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1. Introduction  

Benefit transfer is one of the most common methods for conducting benefit-cost analysis 

at the U.S. Environmental Protection Agency [27]. Since a 1992 issue of Water Resources Re-

search (Vol. 28, 3) raised benefit transfers to an area of academic interest to environmental 

economists, at least 40 studies have investigated the empirical accuracy of this method using 

tests of convergent validity.1

[4]

  Two stylized facts have emerged.  Function transfers tend to be 

more accurate than value transfers, and similarity between the study and policy cases tends to 

improve accuracy [13][14].2  The apparent lack of consensus on other methodological features 

of the transfer process has made it difficult to define specific protocols for the conduct of benefit 

transfers and to develop a clear agenda for research.3 [13]  Johnston and Rosenberger  observe, 

the “complexity and relative disorganization of the (academic) literature may represent an ob-

stacle to the use of updated (benefit-transfer) methods by practitioners.” 

The purpose of this paper is to investigate if specific modeling decisions can be identified 

that enhance or reduce the accuracy of benefit transfers, and this is done using a new statistical 

approach to meta-analysis. We begin by systematically reviewing all of the empirical studies on 

the convergent validity of benefit transfers conducted over the past 20 years. These studies tested 

a tremendous variety of methodological procedures, collectively reporting more than one thou-

                                                 
1 Convergent validity asks if two estimates of a specified value concept, using different data in the case of benefit 
transfers, provide statistically similar estimates.  We are not aware of any criterion-validity studies of benefit trans-
fer estimates that use a known or asserted true value to compare with a benefit-transfer estimate. 
2 Value transfers use point estimates from one or more previous studies to develop a benefit measure for a new poli-
cy.  Function transfers take a preexisting estimate for the functional relationship between benefits and the characte-
ristics of people and their choices and then calibrate the function to the population affected by the new policy.  
Readers seeking background on concepts, terminology, and methods in the benefit transfer literature are directed to 
the surveys prepared by Bergstrom and Taylor [2] , Boyle et al. [4], and Johnston and Rosenberger [13]. 
3 The EPA’s 2010 Guidelines for Preparing Economic Analyses [27] describe four steps for conducting a benefit 
transfer: (i) describe the policy case; (ii) select study cases; (iii) transfer values; and (iv) report the results. The 
guidelines are nearly devoid of recommendations for the actual conduct of benefit transfers. 
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sand benefit transfer errors. Most of these observations come from studies conducted in the 

United States and Western Europe. The applications cover a wide variety of amenities.  Exam-

ples include access to forest, park, and lake recreation; hunting; changes in the quantity and qual-

ity of water in lakes, rivers, and coastal areas; air quality; exposure to ultraviolet radiation; 

freshwater fishing in streams and rivers; proximity to various types of open space; farmland 

amenities; and measures of the overall ecological health of watersheds, wetlands, and rivers. 

It is standard practice in meta-analyses to use linear meta-regressions with robust stan-

dard errors to distill the collective findings on important questions in the field of environmental 

economics [19]. However, we have some concerns about the credibility of a linear meta-

regression in the context of our analysis. The modeling decisions that comprise a benefit transfer 

are represented by binary variables that can interact in complex ways to influence the accuracy 

of transferred values [3]. Any specific variable can have a unique effect on the outcome being 

investigated (meta-equation regressand) when combined with sets of other regressors. For exam-

ple, similarity between study and policy cases may be crucial to the accuracy of a value transfer, 

but not as important for a function transfer that can be calibrated to policy case conditions.  A 

statistical approach that allows for these interaction effects has the potential to provide richer in-

sights about the literature being investigated. The typical linear meta-regression imposes separa-

bility of each of the regressors.  Capturing all potential interaction effects would require adding 

an intractable number of regressors to the meta-equation. Therefore, we propose a new nonpara-

metric approach to meta-analysis that does not impose the linearity and separability assumptions.  

We contrast the insights from our new approach with a conventional parametric approach.   

In our specific application, nonparametric meta-analysis avoids the need to impose a-

priori restrictions on the functional relationship between benefit-transfer errors and the various 
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modeling decisions that comprise the transfer process. Instead of generating a single point esti-

mate for the average impact of a particular modeling decision, the nonparametric model gene-

rates a range of estimates. This allows us to recognize that there are multiple possible effects for 

each transfer procedure, with specific impacts depending on the empirical context defined by 

other methodological choices made in implementing a benefit transfer. 

The cost of moving to a nonparametric framework is that it traditionally requires more 

from the data. While our meta-data represent the most comprehensive summary of the external 

validity of estimates for environmental values ever assembled, they do not allow us to identify 

ranges of effects for every benefit transfer procedure. Some procedures are not observed fre-

quently enough in the meta-data to identify their full range of effects without adding parametric 

restrictions to the model. Therefore, we follow Charles Manski’s [16] “bottom-up” approach to 

data analysis. First we use the nonparametric model to estimate the ranges of impacts for the 

benefit transfer procedures that can be identified from variation in the meta-data.  Then we add 

conventional linearity and separability restrictions commonly used in meta-regressions and esti-

mate this meta-equation using weighted least squares. Following Manski’s logic, we recognize 

that the credibility of inference based on our results is decreasing in the strength of the parame-

tric restrictions that we impose on the meta-regression.  

Together, the parametric and nonparametric models suggest several important findings.  

First, transfer errors are not as large as one might expect. Out of 1071 observations, the mean 

absolute transfer error is 172% while the corresponding median is only 39%.  Second, the nonpa-

rametric model generally confirms the stylized fact that function transfers outperform value 

transfers. This result holds regardless of the other modeling decisions that comprise the benefit 

transfer. A third result from the nonparametric analysis is that benefit transfers describing 
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changes in environmental quality almost always have larger errors than transfers describing 

quantity changes. Moving to a linear specification for the meta-regression allows us to draw 

some additional conclusions. For example, we find that on average: (i) the accuracy of benefit 

transfers is improved by geographic proximity of the study and policy locations; (ii) the use of 

random utility models, travel cost models, contingent valuation methods, and choice modeling 

tends to be more accurate than meta-regression transfers; and (iii) drawing on information from 

multiple preexisting studies (as opposed to a single study) tends to reduced transfer errors.  

The remainder of the paper is organized as follows. Section 2 develops a framework for 

characterizing the ways in which benefit transfer procedures can introduce errors into predictions 

of benefits for a new policy. Section 3 describes how we reviewed the convergent validity litera-

ture and developed the meta-data. Section 4 explains the mechanics of our nonparametric ap-

proach and presents regression results from parametric and nonparametric models.  Section 5 

summarizes and interprets the key findings. Finally, section 6 provides concluding remarks. 

2. Conceptual Framework 

A benefit transfer takes a value (or values or valuation equation) from a study case (or cases) to 

develop a customized benefit estimate for a new policy case.4  The process begins by defining 

the relevant measure of benefits.5

                                                 
4 We adopt the phrases study case and policy case from the U.S. EPA’s 2010 Guidelines for Preparing Economic 
Analyses [27].  This is a change from the conventional terminology, study site and policy site.  We chose to adopt 
the new terminology to avoid confusion between the academic literature and practical applications.  The word 
“case” also seems more accurate.  Benefits are not always transferred to new geographic sites.  Some transfers occur 
at the same physical location, using past values to assess current situations or predict future outcomes.  Thus, bene-
fits may be transferred to a new policy case at the same study site or to a new policy case at a different site. This is 
what the EPA Guidelines refer to as “describing the policy case” [27]. 

