Perspectives on the hyporheic zone: integrating hydrology and biology.

Introduction

H. MAURICE VALETT1, CHRISTINE C. HAKENKAMP2, AND ANDREW J. BOULTON3

1 Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA
2 Department of Zoology, University of Maryland, College Park, Maryland 20742 USA
3 Department of Zoology, University of Adelaide, Adelaide 5001, South Australia

Abstract. This introduction to six articles on the hyporheic zone notes the rise in the number of presentations on this topic at meetings of the North American Benthological Society, and traces the recent merging of "process-functional" perspectives with "population-community" approaches. Acquiring a broad understanding of the hyporheic zone and its role as a component of stream ecosystems requires the integration of ecological and hydrological techniques and perspectives.

Key words: hyporheic zone, processes, communities, hydrology, groundwater.

Hydrologists have long considered streams and rivers to be dynamic regions that link groundwater with water that drains from the earth’s surface. Ecologists, on the other hand, have typically perceived streams as bounded systems, consisting of the stream bottom and overlying water. In a broad sense, the hyporheic zone (sensu Orghidan 1959) can be defined as the subsurface region of streams and rivers that exchanges water with the surface. The recognition of the hyporheic zone as an integral component of streams has expanded the spatial extent of lotic ecosystems to include the vertical dimension (Ward 1989).

Research presented at annual meetings of the North American Benthological Society (NABS) reflects increased interest in the hyporheic zone and recognition of the ecological importance of subsurface hydrology. Following the eloquent plea for integration of groundwater science and stream ecology (Hynes 1983) the number of abstracts dealing with the interstitial environment has steadily increased (Fig. 1). Three of four plenary presentations at the 36th annual meeting of NABS (1988) featured aspects of lotic subsurface regions. The presidential address at that meeting emphasized the hyporheic zone as a critical dimension of stream ecosystems (Ward 1989). Special sessions held at both the 1990 and 1991 meetings of NABS focused on hydrologic and ecological perspectives of interstitial regions in estuarine and freshwater environments.

Historically, research focusing on the hyporheic zone has employed one of two differing perspectives. Most work has investigated the interstices as habitat for macroinvertebrates. In this "population-community" perspective (sensu O’Neil et al. 1986), the ecosystem is considered as a series of interacting populations superimposed on an abiotic template. Because of a long history of research, stream ecologists are now aware of the unique and varying biota of interstitial environments (i.e., hyporheos, sensu Williams and Hynes 1974). In the "process-functional" perspective (sensu O’Neill et al. 1986) the ecosystem consists of interacting physical, chemical, and biological processes. Research efforts continue to address the distribution and composition of interstitial fauna, but presentations at annual NABS meetings indicate a recent increase in studies of functional...
Fig. 2. Orientation of recent research on the hyporheic zone. Number of abstracts presented at annual NABS meetings relating to population-community perspectives vs. process-functional approaches.

Aspects of the hyporheic zone (Fig. 2), including investigations of hyporheic influences on stream metabolism, nutrient cycling, and surface-subsurface interactions.

It is clear that the population–community and process–functional perspectives are merging (Fig. 3), drawn together by efforts to incorporate the influence of hydrology on hyporheic communities and processes. Descriptive biology and static measures of "traditional" physicochemical factors are now being supplemented by process biology and dynamic measures that include temporal resolution and recognize the key role of hydrology.

The following series of papers addresses the integration of hydrology and ecology in studies of the hyporheic zone. The papers presented here expand on ideas originally presented at a 1991 NABS workshop; they examine current and anticipated problems and suggest future lines of research. The varying topics and perspectives reflect the differing interests and backgrounds of the authors. Bencala (1993) provides hydrologic perspectives on the linkage between streams and their catchments, while Stanford and Ward (1993) expand on linkage between groundwater and floodplain–riverine ecosystems.
tems. White (1993) considers theoretical and oper-ational definitions of the hyporheic zone, and Hendricks (1993) presents a case study to ad-

dress microbial dynamics of this zone. Stanley and Boulton (1993) focus on hydrologic influ-

ences on interstitial community composition in two very different lotic ecosystems. Finally, 

Palmer (1993) examines issues of experimental design that are pertinent to the continuing study of hyporheic processes and communities.

