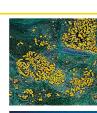
CHAPTER 15

The Evolution of Microbial Life


Figures 15.1 – 15.7

PowerPoint® Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology

Neil Campbell, Jane Reece, and Eric Simon

Presentation prepared by Chris C. Romero Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

• The number of bacteria in one human's mouth is greater than the total number of people who ever lived

• Each year more than 200 million people become infected with malaria.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cu

• Bacterial fermentation is used to produce cheese, yogurt, buttermilk, and many types of sausage

• More than half of our antibiotics come from soil bacteria of the genus *Streptomyces*.

BIOLOGY AND SOCIETY: BIOTERRORISM

• During the fall of 2001, five Americans died from the disease anthrax in a presumed terrorist attack.

- Animals, plants, fungi, and viruses have all served as weapons, but the most frequently employed biowarfare agents have been bacteria
- History provides many examples of the use of biological agents as weapons
 - The practical difficulties of controlling such weapons and a measure of ethical repugnance—led the United States to end its bioweapons program in 1969 and to destroy its products
 - Although not all signatories have honored it, 103 nations have signed the Biological Weapons Convention, pledging never to develop or store biological weapons.
 (M O 2000 Parame Education, is: publishing as Benjimic Comming

• Not all bacteria are harmful to humans

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Curr

 Nearly all life on Earth depends on bacteria and other microbial life in one way or another.

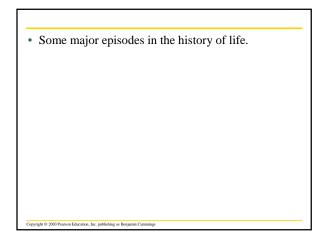
MAJOR EPISODES IN THE HISTORY OF LIFE

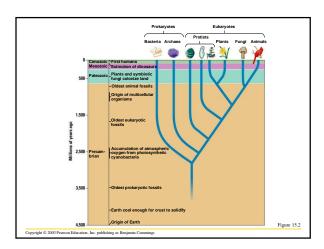
• Earth was born 4.5 billion years ago.

• Prokaryotes

- Appeared about 3.5 billion years ago

Oxygen production


Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cu


- Began about 2.5 billion years ago
- Single-celled eukaryotic organisms
 - Evolved about 1.7 billion years ago.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

- Multicellular eukaryotes
 - Evolved about 1 billion years ago
- All the major phyla of animals
 - Evolved by the end of the Cambrian explosion, which began about 570 million years ago
- About 475 million years ago
 - Plants and fungi colonized land
 - Amphibians evolved from fish, and vertebrate life moved onto land.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

THE ORIGIN OF LIFE

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

• We may never know how life began on Earth.

Resolving the Biogenesis Paradox

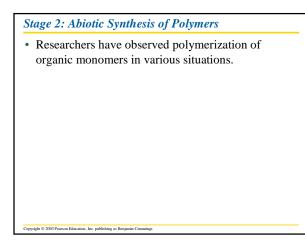
• All life today arises by the reproduction of preexisting life, or biogenesis.

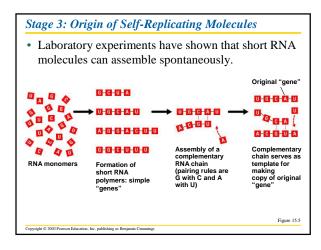
• Most biologists now think it is possible that chemical and physical processes on the early Earth produced simple cells.

ht © 2003 Pearson Education. Inc. r

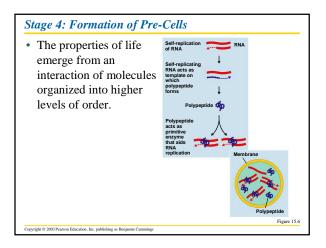
Copyright © 2003 Pearson Education, Inc. publishing as Benja

A Four-Stage Hypothesis for the Origin of Life

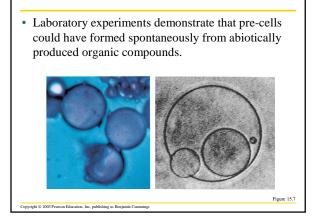

• According to one hypothetical scenario, the first organisms were products of chemical evolution in four stages.


Stage 1: Abiotic Synthesis of Organic Monomers

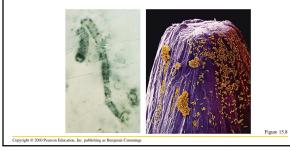
- Stanley Miller
 - Devised an experiment that produced small organic molecules in 1953.