  Consider a public policy that is expected to change the quality 

of an environmental amenity from 𝑞0 to 𝑞1 at policy case j. A Hicksian measure of willingness to 

pay (𝑤𝑡𝑝) for this change is defined as:  

5 This is what the EPA Guidelines refer to as “describing the policy case” [27]. 
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  𝑉𝑖𝑗�𝑝𝑗, 𝑥𝑗, 𝑞𝑗1, 𝑦𝑖 − 𝑤𝑡𝑝𝑖𝑗;  𝛼𝑖, 𝑑𝑖� = 𝑉𝑖𝑗�𝑝𝑗, 𝑥𝑗, 𝑞𝑗0, 𝑦𝑖;  𝛼𝑖, 𝑑𝑖�,  (1)  

where 𝑉𝑖𝑗 is the indirect utility for individual i at case j expressed as a function of market prices 

(𝑝𝑗), other non-priced attributes (𝑥𝑗), individual income (𝑦𝑖), other demographic characteristics 

(𝑑𝑖), and latent preferences (𝛼𝑖).   

Ideally, the analyst would estimate willingness to pay using the joint distributions of data 

describing the observable characteristics of individuals and their choices at policy case j, 

𝐺𝑗(𝑦, 𝑑) and 𝐹𝑗(𝑝, 𝑥, 𝑞). If these data are unavailable, however, or if constraints on time and re-

sources prohibit original estimation, then a benefit transfer is a second-best approximation to 

𝑤𝑡𝑝𝑖𝑗 using preexisting information from a different study case, k. This approximation is a 

second-best alternative because of the benefit-transfer error (BTE) introduced by transferring in-

formation from the study case to the policy:  

                          𝐵𝑇𝐸 = 𝑤𝑡𝑝� 𝑖𝑗
𝑇 �𝑝𝑗, 𝑥𝑗, 𝑞𝑗0, 𝑞𝑗1, 𝑦𝑖, 𝑑𝑖, 𝐹𝑘(𝑝, 𝑥, 𝑞), 𝐺𝑘(𝑦, 𝑑)|𝛽̂𝑘, 𝑣�                                               

                    −  𝑤𝑡𝑝� 𝑖𝑗�𝑝𝑗, 𝑥𝑗, 𝑞𝑗0, 𝑞𝑗1, 𝑦𝑖, 𝑑𝑖, 𝐹𝑗(𝑝, 𝑥, 𝑞), 𝐺𝑗(𝑦, 𝑑)|𝛽̂𝑗, 𝑣�,          (2) 

where 𝛽̂𝑘 is a vector of parameters estimated from the study case data and v denotes the valuation 

methodology (e.g. travel cost, contingent valuation).6

The BTE is a measure of convergent validity that compares two estimates of the same 

theoretical value defined in equation (1).  Thus, BTE, as defined in (2), is a second-best metric 

because it does not reveal the difference between the transferred benefit measure and the true 

  The benefit-transfer error is simply the 

difference between the approximation to 𝑤𝑡𝑝𝑖𝑗 based on available information from study case k 

and the counterfactual estimate for 𝑤𝑡𝑝𝑖𝑗 that would be obtained from information on policy case 

j if there were no constraints on time, resources, or data.   

                                                 
6 For example, 𝛽̂𝑘 may define moments of statistical distributions used to describe sources of unobserved hetero-
geneity in the preferences of the study case population.  In general, there may also be more than one study case.   
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willingness to pay. The true 𝑤𝑡𝑝𝑖𝑗 is always unknown.  At best, the BTE can be viewed as an un-

biased estimator of  �𝑤𝑡𝑝� 𝑖𝑗
𝑇 − 𝑤𝑡𝑝𝑖𝑗� . The BTE defines the composite error in measuring 𝑤𝑡𝑝� 𝑖𝑗 

that is introduced by methodological features of the transfer process and by differences between 

the study and policy cases.    

The general expression for the benefit transfer error in (2) illustrates four distinct ways in 

which an analyst’s modeling choices can influence the magnitude of the BTE.7

The importance of benefit transfers for environmental policy has motivated a significant 

amount of research on measuring BTEs using research designs based on the concept of conver-

gent validity.

  First, the size of 

the BTE may depend on how the change in the environmental amenity, ∆𝑞, is defined.  Second, 

errors may stem from systematic differences between the observable characteristics of the study 

and policy case populations, 𝐺𝑗 ≠ 𝐺𝑘.  Third, the BTE may vary with the valuation methodology, 

 𝑣.  Finally, the error may depend on the transfer procedures embedded in  𝑤𝑡𝑝� 𝑖𝑗
𝑇 . The individual 

modeling decisions reflected in the definitions for ∆𝑞, 𝑣, 𝐺, and 𝑇 may interact in ways that in-

crease or decrease the BTE.  Geographic similarity between the study and policy cases may pro-

duce a larger improvement in value transfer accuracy than in function transfer accuracy, for ex-

ample.  That is, a function transfer can be calibrated to policy-case conditions by assigning levels 

to covariates in the transfer equation; whereas, no similar calibration is possible for a value trans-

fer so selection of the specific value to transfer that is “similar” becomes critically important.     

8

                                                 
7 A fifth potential source of error that is arguably out of the practitioner’s control is any systematic difference be-
tween the latent preferences of the study and policy case populations, 

  These studies use estimates of willingness to pay for the study and policy cases.  

( ) ( )αα kj HH ≠ .  
8 The importance of benefit transfers for U.S. environmental policy is due, in part, to Presidential Executive Order 
12866 (1993) [28], which requires federal agencies to assess “costs and benefits” of regulations that are based “on 
the best reasonably obtainable scientific, technical, economic, and other information.” International interest is also 
growing.  In 2005, EPA sponsored a forum entitled “Benefit Transfer and Valuation Databases: Are We Heading in 
the Right Direction”, drawing presenters from Australia, Canada, France, Spain, Singapore, the U.K. and the U.S. 
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Then they compare the policy-case estimate to the transferred study-case estimate. The resulting 

transfer error is typically reported in percentage terms, 

 % Benefit Transfer Error = %BTE = ��𝑤𝑡𝑝� 𝑖𝑗
𝑇 /𝑤𝑡𝑝� 𝑖𝑗 � − 1� × 100.   (3) 

Studies that do not report BTE%  almost always report sufficient information for readers to make 

this calculation on their own.  

Each study in the convergent validity literature reports one or more transfer errors condi-

tional on a specific set of modeling decisions. We have systematically reviewed these studies and 

assembled a database documenting transfer errors and transfer procedures. To extract the signals 

from the noise we use a meta-regression, 

   |%𝐵𝑇𝐸| = 𝑚(𝑋) +  𝜀,                    (4) 

where 𝑋 includes a vector of variables that we use to describe analysts’ modeling decisions (va-

riables representing ∆𝑞, 𝑣, 𝐺, and 𝑇).  

3. Data Description 

3.1.  Reviewing the Literature on Convergent Validity of Benefit Transfers 

Through an exhaustive search, we identified 40 convergent-validity studies that were 

published or posted online between 1990 and 2009. Thirty eight of these studies were published 

in peer-reviewed journals or book chapters. We ultimately excluded the two studies that were not 

peer reviewed because they had insufficient documentation for some of the key variables 

(∆𝑞, 𝑣, 𝐺, and 𝑇).9

                                                 
9 The inclusion/exclusion of gray literature studies is a point of debate in the literature.  Bergstrom and Taylor [2] 
suggest that peer-reviewed studies are more likely to be error free, while Stanley 

  Three peer reviewed studies were excluded for the same reason.  A study by 

[22] raises concerns over publica-
tion bias of peer-reviewed studies.  While this debate is interesting, it is not relevant to our analysis.  Even if the two 
convergent validity studies that were not peer reviewed had provided enough information to be included in our anal-
ysis, they would not have provided enough observations to recover the effects of publication bias.  
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Morrison et al. [17] was excluded in order to avoid duplication of the findings reported in Morri-

son et al. [18].  Studies by Engel [6] and Chattopadhyay [5] were excluded because benefit trans-

fer errors were reported as ranges rather than point estimates.  Finally, a study by Eshet et al. [7] 

was excluded because it would have been the only one to use the hedonic methodology, and a 

single study would not have allowed us to identify the effect of this valuation method on the 

%BTE.10

A uniform coding protocol was implemented to ensure that the modeling choices made 

by the authors of each study, and the corresponding %BTEs, were recorded correctly and consis-

tently.  The data were double coded by two research assistants, who then met with us to resolve 

discrepancies.  Then we cross checked the coding a second time.  