Acknowledgements

The series of papers introduced here are the result of a number of related events. Many dis-
cussions at the 1989 and 1990 annual meetings of the North American Benthological Society led to a workshop at the 1991 meetings in Santa Fe, New Mexico, that dealt with hydrologic influ-

ences on hyporheic ecology. We thank the large number of individuals who contributed to those discussions and helped instigate the workshop, including Nancy Grimm, Stuart Fisher, and LeRoy Poff. We especially thank the following individuals for the effort required to generate the papers presented here as perspectives on the study of the hyporheic zone: Ken Bencala, Sue Hendricks, Margaret Palmer, Em-

ily Stanley, Jack Stanford and David White. In addition, we would like to acknowledge the contributions made by J-NABS Editor Rosemary Mackay, Ad Hoc Associate Editor Jane Ruth-
erford, and a number of anonymous reviewers who helped produce these papers. HMV was supported by NSF grants BSR #88-18612 and BSR #90-20561; AJB by NSF grants BSR #88-18612; and CCH by the Chesapeake Bay Fund, NSF grants #R11-8620422 and BSR #9006002, and the Maryland Agriculture Experiment Station.

Literature Cited

BENCALA, K. E. 1993. A perspective on stream–catch-

ment connections. Journal of the North Ameri-

can Benthological Society 12:44-47.

CREUZÉ DE CHATELLIER, M., AND J. L. REYGROBELLET. 

1990. Interactions between geomorphological 

processes, benthic and hyporheic communities: 

first results on a bypassed canal of the French 

upper Rhône River. Regulated Rivers 5:139-158.

DANIELOPOL, D. L. 1980. The role of limnologists in 

groundwater studies. Internationale Revue der 

Gesamten Hydrobiologie 65:777-791.

GIBERT, J., M. J. DOLE-OLIVIER, P. MARMONIER, AND P. 

VERVIER. 1990. Surface water/groundwater eco-
tones. Pages 199–225 in R. J. Naiman and H. Dé-
camps (editors). The ecology and management of aquatic–terrestrial ecotones. Man and the Bio-
sphere Series. Volume 4. UNESCO, Paris, and The Parthenon Publishing Group, Carnforth, En-

land.

GRIMM, N. B., AND S. G. FISHER. 1984. Exchange be-
tween surface and interstitial water: implications for stream metabolism and nutrient cycling. Hy-
drobiologia 111:219–228.

HENDRICKS, S. P. 1993. Microbial ecology of the hy-
orheic zone: a perspective integrating hydro-


HUSMANN, S. 1966. Versuch einer ökologischen 

Gliederung des interstitiellen Grundwassers in 

Lebensbereiche eigener Prägung. Archiv für Hy-
drobiologie 62:231–268.


Verhandlungen der Internationalen Vereini-
gung für Theoretische und Angewandte Lim-

HYNES, H. B. N. 1983. Groundwater and stream ecol-


O’NEILL, R. V., D. L. DEANGELIS, J. B. WAIDE, AND T. 

F. H. ALLEN. 1986. A hierarchical concept of ecos-


ORGHIDAN, T. 1959. Ein neuer Lebensraum des un-
terirdischen Wassers, der hyporheische Biotop. 


PALMER, M. A. 1993. Experimentation in the hypo-


93.

PENNAK, R. W. 1988. Ecology of the freshwater meio-

fauna. Pages 39–60 in R. P. Higgins and H. Thiel 

(editors), Introduction to the study of meiofauna. 

Smithsonian Press, Washington D.C.

SASSUCHIN, D. N., N. M. KABANOV, AND K. NE-

ISWENOVNA-SHADINA. 1927. Über die mikrosko-
pische Pflanzen- und Tierwelt der Sandflache des 

Okaufers bei Murom. Russische Hydrobiologi-

SCHWOERBEL, J. 1961. Über die Lebensbedingungen 

und die Besiedlung des hyporheischen Lebens-

raumes. Archiv für Hydrobiologie, Supplement 


communities of two Montana rivers. Science 185: 

700–702.


perspective of alluvial rivers: connectivity and


Received: 24 April 1992
Accepted: 19 October 1992