions
that their log files will be analyzed later. To avoid
errors, the students may have preferred the safety of a
paraphrased entry.

Although students paraphrased the material exten-
sively, were we successful in motivating the partici-
pants to type self-explanations while using a computer
interface? It seems that the answer depends upon the
implementation used to elicit the self-explaining. Stu-
dents may not type self-explanations spontaneously
(e.g., the first experiment), as one might anticipate
from the prior literature from spoken self-explaining.
However, when prompted, students were able to
increase their typed self-explanations, which then cor-
related with learning. This was most effective for those
who did a lot of self-explanation (i.e., the high self-
explainers).

The results from the second experiment compli-
ment the findings from a study conducted by Aleven
and Koedinger (2000), using a computer interface that
also allowed free-form user input. They found that
36% of the students’ statements were self-explana-
tions. One reason why students in the study by Aleven

and Koedinger produced more self-explanations than
the present study might be attributed to the number of
opportunities the participants received. Specifically,
Aleven and Koedinger prompted their students an
average of 34 times (SD = 17) per two sessions, while
the present study prompted the students an average of
15.5 times. This further suggests that the number of
self-explanations in a given learning session can
increase when the number of opportunities is also
increased (in the form of prompting). In other words,
it does not matter when or where in the text one is
prompted because one can always do some integra-
tion, repair, or inferencing any time, which yields an
increase in learning. The determining factor may have
been the absolute number of prompts given to the stu-
dent. Therefore, one potential explanation for why
there was a consistent gain in learning for both human
and automatic prompting groups in Experiment 2 is
because both groups received the same number of
prompts (recall the yoking procedure).

By allowing students to type their self-explanations
in a free-form way motivates students to be more con-
structive. One of the reasons why self-explanation is
hypothesized to be effective is because the student
generates new knowledge for him- or herself. Menu-
drive systems may work for some, but not all. The
results from the second study suggest that allowing
students to type free-form explanations may be a use-
ful way to motivate those who previously did not dis-
play learning gains from menu-drive systems.
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Footnotes:

! In describing the APS, it is also important to make clear what it is
not. The computer program used in the current study does not employ
any ability to parse or produce an utterance. A second feature that the
APS does not have is the ability to craft a response from the user’s
input. A famous computer program, called ELIZA (which was initially
developed to act as a Rogerian therapist), is an example of a non-
intelligent computer program that creates a response based on the
user’s input (Turkle, 1984; Weizenbaum, 1966). Our automatic prompt-
ing system is even less sophisticated than ELIZA because the APS -
will not generate a prompt based on the user’s input. The original
ELIZA s able to crudely match the input from the user to keywords in
her lexicon.

? The numbers on the left side of the dialog represents the line num-
ber taken from the protocol. To clarify the role of student and tutor, the
student will be called “she” throughout the paper, while the tutor will
be referred to as “he.” The reason for the gender assignment is pseudo-
random because the prompter used in our study was male.
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Appendix A

Anexample of a student answering the prompter’s content-free question.”

204 58.

205 S: ok, but why to the kidneys?

206 T.  Could you elaborate on what you just said?
207 S

208 T:  Please click the “Next” button.

An example of a participant who did not answer the prompter’s question.
87

Renal circulation is the subsystem of systemic circulation that moves blood through the kidneys and back to the heart.

I don’t understand why there’s a system of the systemic circulation that directly relates to the kidneys

30. Movement of gases and nutrients takes place across the thin capillary walls mostly from areas of greater concentration to areas

of lesser concentration. This process is called diffusion.

88 S:  diffusion - moving greater\ concentration to lesser concentration thru capillary walls
89 T.  Isthereanything else that you want to say about that?

90 S: no

91 T.  Please click the “Next” button.
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