  These exclusions left us with a total of 31 studies with %BTE observations to analyze.  

Summary statistics describing the transfer procedures and results for each included study are re-

ported in Appendix Table I, and excluded studies are summarized in Appendix Table II.  The 

appendix also provides complete citations to all 40 studies. 

Some studies report what we refer to as “flip” error calculations.  The investigators would 

compute a transfer error with j as the policy case and k as the study case a la equation (3).  Then 

they would flip the two cases, computing a second transfer error with k as the policy case and j as 

the study case.  Flipping the study and policy cases changes the sign and absolute magnitude of 

the percentage error in (3).  Unfortunately, it was not possible to infer the flip errors for most 

studies that did not make this calculation directly.  Since we were unable to include flip errors for 

every study, we decided to use a single set of errors from studies that reported flips.  Specifically, 

we used the first set of errors reported by the investigators.11

                                                 
10 Note, Chattopadhyay 

 

[5] is also a hedonic study. 
11Chattopadhyay [5] proposes an alternative formula for the %BTE that would avoid the flip error problem: 
|% 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑒𝑟𝑟𝑜𝑟| = ���𝑠𝑡𝑢𝑑𝑦 𝑐𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒−𝑝𝑜𝑙𝑖𝑐𝑦 𝑐𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒

𝑠𝑡𝑢𝑑𝑦 𝑐𝑎𝑠𝑒  𝑣𝑙𝑎𝑢𝑒+𝑝𝑜𝑙𝑖𝑐𝑦 𝑐𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒
� /2� × 100�.   
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Each of the 31 validity studies reported multiple transfer errors, from as few as 2 to as 

many as 178.  The errors vary with the transfer procedures, selection of study cases and study 

case valuation methods, and amenity of interest.  For example, Loomis et al. [15] tested the con-

vergent validity of travel-cost estimates for the average consumer surplus associated with a sin-

gle day of reservoir-based recreation in Sacramento, CA, Little Rock, AR, and Nashville, TN.  

After estimating travel-cost models for each of the three regions, they assessed the accuracy of 

benefit transfers by making all possible pair-wise comparisons of estimated and transferred con-

sumer surplus for 28 reservoir sites.  This yielded 112 distinct transfer errors, half of which were 

flips.  Excluding the flip errors left us with 56 observations on |%BTE|.   

  The final data set contains 1071 transfer errors.  Of these observations, 55% describe ap-

plications in Europe, 37% are drawn from United States, and the remaining 8% are from Austral-

ia and the rest of the world. 12

                                                                                                                                                             
This formula produces the same measure of error, regardless of which value is defined as the study case.  It would 
be convenient if future convergent-validity studies were to adopt this metric. 

  The European data include observations from 12 Western Euro-

pean countries and the U.S. data include observations from all of the lower 48 states.  The set of 

applications is also diverse.  Eight studies considered the benefits of access to recreation sites 

(including forest recreation, reservoir based recreation, park recreation, and hunting); five eva-

luated prospective changes in the quality or quantity of water (including coastal areas, lakes, riv-

ers, and groundwater); and three studies evaluated the benefits of reductions in sources of human 

health risk (air quality, water quality and ultra violet radiation).  Other studies focused on oppor-

tunities for fresh water fishing (salmon, trout, big game, small game, flatfish, salmon, steelhead, 

walleye, pike, bass, and panfish), amenities associated with land preservation (farmland, forested 

12 We did not find evidence of systematic differences across these four regions in terms of the impact of modeling 
decisions on benefit transfer errors. Adding fixed effects for regions to the linear meta-regressions did not produce 
any statistically significant differences in coefficients on modeling procedures. Unfortunately, there was insufficient 
variation in the data to identify separate nonparametric models for each region. 
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land and coastal land), and the overall ecological health of watersheds, wetlands, and rivers.  

3.2.  The Distribution of Transfer Errors 

Figure 1 illustrates the distribution of benefit transfer errors.  In percentage terms, the er-

rors range from 0% to 7,496%, with a mean of 172%.  However, the mean reflects a few obser-

vations with extremely large errors.  The median is only 39%, less than a quarter of the mean.  

The large difference between the mean and the median suggests a need to investigate outlying 

observations that could influence econometric inferences from the data. 

We inspected the data for the presence of outliers using the inter-quartile range (IQR) cri-

terion [21].  According to this criterion, an observation is classified as an outlier if |%BTE| <

𝑄1 − 1.5 × 𝐼𝑄𝑅 and/or  |%BTE| > 𝑄3 + 1.5 × 𝐼𝑄𝑅 , where 𝐼𝑄𝑅 =  𝑄3 − 𝑄1, and 𝑄1 and 𝑄3 are 

the first and third quartiles of the |%BTE| distribution.  This procedure detected 146 outliers.13  

Seventy-two percent of these were reported by just two studies, which also accounted for the 

largest percentage errors.14

Figure 2 graphs the distribution of transfer errors with outliers deleted.  The mean and 

median |%BTE| are now reduced to 42% and 33%, respectively, and the maximum is reduced to 

172%.  One explanation for these large reductions is that some of the validity studies were con-

ducted for situations where the policy case and study case values were conveniently available.  

These comparisons would not normally be considered good candidates for benefit transfers.  

Nevertheless, we estimate the meta-regression both with and without outliers. 

 

                                                 
13 We also examined our models for leverage points and influential observations. There were some leverage points, 
but only a few were found to exert influence on OLS and WLS estimators. However, in general, it is difficult to 
identify influential and leverage data points when all of the explanatory variables are dichotomous.  This observa-
tion, combined with the striking spread of the percentage transfer error, is what led us to adopt the IQR criterion.   
14 We considered dropping these two studies, but ultimately decided to keep them in the analysis because most of 
their observations are not defined as outliers by the IQR criterion (37% are outliers).  To evaluate the sensitivity of 
our results to outlying observations we estimate the model with and without outliers. 
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3.3.  Explanatory Variables 

Table 1 defines the variables we use to explain the variation in benefit transfer errors, 

along with means and standard deviations for each variable.  Of the 14 variables in the table, on-

ly |%BTE| is continuous. All 13 explanatory variables are binary descriptions of benefit-transfer 

applications and modeling decisions. They are grouped into the four categories that we defined 

earlier (∆𝑞, 𝑣, 𝐺, and 𝑇).  

POLICY∆ indicates whether the analyst explicitly defines a baseline condition and a new 

policy condition.  For example, in Johnston [12] ∆𝑞 represents the difference between a current 

land use development plan and an alternative development plan. Therefore, POLICY∆=1.  Most 

studies do not consider specific policy changes, in which case POLICY∆=0.  The second varia-

ble in the ∆𝑞 category, QUALITYΔ, equals one if and only if the transfer describes a change in 

quality, as opposed to a change in quantity. For example, changes in human health, river bank 

erosion, farming practices, air pollution, and water pollution are all defined as quality changes, 

whereas changes in fish catch rates, water supply, and access to recreation sites are all defined as 

quantity changes. Finally, USEVALUE indicates whether or not ∆𝑞 affects the use value of a 

resource as opposed to a non-use or total value.  

The second category of explanatory variables, G, assesses the similarity of the study and 

policy cases. POPULATION equals 1 if the study and policy case populations are essentially the 

same. STUDYAREA equals 1 if both cases occur in the same geographic region. 

