next up previous
Next: About this document ...

MAT 267 PRACTICE PROBLEMS FOR TEST 1



  1. Find the distance from $ (2, -5, 3)$ to each of the following. a) The xy-plane b) The yz-plane
    c) The xz-plane d) The x-axis e) The y-axis f) The z-axis

  2. Write an equation of the set of all points whose distance from the x-axis equals the distance from the point $ (1, 2, 3)$ .

  3. Find equation of the sphere with center $ (2, -6, 4)$ and radius 5. Describe its intersection with each of the coordinate planes.

  4. Find a vector that has the same direction as $ <3, -1, 5>$ but has length 7.

  5. A vector $ \textbf{v}$ =$ <x, y>$ lies in the second quadrant and makes an angle $ \frac{5 \pi}{6}$ with the positive x-axis and its length is $ 6$ . Find $ \textbf{v}$ in component form.

  6. Three men are trying to hold a ferocious lion still for the veterinarian. The lion, in the center, is wearing a collar with three ropes attached to it and each man has hold of a rope. Charlie is pulling in the direction N60$ ^\circ$ W with a force of 350 pounds and Sam is pulling in the direction N45$ ^\circ$ E with a force of 400 pounds. What is the direction and magnitude of the force needed on the third rope to counterbalance Sam and Charlie? (Draw a diagram first).

  7. For $ \mathbf{a}=<1,4,-2>$ and $ \mathbf{b}=<2,2,3>$ , find the angle between $ \mathbf{a}$ and $ \mathbf{b}$ .

  8. Find a unit vector that is orthogonal to $ <4,1>$ . Be sure to justify your answer.

  9. Suppose you start walking from the origin in the direction of $ <-4,3>$ . You make exactly 1 right-angle turn and end up at the point (-2,7). What are the coordinates of the point where you made the turn?

  10. Find the area of the triangle with vertices $ (-1,1,2)$ , $ (4,-2,-1)$ , and $ (3,0,5)$ .

  11. Find two unit vectors that are orthogonal to the vectors $ \mathbf{a}=\langle 2, -1, 5\rangle$ and $ \mathbf{b}=\langle 1, -2, 3\rangle$ .

  12. Find the angle of intersection of the planes $ 2x + 3y -z=6$ and $ x+2y+2z=7$ . Find the answer in radians and degrees.

  13. Where does the line $ \mathbf{r}(t)=\langle 2, 1,-5\rangle + t\langle 1,-1,2 \rangle$ intersect the plane $ 2x + 3y -z=6$ ?

  14. Find an equation of the plane through the points $ (1,1,2)$ , $ (3,2,2)$ , and $ (0,0,4)$ .

  15. What surface is defined by the equation $ -x^2 +4y^2 -z^2 = 4$ ? What plane curves appear on the $ y=k$ plane traces? Which axis intersects the surface(s)?

  16. Reduce the equation $ x^2 - 2y^2 = 3z^2$ . to one of the standard forms and identify the surface.

  17. Name the surface for each equation below.

  18. Find the tangent, unit normal and binormal vectors of the function $ \mathbf{r}$ (t)= $ <\sqrt{2}t, e^{-t}, e^{t}>$ at $ t=1$ .

  19. Find the arc length of the above function between t=1 and 2.

  20. Find the arc length of the function $ \mathbf{r}$ (t)= $ <e, e^{2t}, e^{3t}>$ between t=0 and 1. How does this differ from exercise 10.8.3?

  21. A particle moves along the curve $ \mathbf{r}$ (t)= $ <1 - t^2, t^3>$ . Calculate the velocity and acceleration vectors for the curve at $ t=2$ . Find the parametric equation for the tangent line to the curve at $ t=2$ .

  22. A force $ \mathbf{F}$ (t)=$ <5,2,-1>$ moves an object along a straight line from the point P $ (0,-2,4)$ to Q $ (1,2,6)$ . Find the work done by $ \mathbf{F}$ .

  23. A particle that passes the point P (1,-1) at time t = 0 is moving with velocity $ \mathbf{v}$ (t) = $ <\cos t , \sin t >$ . Find its speed at $ t=4$ and find the parametric equation $ \mathbf{r}$ (t) for its motion.

SOLUTIONS

  1. (a) $ 3$ (b) $ 2$ (c) $ 5$ (d) $ \sqrt{34}$ (e) $ \sqrt{13}$ (f) $ \sqrt{29}$

  2. $ y^2+z^2=(x-1)^2+(y-2)^2+(z-3)^2$ .

  3. $ (x-2)^2+(y+6)^2+(z-4)^2=25$ .

    Intersection with the $ xy$ plane is the circle $ (x-2)^2+(y+6)^2 = 9$

    It has no intersection with the $ xz$ plane

    Intersection with the $ yz$ plane is the circle $ (y+6)^2+(z-4)^2=21$

  4. $ \frac{7}{\sqrt{35}}<3, -1, 5>$

  5. $ <3\sqrt{2}, 3>$ .