Copyright © 2003 Pearson Education, Inc. publishing as Benjumin Cummings



From Chemical Evolution to Darwinian Evolution


• Over millions of years

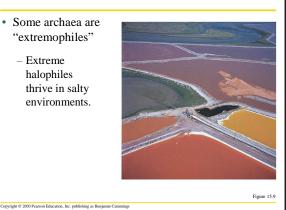
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cur

- Natural selection favored the most efficient pre-cells
- The first prokaryotic cells evolved.

Prokaryotes

- Prokaryotes
 - Lived and evolved all alone on Earth for 2 billion years.

They're Everywhere!


- Prokaryotes
 - Are found wherever there is life
 - Outnumber all eukaryotes combined
 - Can cause disease
 - Can be beneficial.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cumming

The Two Main Branches of Prokaryotic Evolution: Bacteria and Archaea

• The majority of prokaryotes are bacteria.

- Some archaea are "extremophiles"
 - Extreme halophiles thrive in salty environments.

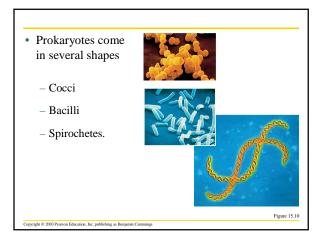
• Extreme thermophiles

- Inhabit very hot water

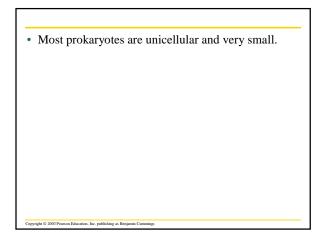
• Methanogens

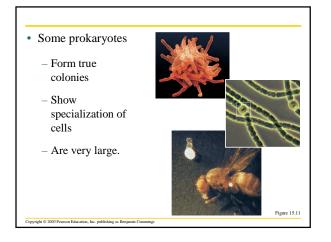
– Inhabit the bottoms of lakes and swamps.

The Structure, Function, and Reproduction of Prokaryotes

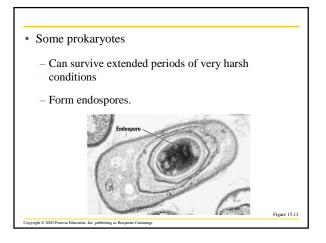

• Prokaryotic cells

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin C


- Lack nuclei


Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cumm


- Lack other membrane-enclosed organelles
- Have cell walls exterior to their plasma membranes.



• Most prokaryotes can reproduce by binary fission at very high rates if conditions are favorable.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Curr

ryotes exhib	it four major	modes of
Table 15.1	Nutritional Cla of Organisms	ssification
Nutritional Type	Energy Source	Carbon Source
Photoautotroph (photosynthesizer)	Sunlight	C02
Chemoautotroph	Inorganic chemicals	C02
Photoheterotroph	Sunlight	Organic compounds
Chemoheterotroph	Organic compounds	Organic compounds

• Photoautotrophs

Г

- Are photosynthetic organisms
- Include the cyanobacteria
- · Chemoautotrophs
 - Need CO₂ as a carbon source
 - Extract energy from inorganic substances.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

• Photoheterotrophs

- Use light to generate ATP
- Must obtain their carbon in organic form
- Chemoheterotrophs
 - Must consume organic molecules for both energy and carbon.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cumming

The Ecological Impact of Prokaryotes

Prokaryotes

– Have a major impact on the Earth and its inhabitants.

Bacteria That Cause Disease

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin C

- Pathogens
 - Are bacteria and other microorganisms that cause disease.

• Most pathogenic bacteria

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummi

- Cause disease by producing poisons
- Exotoxins
 - Are poisonous proteins secreted by bacterial cells
- Endotoxins
 - Are chemical components of the cell walls of certain bacteria.

13

• The best defenses against bacterial disease are

- Sanitation
- Antibiotics
- Education.

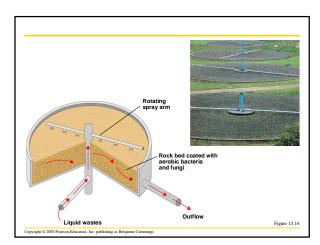
• Lyme disease

 Is caused by bacteria carried by ticks.