The third set of explanatory variables describes the valuation methodology.  Most of the 

transfer errors are drawn from studies that used choice modeling (CM-31%) or contingent valua-

tion (CV-29%).  The remaining observations are based on reduced-form meta-analyses (META-
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17%), travel-cost models (TC-12%), and random-utility models of site choice (RUM-11%).15

Finally, we use three variables to describe the nature of the transfer procedures.  VALU-

ETRANSFER indicates whether the procedure consisted of a value transfer or a function trans-

fer; MULTIPLESTUDY equals 1 if the study case benefit measure is a composite of results from 

more than one study case; and MEAN equals 1 if the transfer error is reported as an average over 

two or more individual transfer errors. 

   

4. Meta-Analysis of |%𝑩𝑻𝑬| 

A nonparametric approach to meta-analysis avoids the need to restrict the functional rela-

tionship between benefit-transfer errors and features of the transfer process. However, it also 

presents a tradeoff.  While nonparametric meta-analysis is robust to linear, additively separable 

functional forms assumed by most parametric meta-analyses, it typically requires more from the 

data.16  To see this, consider the space of potential modeling decisions for benefit transfers.  

With 13 binary regressors representing modeling decisions, there are 213 = 8,192  “cells” in the 

data “grid” describing potential benefit transfer methods.17  Since our data contain 1,071 obser-

vations on transfer errors, most of the cells in the grid are empty. Greater numbers of empty cells 

in the support of a particular variable make it tougher to determine the full range of impacts of 

that variable on the benefit transfer error.18

                                                 
15 All of the meta-analysis studies use reduced-form regressions, as opposed to the “preference calibration” approach 
proposed by Smith, Van Houtven, and Pattanayak 

  Adding parametric restrictions to the meta-

[23].   
16 In a nonparametric model with continuous regressors the complications would include a slower rate of conver-
gence for estimators, selection of the smoothing parameters, and the curse of dimensionality.  These complications 
are mitigated somewhat when all of the regressors are dichotomous.  Details are provided in section 4.1.     
17 The methodological variables are mutually exclusive (RUM, TC, META, CV, CM), therefore, we have 13 binary 
regressors that fully characterize the data grid. 
18 In a parametric linear meta-regression with interaction effects for all possible combinations of modeling decisions, 
the impacts of modeling decisions on the transfer error cannot be identified for benefit transfer methods that corres-
pond to empty cells on the data grid.  Our nonparametric model “smoothes over” the empty cells by leveraging the 
information contained in nearby non-empty cells, providing a continuous approximation to the impacts of unob-
served modeling decisions on transfer errors.  This smoothing process is guided by our estimates of the optimal 
bandwidths. 
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regression reduces the number of cells that have to be filled in order to identify a variable’s im-

pact, while simultaneously increasing the potential for inconsistency due to functional form 

misspecification.       

A second relevant tradeoff concerns finite sample bias. If some of the regressors in the 

nonparametric model are “irrelevant” in the sense that they have no systematic impact on the 

benefit-transfer errors, then the rate of convergence of nonparametric model will be slower than 

the correctly specified parametric model, increasing finite sample bias. While the correctly speci-

fied parametric model would be preferred in this situation, its functional form is unknown. 

Given these tradeoffs, we proceed in two stages.  First we estimate the nonparametric 

model.  The results allow us to characterize ranges of effects for most variables.  A few variables 

appear to be irrelevant, although this may simply reflect sparseness in the data grid.  Therefore, 

we follow our nonparametric estimation with a conventional linear meta-regression, recognizing 

that the credibility of inferences based on our results is decreasing in the strength of the function-

al form assumptions we maintain [16].      

4.1.  A Nonparametric Model for Binary Regressors 

Our nonparametric analysis is based on the kernel estimator for models with unordered 

discrete regressors described in Ouyang, Li and Racine [20].  The estimation procedure recog-

nizes that the true form of 𝑚(𝑋) in equation (4) is unknown.  Equation (4) is estimated using a 

variant of the Aitchison-Aitken kernel function, which has a simple form and can be easily gene-

ralized.  To see the mechanics for this process, let  𝜆𝑟 denote a smoothing parameter (or band-

width) associated with the 𝑟𝑡ℎ component of X.  The kernel function for r is defined as 

  𝑙(𝑋𝑖𝑟, 𝑋ℎ𝑟, 𝜆𝑟) = � 1                         𝑖𝑓 𝑋𝑖𝑟 = 𝑋ℎ𝑟    
𝜆𝑟                       𝑖𝑓 𝑋𝑖𝑟 ≠ 𝑋ℎ𝑟   

�,          (5) 
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using 𝑖 = 1, 2, … ,𝑁 to index individual observations and 𝑋ℎ𝑟 to denote the value of the 

 𝑟𝑡ℎ component of X  for the data point that neighbors 𝑋𝑖.  The corresponding product kernel can 

be expressed as  

  𝐿�𝑋𝑖𝑟,𝑋ℎ, 𝜆� = ∏ 𝑙�𝑋𝑖𝑟, 𝑋ℎ𝑟,𝜆𝑟� =𝑅
𝑟=1 ∏ 𝜆𝑟

𝐼(𝑋𝑖𝑟=𝑋ℎ𝑟)𝑅
𝑟=1 ,    (6) 

where 𝐼(∙) is an indicator function that equals 1 iff the condition in parentheses is true.  Finally, 

the estimator for the unknown function 𝑚(𝑋) is   

 𝑚�(𝑋) =  ∑  |%𝐵𝑇𝐸|𝑖 𝐿(𝑋𝑖𝑟,𝑋ℎ  𝜆)𝑁
𝑖=1

∑ 𝐿(𝑋𝑖𝑟,𝑋ℎ,𝜆)𝑁
𝑖=1

  ,       (7) 

which can be coded using the local constant Nadaraya-Watson estimator.  

The estimated function 𝑚�(𝑋) may be discontinuous or incur jumps because all of our re-

gressors are binary.  To define the effect of a binary variable, let  𝑋~𝑟  denote the subset of re-

gressors in 𝑋 after removing the  𝑟𝑡ℎ  variable such that 𝑋 = [𝑋~𝑟, 𝑋𝑟].  The response of 𝑚�(𝑋) to 

changing  𝑋𝑟  from 0 to 1 can be written as:  

 ∆𝑟= 𝑚�(0, 𝑋~𝑟 ) − 𝑚�(1, 𝑋~𝑟 ).   (8) 

∆𝑟 can be estimated at every data point.  Instead of having a single point estimate for each re-

gressor as in a linear meta-regression, we have a vector of responses.  We refer to these as “re-

sponse effects”. 

  In the language of nonparametric analysis, an explanatory variable is said to be “irrele-

vant” if 𝑚(𝑋) is constant with respect to that particular variable; i.e. if the response effects are 

zero everywhere.  Hall, Li and Racine [9] formalize the distinction between relevant and irrele-

vant variables.  To see their distinction, first partition the set of explanatory variables into two 

components, 𝑋 = �𝑋,̈ 𝑋̇�.  The variables in 𝑋 ̇ are irrelevant, if Y and 𝑋̈ are independent of 𝑋 ̇ .  A 
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weaker condition for irrelevance is that Y and 𝑋 ̇ are independent, conditional on the set of rele-

vant variables, 𝑋̈.19

[20]

  A variable may also be irrelevant if a large number of cells are empty in the 

support of that variable, which prevents us from learning the true range of effects.  In either case, 

irrelevant variables can be identified by inspecting their bandwidths.  The bandwidth for an irre-

levant binary variable approaches the upper bound of “1” .20

[9]

  Therefore, if we find that 

𝜆𝑟 ≈ 1 , we conclude that r is “irrelevant” in the sense that its response effects cannot be identi-

fied without adding parametric restrictions to the model.  It is common in empirical work to use 

0.8 or 0.9 as the cut-off for determining relevancy  .  