  6. magnitude = 438.6 pounds, direction S9.28$ ^\circ$ W

  7. If $ \theta$ is the angle between $ \mathbf{a}$ and $ \mathbf{b}$ , then

    $\displaystyle \cos(\theta)=\frac{\mathbf{a}\cdot\mathbf{b}}{\vert\mathbf{a}\vert\vert\mathbf{b}\vert}$

    $\displaystyle =\frac{4}{\sqrt{21}\sqrt{17}}$

    So $ \theta=\cos^{-1}\left(\frac{4}{\sqrt{21}\sqrt{17}}\right)\approx77.8^\circ$ .

  8. Set $ <x,y>\cdot<4,1>=0$ . Then any solution to $ 4x+y=0$ is perpendicular to $ <4,1>$ . Pick $ x=1$ and $ y=-4$ . Then $ <1,-4>$ is an orthogonal vector, and a unit vector is $ <\frac{1}{\sqrt{17}},\frac{-4}{\sqrt{17}}>$ .

  9. We need to find the orthogonal projection of $ <-2,7>$ onto $ <-4,3>$ . This vector is

    $\displaystyle <-2,7>\cdot<-4,3>\frac{<-4,3>}{\vert<-4,3>\vert^2}=\frac{29}{25}<-4,3>.$

    Then point of the turn is $ <\frac{29(-4)}{25},\frac{29(3)}{25}>$ .

  10. $ \frac{\sqrt{922}}{2} $

  11. $ \frac{1}{\sqrt{59}}<-7, 1, 3>$ and $ \frac{1}{\sqrt{59}}<7, -1, -3>$

  12. 1 rad or 57.68$ ^\circ$

  13. $ (\frac{2}{3},\frac{7}{3},\frac{-7}{3})$

  14. $ 2x-4y-z+4=0$

  15. Hyperboloid of two sheets. Circles if $ k>1$ or $ k<-1$ . Intersected by the y-axis.

  16. $ \frac{y^2}{(\frac{1}{\sqrt{2}})^2} + \frac{z^2}{(\frac{1}{\sqrt{3}})^2} = \frac{x^2}{1^2}$ It is a cone.

  17. Solution:

    $\displaystyle r'(t) = <\sqrt{2}, -e^{-t}, e^{t}>$

    so

    $\displaystyle T(t) =
\frac{r'(t)}{\vert r'(t)\vert} = \frac{<\sqrt{2}, -e^{-t}...
...}>}
{\sqrt{2+e^{-2t}+e^{2t}}} = \frac{<\sqrt{2}, -e^{-t}, e^{t}>}
{e^t+e^{-t}}.$

    The tangent vector at $ t=1$ is

    $\displaystyle T(1) =
\frac{<\sqrt{2}, -1/e, e>}{1/e+e} \approx <0.4582, -0.1192, 0.8808>;$


    $\displaystyle T'(t)$ $\displaystyle =$ $\displaystyle <-\frac{\sqrt{2}(e^t-e^{-t})}{(e^t+e^{-t})^2},
\frac{(e^t-e^{-t}...
...^{-t})},
-\frac{(e^t-e^{-t})e^{t}}{(e^t+e^{-t})^2}+\frac{e^{t}}{(e^t+e^{-t})}>$  
      $\displaystyle =$ $\displaystyle <-\frac{\sqrt{2}(e^t-e^{-t})}{(e^t+e^{-t})^2},
\frac{2}{(e^t+e^{-t})^2}, \frac{2}{(e^t+e^{-t})^2}>$  

    Evaluating at $ t=1$ ,

    $\displaystyle T'(1)=\frac{<-\sqrt{2}(e-1/e),2,2>}{(e+1/e)^2}\approx <-0.349, 0.21, 0.21>,$

    $\displaystyle N=\frac{T'(1)}{\vert T'(1)\vert}=\frac{<-0.349, 0.21, 0.21>}{\sqrt{-0.349^2+0.21^2+0.21^2}}
=<-0.7616, 0.4582, 0.4582>.$

    $\displaystyle B=T\times N=<-0.4582, -0.8808, 0.1192>.$


  18. $\displaystyle s=\int_1^2 \vert r'(t)\vert dt = \int_1^2 (e^t+e^{-t}) dt = (e^t-e^{-t})\vert _1^2 = 9.6041.$

  19. $\displaystyle s=\int_0^1 \sqrt{0+4e^{4t}+9e^{6t}} dt= \int_0^1 \left(\frac{(4+9...
...c{3}{2}}{27}\right)'dt = \frac{(4+9e^{2t})^\frac{3}{2}}{27}\vert _0^1
=20.1887.$

    This is a reparameterization of t in 10.8.3 by $ e^t$ and the integration limit here is equivalent to integrating between $ t=[1, e]$ in 10.8.3.

  20. (a) $ \mathbf{v}$ (2)= $ <-4, 12>$ , $ \mathbf{a}$ (2)= $ <-2, 12>$ . The parametric equation of the tangent line is $ x(t)=-3-4t$ and $ y(t)=8+12t$ .

  21. 12

  22. speed = 1 and $ \mathbf{r}$ (t)= $ <\sin t+1, - \cos t>$




next up previous
Next: About this document ...
Sergey Nikitin 2009-02-10