Host Defense Mechanisms (non-specific)

BIO162 Microbiology for Allied Health Chapter 15 Page Baluch

Host Defenses

- Resistance
 - Ability to ward off disease
 - Varies among organisms and individuals within the same species
- Immunity mechanisms used by the body as protection against microbes and other foreign agents; self vs. non-self
- Nonspecific immunity (innate, natural, inborn
 Defenses against any pathogen
- Specific immunity
 - Resistance to a specific pathogen

Host Defenses		
Nonspecific Resistance		Specific Resistance (Responses of the Immune System,
First line of defense	Second line of defense	Third line of defense
Intact skin Mucous membranes and their secretions Normal microbiota	Phagocytic white blood cells Inflammation Fever Antimicrobial substances	Specialized lymphocytes: B cells and T cells Antibodies

First line of defense – physical & chemical barriers

- Intact, unbroken skin (Broken skin = port of entry)
 - Almost all bacteria are incapable to penetrate a few helminths (hookworm & schistosoma) may
 - skin predominantly inhabited by Staphylococcus epidermidis
 - How?
 - Dryness
 - temperature
 - Low pH (acidic) of skin;
 - bacteriocidal secretion by the sebaceous glands
 - Desquamation sloughing of epithelium
 - Perspiration (sweat contain lysozymes attack bacterial cell wall)
 - Exception: Staphylococcus aureus in moist area

First line of defense – physical & chemical barriers

• Eyes

- Blinking of eyelids
- Tears containing lysozymes
- Outer ear canal
 - Wax contains antibacterial components

First line of defense – physical & chemical barriers

- Mucus membranes layers of mucosal cells that line body cavities that open to the outside (digestive, genitourinary and respiratory tracts)
 - Mucus is produced by the mucosal cells
 Contains antimicrobial substance such as lysozymes, lactoferrin (sequester iron)
 - Mucosal cells are rapidly dividing → flush out of body along with attached bacteria

First line of defense – physical & chemical barriers

- Digestive tract
 - Mouth and lower digestive tract lots of bacteria (mostly anaerobes e.g. *Bacteroides*, anaerobic streptococci [*Streptococcus mutans* in mouth] and *Clostridium* in colon)
 - How?
 - Mucus
 - Saliva (contains lysozyme)
 - Bile (alkaline) in small intestine
 Stomach acids
 - Defecation (feces contains up to 50% bacteria !)
 - Mucus contain antibacterial agents, antibodies and immune cells called phagocytes

First line of defense – physical & chemical barriers

· Genitourinary tract

- Urinary tract is sterile in a health person except the distal urethra
- How?
 - Urination
 - Secretion (vaginal and seminal fluid)
 - Low pH of vagina (presence of several Lactobacillus sp., Candida albicans)

First line of defense – physical & chemical barriers

- Microbial antagonism
 - Normal flora vs. invaders
 - Compete for colonization sites
 - Compete for nutrients
 - Produce bacteriocins
 - Administration of broad spectrum antibiotics may kill only certain members of the normal flora, leaving the others to overgrow → superinfection
 - e.g. yeast in vagina yeast vaginitis
 - Clostridium difficile in colon diarrhea and colitis

Second line of defense

- Once beyond the protective outer barrier of the body, the invading microbes will encounter a series of nonspecific cellular and chemical defense mechanisms
- Mechanisms:
 - Inflammation a series of events that removes or contain the offending agent and repair the damage
 - Chemotaxis movement of cells toward a chemical influence (chemokines or chemotatic agents)
 - Phagocytosis process in which cell ingest foreign particulate matter e.g. microbes
- · Many are carried out by the white blood cells in blood

Blood Components

- Fluid portion
 - Serum: liquid portion of clotted blood
 - Plasma: liquid portion with clotting factors
 - "Plasma can clot; Serum cannot"
 - Contains antibodies & other proteins
- Clotting factors (proteins)
 - Fibrinogen
 - Prothrombin
- Formed elements
 - Erythrocytes red blood cells (RBC) carry oxygen and carbon dioxide; no nucleus
 - Leukocytes white blood cells (WBC) defense
 - Platelets thrombocyte particles clotting; no nucleus

play a role in immediate hypersensitivity reactions and in some cell-mediated delayed reactions, such as contact hypersensitivity in humans, skin graft or tumor rejections

Monocyte (Macrophage)

- Monocytes (the blood form)
- the largest WBC's normally found in blood
 horseshoe or "U" shape nucleus, or it may be folded • travel to different tissue to mature into

specific macrophage

Macrophage

- · As it developed from monocytes, its size can increase 2-3 times
- Wandering motile and travel in bloodstream; found throughout body
 Fixed (histiocytes)– attached and remain in
- the tissue
- · Removal and engulfment of foreign particles and useless body cells/material

Lymphocytes

· The lymphocyte nucleus is usually round to slightly indented with a sharply defined edge, and deep, dense purple. Cytoplasm may be scant or form a narrow rim around the nucleus.

 Cornerstone of the immune system: antibodies production & cell-mediated immunity

Second line of defense

• Acute phase proteins

- set of plasma proteins whose level increases during infection to enhance host defense mechanisms
- e.g. complement proteins, coagulating factors, transferrins

• Cytokines

- small secreted proteins produced by cells
- Communication between different defense systems
- Examples: interleukins, interferons

Second line of defense

• Fever

- Pyrogens are substances that stimulate fever External, e.g. bacterial endotoxin
 Internal (endogenous), e.g. interleukins (IL-1)
- Body temperature increases in response to pyrogens to:
 - Stimulate WBC to deploy & destroy microbes
 - increase in immunological response (e.g. proliferation and activation of lymphocytes)
 - Slow down growth of or kill pathogens

Second line of defense

• Interferons

- Anti-viral proteins produced by virusinfected cells (eventually died)
- Alert system to prevent virus from infecting other cells and to stimulate certain lymphocytes

- Has been used a experimental therapy (nowadays, many are genetically engineered) for
- viral infections and cancers
- Species-specific for host cells

Second line of defense

• The complement systems

- Consists of ~30 proteins that complement the action of the immune system
- Functions:
- Inflammation
- · Stimulate leukocytes
- Lyse bacteria
- Increase phagocytosis by opsonization

Opsonization

- Process by which phagocytosis is facilatated by deposition of opsonins
- Opsonins can be complement proteins, or antibodies • e.g. encapsulated bacteria •
- •
- Deficiency in complement system may lead to increase susceptibility to certain infections.

Inflammation

- Four cardinal signs
 - Redness
 - Heat
 - Swelling
 - Pain

• Primary functions

- Localize infection
- Neutralize toxins at
- injury site
- Repair damage tissue

- Major events
 - Vasodilation - Increase permeability
 - of capillaries - Mobilization of leukocytes to site of injury (chemotaxis & emigration)
 - Phagocytosis

- **Phagocytosis** is the ingestion of microorganisms or other matter by a cell. Many white blood cells engulf invasive microorganisms by the process of phagocytosis. The steps in phagocytosis are:
 - 1. Chemotaxis is the process by which phagocytes are attracted to microorganisms.
 - 2. Attachment: The phagocyte then adheres to the microbial cell. This adherence may be facilitated by opsonization – coating the microbe with plasma proteins.
 - 3. Ingestion: Pseudopods of phagocytes engulf the microorganism and enclose it in a phagosome to complete ingestion.
 - 4. Digestion: Lysosomes fuse with the phagosome to form a digestive vacuole. The microbe is killed and digested.