The selection of smoothing parameters is one of the key empirical challenges with nonpa-

rametric estimation.  We estimate bandwidths using the data-driven least-squares, cross-

validation method (LSCV).  LSCV employs the leave-one-out technique to find the optimal val-

ue of the smoothing parameters.21 [20]  Ouyang, Li and Racine  demonstrate that the rate of con-

vergence to the optimal value of λ is of the order 𝑂𝑝(𝑛−1) when all regressors are relevant and 

𝑂𝑝(𝑛−0.5) when some regressors are irrelevant.22

4.2.  Nonparametric Results 

  While nonparametric regression models with 

irrelevant variables are still econometrically consistent, their slower convergence rate implies an 

increase in finite sample bias relative to the correctly specified parametric model.  

                                                 
19 Hall, Li and Racine [9] proceed with the stronger definition and prove that their results still hold for the weaker 
condition. 
20 In this case, the model’s predictions are essentially the same as if we had excluded the irrelevant variable.  At the 
opposite extreme, a bandwidth of 0 would be equivalent to splitting the sample and estimating two separate models.  
21 Ouyang, Li and Racine [20] prove that smoothing parameters for irrelevant regressors approach 1 with positive 
probability.  The exact probability depends on the function and the covariance matrix. For instance when the error is 
symmetric around zero and independent of the regressors, this probability is expected to be greater than 0.5. 
22 These convergence rates are faster than for nonparametric models with continuous regressors.  If some regressors 
are continuous, then the rate of convergence for the smoothing parameter associated with binary variables is of the 
order Op(n-2/(4+q)), where q>1 is the number of regressors [9]][11]. Clearly, the rate of convergence to the true value 
(in probability) of the smoothing parameter is faster when all variables are binary.  Moreover, if all regressors are 
discrete and relevant, the nonparametric model converges at the same rate as the correctly specified parametric mod-
el!  
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LSCV bandwidths were estimated separately for the full data set (N=1071) and for the 

data set excluding outliers (N=925).23

[10]

  The two sets of bandwidths differed substantially.  There-

fore, we adapted Hartarska et al.’s  procedure for dealing with outliers in nonparametric 

models.  Following their logic, we attempted to mitigate the influence of outliers by estimating 

the optimal bandwidths without outliers and then using the estimated bandwidths to estimate 

𝑚(𝑋) on the full data set (including outliers).  Table 2 reports the resulting LSCV bandwidths, 

along with descriptive statics for the distribution of response effects (mean, median, 25th quartile 

and 75th quartile).  Wild bootstrap standard errors are provided for each statistic.24

Looking at the quartiles of the response effect distributions reveals four clear results.  The 

first result is one of the stylized facts in the literature, the second result follows logically from 

what is known about the complexity of research design, and the last two results are new findings 

that have not been discussed previously.  First, value transfers tend to be less accurate (have 

larger %BTEs) than function transfers.  Second, transfer errors tend to be larger for studies that 

consider changes in environmental quality, rather than the quantity of a particular amenity.  

Third, travel-cost models tend to produce estimates that are more consistent (much lower 

%BTEs) between the study and policy sites than choice modeling.  Finally, %BTEs tend to be 

larger for studies that add variables to the transfer function to control for differences between 

  The estimated 

bandwidths suggest that the data allow us to identify response effects for most variables.   

                                                 
23As a robustness check, bandwidths were also estimated using Akaike Information Criterion (AIC).  The results 
were found to be very close to the bandwidths estimated via LSCV.  
24After estimating equation (7), a bootstrap sample is generated as |%𝐵𝑇𝐸|∗ = 𝑚�(𝑋) + 𝑢�є∗, where є∗is a white 
noise term and 𝑚�(𝑋) and 𝑢�  are the nonparametric fitted value and residual terms, respectively. The white noise term 
is defined such that E(є∗) = 0 and E(є∗2) = 1.  Values are randomly selected using a two point distribution given 
by: 𝜖∗ = 1−√5

2
with probability 𝑝 = (1 + √5)/2√5  and 𝜖∗ = 1+√5

2
with probability (1 − 𝑝). The first bootstrap 

sample is then used to estimate the new response effect and residuals, which are then used to build the second boot-
strap sample.  This procedure is repeated 999 times.  Thus, for each estimated response effect of the relevant va-
riables, we will have 999 values.  The standard error for an estimated response effect is calculated by taking the 
standard deviation of the corresponding 999 bootstrapped response effects [8].  
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baseline conditions and the new policy condition.  All four of these results are remarkably ro-

bust; the interquartile ranges and means all indicate response effects greater than zero.  

Other response effects are less robust.  Convergent validity studies where the study and 

policy cases describe the same geographic area are associated with smaller transfer errors some-

times, but not always.  The 25th quartile of the response effect distribution is negative, but the 

50th and 75th quartiles are positive.  The same is true for situations where the study case value 

was defined using data from multiple studies and in situations where the transfer error was re-

ported as a mean over multiple individual errors. 

Finally, as can be seen from the bandwidths, the data do not allow us to recover response 

effect distributions for USEVALUE, POPULATION, META, RUM, and CV. Estimated band-

widths for each of these variables are close to 1.  Therefore, in the hope of recovering reasonable 

approximations to the means of their response effect distributions, we repeat the estimation after 

adding the conventional linearity and separability restrictions to the meta-regression (𝑚�(𝑋)).  

4.3.  Parametric Results: Weighted Least Squares 

Recall that the 31 convergent validity studies vary considerably in the number of values 

they report for the %BTE (from 2 to 178).  Since ordinary least squares estimation assigns equal 

weight to each observation, studies that provide more observations have greater influence on the 

results from linear estimation.  To mitigate this influence, we estimate equation (4) using 

weighted least squares (WLS).  Each observation is weighted by the total number of observations 

contributed by the corresponding study.  Thus, individual observations from studies that provide 

more observations receive less weight in the estimation.25

                                                 
25 Not surprisingly, a consistent kernel test 

  The last two columns of Table 2 re-

[11] soundly rejects the null hypothesis that the WLS model is correctly 
specified against the nonparametric alternative.  However, such tests do not allow us to assess the magnitude of the 
potential bias from functional form misspecification. For example, one of the few previous studies to estimate a non-
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port the WLS results, with and without outliers.  Not surprisingly, dropping outliers decreases 

the absolute magnitudes of point estimates for the regression coefficients and improves model 

fit.26

Imposing the linearity and separability restrictions on the model produces substantial 

changes in the estimated mean response effects.  Nevertheless, with or without outliers, the WLS 

results are still consistent with all but one of the qualitative findings from the nonparametric re-

gression.  The difference is that the estimated coefficient on POLICY∆ is now close to zero and 

statistically insignificant.  This difference arises because WLS assigns less weight to observa-

tions drawn from studies that report large numbers of transfer errors.  The vast majority of the 

observations with POLICY∆=1 are drawn from two studies that, together, report more transfer 

errors than any other study, plus the largest values for the transfer errors.  Due to the discreteness 

in the other explanatory variables, the nonparametric response effects for POLICY∆ operate si-

milarly to fixed effects for subsets of observations reported in those two studies.  When the ob-

servations from the two studies are down-weighted by the WLS procedure, their influence on the 

average response effect diminishes, resulting in point estimates close to zero. 

  The 13 modeling decisions explain three quarters of the variation in the percentage transfer 

error when outliers are removed. 

