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Abstract— The past decade has witnessed a rapid proliferation naturally fall into the purview of computer vision and patte
of video cameras in all walks of life and has resulted in recognition.

a tremendous explosion of video content. Several applications To state the problem in simple terms, given a sequence of
such as content-based video annotation and retrieval, highlight . ’

extraction and video summarization require recognition of the images with one _Or MOore persons perforr_mng an aCt'V,'ty' can
activities occurring in the video. The analysis of human activities & System be designed that can automatically recognize what
in videos is an area with increasingly important consequences activity is being or was performed ? As simple as the question
from security and surveillance to entertainment and personal seems, the solution has been that much harder to find. In this
archiving. Several challenges at various levels of processing “survey paper we review the major approaches that have been

robustness against errors in low-level processing, view and rate- d the last 20 to address this problem
invariant representations at mid-level processing and semantic pursued over the las years IS p :

representation of human activities at higher-level processing —  Several related survey papers have appeared over the years.
make this problem hard to solve. In this review paper, we present Most notable among them are the following. Aggarwal and Cai
a comprehensive survey of efforts in the past couple of decades  [2] discuss three important sub-problems that togethem for
address the problems of representation, recognition and leaming 5 complete action recognition system — extraction of human
of human activities from video gnd related appllcatlo_ns. We bodv struct f . tracki f dracti
discuss the problem at two major levels of complexity — a) 0 ys.r.uc ure irom images, tracking across irames an r&C'
‘actions’ and b) ‘activities’. ‘Actions’ are characterized by simple  recognition. Cedras and Shah [3] present a survey on motion-
motion-patterns typically executed by a single human. ‘Activities’ based approaches to recognition as opposed to structseelba
are more complex and involve co-ordinated actions among a small approaches. They argue that motion is a more important cue
number of humans. We shall discuss several approaches andfqr action recognition than the structure of the human body.
classify them according to their ability to handle varying degrees Gavrila [4] presented a survey focused mainly on tracking of
of complexity as interpreted above. We begin with a discussion ; . .
of approaches to model the simplest of action classes known ashands and humans via 2D or 3D models and a discussion
atomic or primitive actions which do not require sophisticated of action recognition techniques. More recently, Moeslund
dynamical mode[ing. Then,. methods to modgl actigns with more gt gl [5] presented a survey of problems and approaches in
complex dynamics are discussed. The discussion then leads,man motion capture including human model initialization
naturally to methods for higher-level representation of complex . X . L o .
activities. tracking, pose estimation and activity recognition. Sitice
mid-90s, interest has shifted more toward recognizingoasti
from tracked motion or structure features and on recoggizin
. INTRODUCTION complex activities in real-world settings. Considerabifore
Recognizing human activities from video is one of the mostas been spent on addressing these problems in the lastlsever
promising applications of computer vision. In recent yetins  years. Hence, this survey will focus exclusively on apphesc
problem has caught the attention of researchers from indusfor recognition of action and activities from video and nat o
academia, security agencies, consumer agencies and the g lower-level modules of detection and tracking which is
eral populace too. One of the earliest investigations ih® tdiscussed at length in earlier surveys [2], [3], [4], [5]].[6
nature of human motion was conducted by the contemporaryThe terms ‘Action’ and ‘Activity’ are frequently used inter
photographers Etienne Jules Marey and Eadweard Muybridgeangeably in the vision literature. In the ensuing disicuss
in the 1850s who photographed moving subjects and revealsd ‘Actions’ we refer to simple motion patterns usually
several interesting and artistic aspects involved in huarath executed by a single person and typically lasting for short
animal locomotion. The classic Moving Light Display (MLD)durations of time, on the order of tens of seconds. Examples
experiment of Johansson [1] provided a great impetus to tb&actions include bending, walking, swimming etc (e.g. fegu
study and analysis of human motion perception in the field. On the other hand, by ‘Activities’ we refer to the complex
of neuroscience. This then paved the way for mathematiG@quence of actions performed by several humans who could
modeling of human action and automatic recognition, whidbe interacting with each other in a constrained manner. They