Copyright © 2003 Pearson Education, Inc. publishing as Benj

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin G

Prokaryotes and Chemical Recycling


- Prokaryotes play essential roles
 - In chemical cycles in the environment
 - In the breakdown of organic wastes and dead organisms.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummi

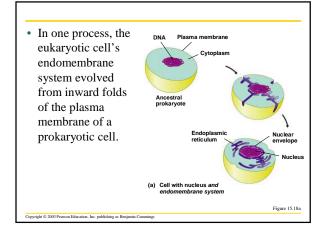
Prokaryotes and Bioremediation

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin G

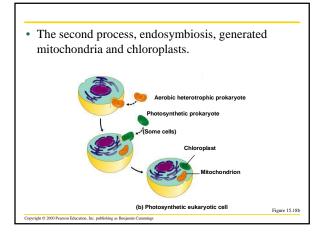
- Bioremediation is the use of organisms to remove pollutants from water, air, and soil
 - A familiar example is use of prokaryotic decomposers in sewage treatment.

PROTISTS

• Protists

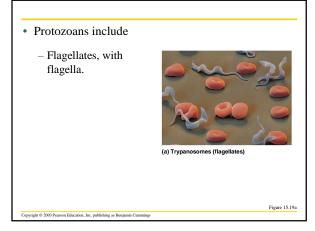

- Are eukaryotic
- Evolved from prokaryotes.

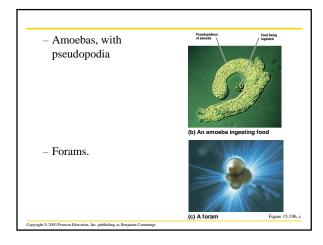
The Origin of Eukaryotic Cells


Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Curr

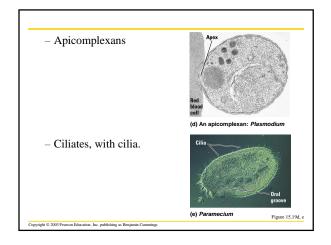
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin C

• Eukaryotic cells evolved through the combination of two processes.




The Di	versity o	of Prot	ists		
• All p	otists a	re euka	ryotes		
- M	ost are ur	nicellula	ır.		

Protozoans


Protozoans

- Live primarily by ingesting food.

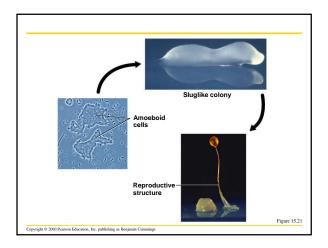
Slime Molds

• Slime molds

- Resemble fungi in appearance and lifestyle.

• Plasmodial slime molds

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cur

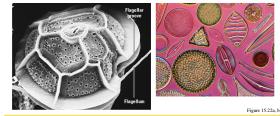

- Can be large.

• Cellular slime molds

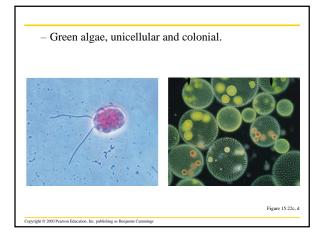
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummin

- Have an interesting and complex life cycle.

Unicellular Algae

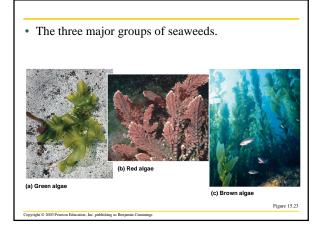

• Algae

- Are photosynthetic protists
- Are found in plankton.


• Unicellular algae include

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin C

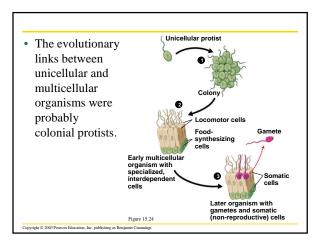
- Dinoflagellates, components of phytoplankton
- Diatoms, which have glassy walls.


Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Seaweeds

- Seaweeds
 - Are large, multicellular marine algae
 - $-\ensuremath{\,\text{Grow}}$ on rocky shores and just offshore
 - Are often edible.

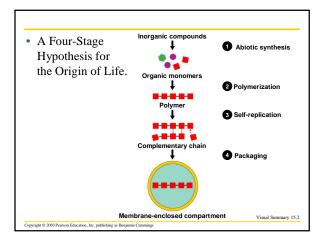
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cur



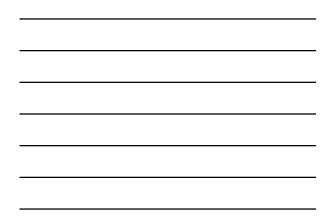
EVOLUTION CONNECTION: THE ORIGIN OF MULTICELLULAR LIFE


• Multicellular organisms

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cu


- Are different from unicellular ones
- Have specialized cells.





Nutritional Mode	Energy Source	Carbon Source	
Photoautotroph	Sunlight	CO2	
Chemoautotroph	Inorganic chemicals		
Photoheterotroph	Sunlight	Organic compounds	
Chemoheterotroph	Organic compounds		