While we certainly must be more cautious in drawing strong conclusions from the WLS 

model, the additional parametric structure produces results that seem intuitively plausible.  It 

suggests that geographic similarity between the study and policy cases tends to reduce transfer 

errors.  It also suggests that, all else constant, using data from multiple study cases tends to de-

crease transfer errors.  Both decreases are close to 10%.  However, the most striking changes are 

                                                                                                                                                             
linear meta-regression, Smith and Osborne [26], soundly rejected linear models against a Box-Cox model, but found 
that the choice of model did not affect their qualitative results.  
26 We also estimated the model using OLS.  The results were much more sensitive to outliers.  This is partly due to 
the fact that the study with the largest error (7496%) also had the largest number of observations.  



19 
 

in the coefficients for the (formerly irrelevant) variables describing study case valuation me-

thods.  The results indicate that RUM, travel cost, and contingent valuation methods all tend to 

produce smaller transfer errors than reduced form meta-analyses.   

5. Summary and Interpretation  

The nonparametric response effect quartiles and WLS point estimates in Table 2 are in-

formative, but they do not provide a complete picture of the results.  In this section we use a 

novel approach to graphical analysis—45 degree plots of whisker figures—to summarize and 

interpret our findings.  We focus on the variables that have significant point estimates in the 

WLS models and a discernable pattern in the distribution of response effects.  This includes eight 

of the twelve explanatory variables.  We are unable to draw clear inferences on POLICY∆, 

USEVALUE, POPULATION, and MEAN based on our results.  

The basic idea for the 45 degree plots is simple.  Scaling both axes of a 2-dimensional di-

agram to represent the same range of |%𝐵𝑇𝐸| response effects makes it possible to visualize the 

entire distribution of response effects (and whisker plots of their confidence intervals) arrayed 

along the 45-degree line.  Consider Figure 3.  It depicts the WLS point estimates for the coeffi-

cient on the value transfer indicator variable, the full range of nonparametric response-effect es-

timates, and 95% confidence intervals for all estimates.  The WLS point estimates, based on the 

full data set (47%) and the data set without outliers (11%), are denoted by the shaded square and 

circle, respectively.  The corresponding horizontal bars define the upper and lower bounds of 

their 95% confidence intervals, using White’s corrected standard errors.   

The numbers in the other whisker figures indicate the percentages of the nonparametric 

response effects located at those points.  Since all of the regressors are binary, 𝑚�(𝑋) is disconti-

nuous.  As a result, the response effects tend to be clustered at values that correspond to specific 
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combinations of explanatory variables.  For example, 35% of the nonparametric response effects 

are located at the largest effect.  A single cluster may represent multiple observations from the 

same study or may represent observations from different studies that have identical values for the 

regressors.  In situations where clusters of response effects are too dense for their individual per-

centages to be legible, we use brackets to indicate the cumulative percentage associated with the 

group of effects.  In Figure 3, nearly half (47%) of the response effects are located near zero.  

Ninety-five percent confidence intervals for each cluster are constructed with wild bootstrap 

standard errors and are denoted by the upper and lower bounds of the whisker plots. 

5.1.  Function Transfer versus Value Transfer 

Figure 3 comes about as close as possible to confirming the stylized fact that function 

transfers outperform value transfers.  Eighty-five percent of the response effects are in the posi-

tive quadrant and so are the point estimates from both WLS models. Based on the 95% confi-

dence intervals, we would only reject the null hypothesis that value transfers have larger errors 

than function transfers for 7% of the response effects!   

While many of the response effects are similar to the WLS estimates (indicating that val-

ue transfers increase errors between 0% and 50%) the distribution has a fat right tail.  For the 

cluster of points representing the top 35% of response effects, even the lower bound of the 95% 

confidence interval exceeds errors of 100%.  The bottom line is that the cumulative findings 

from the convergent-validity literature suggest that benefit transfers can almost always be im-

proved by choosing to perform a function transfer rather than a value transfer.  The strength of 

this conclusion is underscored by the fact that it does not rely on global parametric assumptions 

on the meta-regression function.    

5.2.  Quantity Changes versus Quality Changes 
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An equally robust result is that benefit transfers are almost always more accurate when 

they describe changes in the quantity of environmental amenities, rather than changes in quality.  

This result also does not depend on parametric restrictions in the meta-regression or other types 

of modeling decisions made by benefit-transfer practitioners.  Figure 4 illustrates that 89% of the 

nonparametric response effects are positive, along with both estimates from the WLS model, in-

dicating larger transfer errors for valuing changes in quality.   

This finding has not been widely recognized in the literature, but it makes sense.  Quanti-

ty changes are usually easier to describe than quality changes.  Anglers can easily understand a 

change in catch rates or a permanent closure of a fishing site, for example.  In contrast, it may be 

difficult for them to assess a change in water quality at a fishing site, especially when the change 

is not visible and the effect of fishing may not be explicit.  This forces the benefit-transfer ana-

lyst to make an assumption about the metrics that consumers use to judge environmental quality.  

A quality assumption that holds for the study case may be invalid at the policy case, increasing 

the transfer error.27

The benefit-transfer practitioner may or may not be able to control whether their assess-

ment is framed as a quantity change.  At the very least, the results in Figure 4 suggest that extra 

caution and additional sensitivity analyses are warranted if the transfer involves valuing a change 

in environmental quality.  This is especially important when roughly half of the estimated trans-

fer effects exceed 100% 

  

5.3.  Geographic Similarity 

  Figure 5 illustrates that the results on geographic similarity are mixed.  The WLS point 

estimates and many of the nonparametric response effects are negative, consistent with the sty-
                                                 
27 A less optimistic perspective would be that there is no reason to expect the errors from violations of the usual “full 
information” assumption to be the same at the study and policy cases.  
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lized fact that geographic similarity between the study and policy cases should improve transfer 

accuracy.  However, 54% of the nonparametric response-effects are clustered at a large positive 

value (nearly 150%).  The counterintuitive cluster of extreme positive values reflects two fea-

tures of the nonparametric analysis.  First, the response effects in Figure 5 are only calculated for 

the observations with STUDYAREA=1.28

5.4.  Valuation Methodology 

  This is a small share of the data (18%).  Second, of 

this 18%, just over half of the observations come from a single study that happens to have an ex-

treme response effect.  In contrast, many of the negative response effects are from value trans-

fers.  Thus, our results reinforce the importance of geographic similarity between study and poli-

cy cases, and this stylized fact is particularly relevant when study case values are transferred di-

rectly to the policy case and a function is not available to adjust the transferred value between 

cases.   

  The WLS results suggest that random utility models, travel cost models, and contingent 

valuation all perform better than reduced form meta-analysis.  After removing outliers, choice 

modeling also produces lower transfer errors than meta-analysis.  The estimated bandwidths for 

RUM, CV and META suggest they are nonparametrically irrelevant.29

                                                 
28 Similar to dummy variables in a linear model, calculation of response effects requires there to be a base group 
with a value of 0 for each variable.  We defined the base group to be the subset of observations that did not make the 
modeling decision represented by a 1 for the corresponding variable.  If we were to switch the base group, we could 
calculate response effects for the remaining observations, allowing us to “fill in” the response effect distribution.  
However, the qualitative results would be unchanged. 

  If the irrelevancy is due 

to sparseness in the data “grid” used to describe modeling decisions, then parametric restrictions 

have the potential to help identify the true response effects.  The nonparametric irrelevancy 

simply underscores the caveat that the WLS results for these variables are contingent on the 

maintained assumption that they influence the transfer errors independently of the other model-

29 We do not report 45-degree plots for each pair wise comparison of modeling decisions. This is partly in the inter-
est of brevity and partly because, in this case, the general pattern of results can be seen from Table 2. 
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ing decisions we consider.    

5.5.  Combining Data from Multiple Study Cases 

Figure 6 presents the distribution of response effects for the subset of studies that used 

data from multiple study cases (MULTIPLESTUDY) to estimate the benefits for the policy case.  