are typically characterized by much longer temporal daresj
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ever, permission to use this material for any other purposes beusbtained e.g. two persons shaklng hands, a fOOt_ba” team scoring la goa
from the IEEE by sending an email to pubs-permissions@iegefavan Or a co-ordinated bank attack by multiple robbers (figure 2).
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dynamics of a group of humans (figure 3) is neither as simplel) Behavioral Biometrics: Biometrics involves study of
as an ‘action’ nor as complex as an ‘activity’ according tapproaches and algorithms for uniquely recognizing humans
the above interpretation. However, this simple categtidna based on physical or behavioral cues. Traditional appemch
provides a starting-point to organize the numerous appexac are based on fingerprint, face or iris and can be classified as
that have been proposed to solve the problem. A quigkysiological Biometrics i.e. they rely on physical attriibs
preview of the various approaches that fall under each fofr recognition. These methods require cooperation froen th
these categories is shown in figure 4. The action and activiybject for collection of the biometric. Recently, ‘Behandl
recognition approaches are complementary to each othak R®8iometrics’ have been gaining popularity, where the premis
life activity recognition systems typically follow a higchical is that behavior is as useful a cue to recognize humans as
approach. At the lower levels are standard vision moduleb sitheir physical attributes. The advantage of this approacthait
as background-foreground segmentation, tracking andcbbjeubject-cooperation is not necessary and it can procebduit
detection. At the mid-level are action-recognition modul&t interrupting or interfering with the subject’s activity.inge
the high-level are the reasoning engines which encode thigserving behavior implies longer-term observation of the
activity semantics/structure based on the lower leveloaeti subject, approaches for action-recognition extend néyut@
primitives. Thus, it is necessary to gain an understanding this task. Currently, the most promising example of behabio
both these problem domains to enable real-life deployméntliometric is human gait [10].
systems. 2) Content Based Video Analysi¥ideo has become a part

of our everyday life. With video sharing websites experirgc

relentless growth, it has become necessary to developesifici
indexing and storage schemes to improve user experienge. Th
requires learning of patterns from raw video and summagizin

a video based on its content. Content-based video summa-
rization has been gaining renewed interest with correspgnd
advances in content-based image retrieval (CBIR) [11]. Sum
marization and retrieval of consumer content such as sports
videos is one of the most commercially viable applicatiohs o
this technology [12].

3) Security and SurveillanceSecurity and surveillance
systems have traditionally relied on a network of video
cameras monitored by a human operator who needs to be
aware of the activity in the camera’s field of view. With

recent growth in the number of cameras and deployments, the
efficiency and accuracy of human operators has been stcetche
Hence, security agencies are seeking vision-based sudutio
to these tasks which can replace or assist a human operator.
Automatic recognition of anomalies in a camera’s field ofwie

is one such problem that has attracted attention from vision
researchers (c. f. [13], [9]). A related application invedv
searching for an activity of interest in a large database by
learning patterns of activity from long videos [14], [15].

4) Interactive Applications and Environmentdnderstand-
ing the interaction between a computer and a human remains
Fig. 3.  Far-field video: Modeling dynamics of groups of humassaa one of the enduring challenges in designing human-computer
deforming shape. Figure taken from [9]. interfaces. Visual cues are the most important mode of non-

The rest of the paper is organized as follows. First, weerbal communication. Effective utilization of this modech
discuss a few motivating application domains in section lis gestures and activity holds the promise of helping in
Section Il provides an overview of methods for extractidn ccreating computers that can better interact with humams: Si
low-level image features. In section IV we discuss appreachilarly, interactive environments such as smart rooms [hé} t
for recognizing ‘actions’. Then, in section V we discussan react to a user's gestures can benefit from vision based
methods to represent and recognize higher-level ‘aa@®itin methods. However, such technologies are still not mature
section VI, we discuss some open research issues for actimough to stand the ‘Turing test’ and thus continue to dttrac
and activity recognition and provide concluding remarks. research interest.

5) Animation and SynthesisThe gaming and animation
industry rely on synthesizing realistic humans and human
motion. Motion synthesis finds wide use in the gaming in-

In this section, we present a few application areas thdiistry where the requirement is to produce a large variety
will highlight the potential impact of vision-based activi of motions with some compromise on the quality. The movie
recognition systems. industry on the other hand has traditionally relied more on

Fig. 1. Near-field video: Example of Walking action. Figurkea from [7].

Il. APPLICATIONS



Fig. 2. Medium-field video: Example video sequence of a simdlank attack (courtesy [8]). (a) Person enters the bankk¢per is identified to be an
outsider. Robber is entering the bank safe, (c) A customeapes; (d) Robber makes an exit.
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Fig. 4. Overview of approaches for action and activity regtgn.

human animators to provide high-quality animation. Howgvefactors such as the color of the clothes, illumination ctods,

this trend is fast changing [17]. With improvements in algdsackground clutter do not aid in the recognition task. We
rithms and hardware, much more realistic motion-synthissisbriefly describe a few popular low-level features and reffier t
now possible. A related application is learning in simufatereaders to other sources for a more in-depth treatment as we
environments. Examples of this include training of miltar progress.

soldiers, fire-fighters and other rescue personnel in hamard

situations with simulated subjects. A. Optical flow

Optical flow is defined as the apparent motion of individual

Ill. GENERAL OVERVIEW pixels on the image plane. Optical flow often serves as a

A generic action or activity recognition system can bgood approximation of the true physical motion projected
viewed as proceeding from a sequence of images to a highemto the image plane. Most methods to compute optical
level interpretation in a series of steps. The major stefliew assume that the color/intensity of a pixel is invariant

involved are the following: under the displacement from one video frame to the next.
1) Input video or sequence of images We refer the reader to [18] for a comprehensive survey and
2) Extraction of concise low-level features comparison of optical flow computation techniques. Optical