Intuition would suggest that combining data from multiple study cases would reduce transfer er-

rors as long as all of the selected study cases are appropriate for the transfer.  Moreover, Smith, 

Van Houtven, and Pattanayak’s [23] logic for “preference calibration” suggests there are gains 

from using multiple study cases to span the relevant portion of the policy case benefit function.  

Indeed, the WLS models suggest a 10% to 30% improvement in accuracy, on average, and 55% 

of the nonparametric response effects confirm this finding. 

The nonparametric model illustrates that the WLS averages reflect considerable hetero-

geneity in the response effects.  Upon closer inspection, this heterogeneity can be explained by 

two other features of the transfer process.  If we focus on the negative response effects, 98% cor-

respond to function transfers and 90% correspond to studies that evaluated quantity changes.  In 

contrast, all of the positive response effects are for studies that conducted value transfers and/or 

considered quality changes.  These insights indicate that averaging values from several studies 

reduces accuracy of value transfers; it is better to select a single value estimate where the study 

case matches the policy case. 

6. Conclusions 

What are the practical implications from the past 20 years of research on the convergent 

validity of benefit transfers? The evidence overwhelmingly supports the stylized fact that func-

tion transfers are more accurate than values transfers. The literature also suggests that benefit 

transfers are better able to predict the willingness to pay for quantity changes than for changes in 
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environmental quality.  The former is a choice made by the benefit-transfer practitioner, while 

the latter is defined by the policy question being addressed. That said, if the practitioner must 

perform a value transfer then it becomes especially important to ensure that the study-case value 

estimate matches the policy-case value definition.  For example, taking a simple average over 

values from multiple preexisting studies is unlikely to reduce transfer errors because this is simp-

ly averaging the benefit transfer errors from multiple study-case values. However, we do find 

that using information from multiple study cases can improve the accuracy of function transfers.  

If the analyst is able to perform a function transfer, then the evidence suggests that the various 

structural frameworks (RUM, travel cost, contingent valuation, and choice modeling) are all like-

ly to generate smaller transfer errors than reduced form meta-analysis. This result is likely due to 

the fact that limited reporting in original studies often leaves the analyst to primarily record study 

case valuation methods in the meta-equation regressors with limited information on the item va-

lued and the population whose values are estimated. 

It is important to distinguish between the way that meta-analysis is used for benefit trans-

fers and the way that we have used the methodology in this study. We have developed a new 

nonparametric approach to meta-analysis and demonstrated that it can extract important signals 

from the data that remain hidden in conventional linear models.  This advancement continues a 

long tradition of refining the econometrics of meta-analysis in order to distill key findings from 

research on important questions in environmental economics [1][25][26][29].  In contrast, when 

meta-analysis is used to conduct a benefit transfer the methodology must provide policy-relevant 

transfer estimates.  Parametric estimation is desirable for providing point estimates of meta-

equations parameters, but the robustness of these parameter estimates should be investigated us-

ing nonparametric estimation. As Smith and Pattanayak [24] explain, the benefit concept and the 
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amenity being valued must be held constant in order to make consistent predictions for policy 

case benefits. This can only happen if study cases do a better job of defining the environmental 

change valued and the affected population, and there are multiple studies valuing the same envi-

ronmental change, but for different increments of change.  Thus, effective use of meta-analysis 

equations in benefit transfer requires improved data reporting in study cases and more refined 

specification and estimation of meta-equations.      

We recommend that future studies evaluating the validity of benefit transfers be more 

thorough in their documentation and analyses.  In our review of the literature, we observed sev-

eral cases where transfer procedures were not clearly documented.  Wide ranges of transfer er-

rors were presented, but not explained.  A documentation protocol is needed in order for future 

convergent-validity studies to enhance the credibility of benefit transfers. Each study should de-

fine the criteria they use to identify study and policy cases that are good candidates for benefit 

transfers, and then justify each comparison in the context of those criteria. Additionally, investi-

gators need to go beyond simply reporting transfer errors to explain why some comparisons have 

small errors and others have large errors.  Taking these steps would provide insights to refine the 

criteria for when appropriate data are available to conduct credible benefit transfers. 
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Table 1. Summary Statistics and Definitions for Key Variables (N=1071) 

Variable Definition Mean 
(s.d.) 

|%Benefit Transfer Error| ���
𝑤𝑡𝑝� 𝑖𝑗

𝑇

𝑤𝑡𝑝� 𝑖𝑗
� − 1� × 100� 171.90 

(555.20) 

Definition for the Change in the Amenity (Δq) 

POLICYΔ 1 if transfer includes variables that define baseline 
and policy (new) conditions; 0 otherwise 

0.24 
(0.43) 

QUALITYΔ  1 if a change in quality; 0 if change in quantity 0.51 
(0.50)           

USEVALUE 1 if use value; 0 if non-use value 0.66  
(0.47)          

Similarity between Study and Policy Cases (G) 

POPULATION 1 iff study and policy case populations are the same 0.09  
(0.29) 

STUDYAREA 1 iff study and policy cases describe the same geo-
graphic area 

0.18         
(0.38) 

Valuation Methodology (v) 

META 1 iff the valuation method is a meta-analysis 0.17 
(0.38) 

RUM 1 iff the valuation method is a random-utility model 0.11 
(0.32) 

TC 1 iff the valuation method is a travel-cost model 0.12 
(0.32) 

CV 1 iff the valuation method is contingent valuation 0.29 
(0.45) 

CM 1 iff the valuation method is choice modeling 0.31 
(0.46) 

Transfer Procedures (T) 

VALUETRANSFER 1 if value transfer; 0 if function transfer 0.38         
(0.48) 

MULTIPLESTUDY 1 iff two or more study cases are used to estimate 
study-case value. 

0.27          
(0.45) 

MEAN  1 iff transfer error is reported as a mean of two or 
more transfer errors 

0.15          
(0.36) 
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Table 2. Nonparametric and Parametric Meta-Regression Results 

 Nonparametric Regressiona WLSb 

 
BW 

Response Effect Quartiles All  
Data 

Without 
Outliers     Mean     25%     50%     75% 

POLICYΔ 0.11 258.53 206.47 322.25 322.25 11.13 -3.19 
(49.32) (49.32) (64.82) (64.82) (12.30) (10.05) 

QUALITYΔ 0.00 233.25 6.22 109.18 579.04 47.72** 24.50** 
(40.14) (5.73) (21.56) (96.60) (23.08) (9.50) 

USEVALUE 1.00 0.00 0.00 0.00 0.00 45.75** 9.93 
(0.00) (0.00) (0.00) (0.00) (20.46) (7.13) 

POPULATION 0.96 -0.14 -0.03 -0.03 -0.03 44.28 19.80* 
(0.07) (0.07) (0.07) (0.07) (28.26) (12.01) 

STUDYAREA 0.05 62.12 -44.59 147.89 147.89 -26.26** -11.45** 
(6.00) (137.86) (20.17) (20.17) (11.69) (5.43) 

RUM 1.00 0.00 0.00 0.00 0.00 -132.05* -56.05*** 
(0.00) (0.00) (0.00) (0.00) (68.10) (19.41) 

TC 0.00 13.48 29.34 49.34 49.34 -150.22** -74.05*** 
(7.90) (7.90) (11.93) (11.93) (71.64) (19.55) 

CV 0.95 -0.40 -0.60 -0.03 -0.30 -146.24** -66.97*** 
(0.16) (0.08) (0.06) (0.08) (66.17) (17.00) 

CM 0.04 220.50 216.89 254.51 254.51 -78.59 -26.35* 
(38.82) (38.35) (44.28) (44.28) (56.06) (14.36) 

VALUETRANSFER 0.34 115.37 0.77    18.09 262.23 47.12*** 11.21** 
(31.79) (0.19) (6.25) (49.08) (13.63) (5.58) 

MULTIPLESTUDY 0.01 -0.67 -14.23 5.48 5.48 -28.14** -13.28** 
(4.47) (4.90) (2.13) (2.13) (12.05) (5.69) 

MEAN 0.02 0.89 -11.05 20.88 20.88 -33.10*** -10.61 
(5.07) (5.07) (5.24) (5.24) (12.68) (6.45) 

Intercept      114.12*** 

(41.40) 
74.49*** 
(12.74) 

      0.33 0.76 
F - value      45.50 251.07 
N 925 1071 1071 1071 1071 1071 925 
a The variable META is excluded from this table as it is an irrelevant variable for nonparametric regression and an omitted 
category for WLS models. Bandwidths are estimated with outliers excluded. Bootstrapped standard errors for response ef-
fect estimates are given in parenthesis.  The fact that the 50th and 75th quartiles in the distribution of response effects are 
identical for some explanatory variables reflects the discreteness in variable space.  
b Significance codes: ‘***’ 0.01, ‘**’ 0.05, ‘*’ 0.1. White’s corrected standard errors are given in parenthesis.  
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Figure 1. Distribution of Percentage Transfer Errors (n=1071)a 

 
a The scaling of the horizontal axis excludes 3.83% of observations with errors exceeding 1000%. 

 
 
 
 
 
 

Figure 2. Truncated Distribution of Transfer Errors, Excluding Outliersa 

 
a This histogram is drawn for |%𝐵𝑇𝐸| without outliers. Of 1071 observations 13.63% are outliers ac-
cording to the interquartile range criterion.   
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Figure 3.  Benefit Transfer Error Response Effects for VALUETRANSFERa 

 
a The figure plots WLS point estimates for the VALUETRANSFER variable, nonparametric response effect esti-
mates (REE), and 95% confidence intervals for each.  The square and circle represent the WLS point estimates 
based on the data with and without outliers, respectively.  The horizontal bars above and below denote 95% confi-
dence intervals.  The numbers indicate the share of the response effects at the point where the number is located.  
Clustering of REEs occurs because all of the independent variables are binary. 
 

 

Figure 4.  Benefit Transfer Error Response Effects for QUALITYΔ a 

  
a The figure plots WLS point estimates for the QUALITYΔ variable, nonparametric response effect estimates (REE), 
and 95% confidence intervals for each.  See the footnote to Figure 3 for additional explanation.   



33 
 

Figure 5.  Benefit Transfer Error Response Effects for STUDYAREA a  

  
a The figure plots WLS point estimates for the STUDYAREA variable, nonparametric response effect estimates 
(REE), and 95% confidence intervals for each.  See the footnote to Figure 3 for additional explanation.    

 

 

Figure 6.  Benefit Transfer Error Response Effects for MULTIPLESTUDY a  

 

a The figure plots WLS point estimates for the MULTIPLESTUDY variable, nonparametric response effect esti-
mates (REE), and 95% confidence intervals for each.  See the footnote to Figure 3 for additional explanation.    
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Appendix Table I. Characteristics of 31 Benefit Transfer Validity Studies  

Authors (year) Valuation 
Method Resource N 

% transfer 
error 

|% transfer 
error| 

mean 
(min, max) 

mean 
(min, max) 

Barton (2002) CV Beach Quality 8 -20 20 
(-23,-10) (10,23) 

Bergland, Magnussen and 
Navrud (1995) CV Water Supply 2 -21 21 

(-24,-18) (18,24) 

Brouwer and Bateman 
(2005) CV Human Health 85 17 34 

(-41,123) (0.4,123) 

Brouwer and Spaninks 
(1999) CV Farm Land 8 3 42 

(-59,60) (22,60) 

Colombo and Hanley (2008) CM Farm Land 178 680 680 
(2, 7496) (2,7496) 

Colombo, Calatrava-
Requens, and Hanley (2007) CM Soil Conserva-

tion 54 110 110 
(8,1148) (8,1148) 

Groothuis (2005) CV/TC Deer Hunting 120 -10 30 
(-75,136) (0.1,136) 

Hanley, Wright, and Alva-
rez-Farizo (2006) CM Ecosystem 

Health 2 -72 72 
(-78,-67) (67,78) 

Jiang, Swallow, and McGo-
nagle (2005) CM Coastal Land 5 -68 68 

(-85,-53) (53,85) 

Johnston and Duke (2009) CM Farm Land 4 -76 76 
(-100,-29) (29,100) 

Johnston (2007) CM Mixed Re-
sources 24 -12 37 

(-101,58) (7,101) 

Kerr and Sharp (2006) CM Ecosystem 
Health 22 79 120 

(-63,704) (2,704) 

Kristofersson and Navrud 
(2007) CV Fishing/ Eco-

system Health 21 125 125 
(7,319) (7,319) 

Lindhjem and Navrud (2008) META Multiple Use 
Forestry 16 73 73 

(25,266) (25,266) 

Loomis et al. (1995) TC Reservoir 56 106 115 
(-50,475) (0.5,475) 
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Loomis (1992) 

 
 
 

TC 

 
 
 
Sport Fishing 

 
 
 

10 

 
 

0.2 

 
 
 

6 
(-18,9) (1, 18) 

Matthews, Hutchinson, and 
Scarpa (2009) CV Forest 

Recreation 84 12 27 
(-42,125) (0.0,125) 

Morrison and Bennett (2006) CM Ecosystem 
Health 28 -25 35 

(-171,30) (1,171) 

Morrison et al. (2002) CM Wetlands 9 -32 32 
(-66,-4) (4,66) 

Parsons and Kealy (1994) RUM Water 
Recreation 11 -4 21 

(-66,75) (1,75) 

Piper and Martin (2001) CV Water Supply 8 35 39 
(-9,149) (3,149) 

Ready and Navrud (2007) CV Human Health 2 37.95 37.95 
(37.7,38.2) (37.7,38.2) 

Ready et al. (2004) CV Human  
Health 21 37 37 

(20,83) (20,83) 

Rosenberger and Loomis 
(2000) META Mixed Re-

sources 115 17 49 
(-79,319) (0.0,319) 

Rozan (2004) CV Air Quality 4 -2 25 
(-28,30) (16,30) 

Shrestha and Loomis (2003) META Mixed Re-
sources 34 60 84 

(-74,411) (12,411) 

Shrestha and Loomis (2001) META Outdoor 
Recreation 18 6 28 

(-46,81) (0.5,81) 

Stapler and Johnston (2009) META Sport Fishing 4 228 228 
(64,572) (64,572) 

Vandenberg, Poe and Powell 
(2001) CV Ground Water 8 29 29 

(16,44) (16,44) 

Zanderson, Termansen and 
Jensen (2007a) RUM Forest 

Recreation 6 4 30 
(-66,55) (4,66) 

Zanderson, Termansen and 
Jensen (2007b) RUM Forest 

Recreation 104 
180 194 

(-73,1111) (1.3,1111) 
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Appendix Table II. Validity Studies Excluded from the Meta-Analysis a 

Study Reason For Excluding 

Bowker, English and Bergstrom (1997)  
 
Insufficient documentation of key variables 

Chattopadhyay (2003) 
 
No point estimate for transfer error 

Downing and Ozuna (1996) 
 
Insufficient documentation of key variables 

Engel (2002)   
 
No point estimate for transfer error 

Eshet, Baron and Shechter (2007)  
 
Only study to use hedonic methodology 

Jeong and Haab (2004)  
 
Insufficient documentation of key variables 

Kirchhoff, Colby and LaFrance (1997) 
 
Insufficient documentation of key variables 

Leon et al. (2002)  
 
Insufficient documentation of key variables 

Morrison et al. (2000) 
 
Redundant, given Morrison et al. (2002) 

  
a Complete references are provided in the supplemental online appendix.    
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