3) Mid-level action descriptions from low-level features flow provides a concise description of both the regions of

4) High-level semantic interpretations from primitive acthe image undergoing motion and the velocity of motion. In
tions practice, computation of optical flow is susceptible to Bois

In this section, we will briefly discuss some relevant asspec"'lmd '“““_"”a“"” changes. Applications .mcIUQe [19] which
of item 2. i.e. low-level feature extraction. Items 3 and 4 iHS€d optical flow to detect and track vehicles in an automated

the list will form the subject of discussion of sections IVdantrafflc surveillance application.
V respectively. ) ] )

Videos consist of massive amounts of raw information in tHg- Point trajectories
form of spatio-temporal pixel intensity variations. But shof Trajectories of moving objects have popularly been used
this information is not directly relevant to the task of unde as features to infer the activity of the object (see figure 5).
standing and identifying the activity occurring in the vidéA The image-plane trajectory itself is not very useful as it is
classic experiment by Johansson [1] demonstrated thatimimsensitive to translations, rotations and scale changesr-Al
can perceive gait patterns from point light sources pladed raative representations such as trajectory velocitiegediary
a few limb joints with no additional information. Extraneou speeds, spatio-temporal curvature, relative-motion eteeh



been proposed that are invariant to some of these variabil-
ities. A good survey of these approaches can be found in
[3]. Extracting unambiguous point trajectories from video
complicated by several factors such as occlusions, noide an
background clutter. Accurate tracking algorithms need do b
employed for obtaining motion trajectories [6].

Fig. 6. Silhouettes extracted from the walking sequenceveha figure 1.
Silhouettes encode sufficient information to recognizeoasti Figure taken
from [7].

feature encodes motion and its corresponding spatialrivder

tion compactly and is useful for far-field and medium-field
surveillance videos. The notion of scale-space filtering ha
also been extended to videos by several researchers. Laptev
et al [27], [28] propose a generalization of the Harris corne
detector to videos using a set of spatio-temporal Gaussian
derivative filters. Similarly, Dollar et al [29] extract diisctive

Fig. 5. Trajectories of a passenger and luggage-cart. Tte difference in perlodl.c motlon-k_)ased landmarks in a glve_n V'_de(_) US'”Q a
the trajectories is indicative of the difference in actadt Figure taken from Gaussian kernel in space and a Gabor function in time. Since

[20]- these approaches are based on simple convolution opexation
they are fast and easy to implement. They are quite useful
C. Background subtracted blobs and Shape in scenarios with low resolution or poor quality video where

Background subtraction is a popular method to isolate t#]tqls difficult to extract other features such as optical floww o
. L swouettes.
moving parts of a scene by segmenting it into background an
foreground. As an example, from the sequence of background |\ M oODELING AND RECOGNIZING ACTIONS
subtracted images shown in figure 1, the human’s walking . " .
Approaches for human action recognition fall into one of

action can be easily perceived. Several approaches to back- : .
ground modeling exist. One popular approach is to Iearr?t?ée two following categories — a) Methods that rely on human

statistical distribution of pixel intensities that comesd to body models, b) Methods that do not rely on human body

the background as in [21]. By adapting the background moda delg. Methods that. faII' |n.the first category rely on seg-

according to new data, the method can also be applied 6 ntation pf the bodymt_o_mdw@ual parts and extrac_tdieass

scenarios with changing background [21]. Shape of the hurr%#:h as joint-angles or joint-trajectories. Segmentatibthe
0

silhouette plays a very important role in recognizing huma uman body is a computationally intensive task and extracti

actions (see figure 6). Several methods based on globaldboun JC;'m t;ajecx)r:es requllr(res,ing?rc]) d traﬁklnggo algtr)]gthmnshefe lent
ary and skeletal descriptors have been proposed to quanﬁﬁ}r] oacnes were popu’a € early SUs and an excele
e

shape. Global methods such as moments [22] consider vey can be found in [2]. More recently, the focus has stiift
: oward approaches which do not assume a body model. These

entire shape region to compute the shape-descriptor. Boynd o . )
methods on the other hand consider only the shape contourmaestr.]Ods rely on motion information extracted directly from

the defining characteristic of the shape. Such methodsdracl;{heI il\Tatgr?r S I\riot!orn—tlxased aprp])r?]achresmfotrri mgdflxgiggtmns

chain codes [23] and landmark-based shape descriptors [ g mo i etiem _ajoricasse;c, R ho -pﬁ arll- € ; Cr’n (t)riu n

Skeletal methods represent a complex shape as a set of AMETNC ime-Series approaches. Non-parame capper._kx
ypically extract a set of features from each frame of thewsid

keletal curves, for example, the medial axis transfornj.[2 .
skeletal curves, for exampie, the ed axis transto [ he features are then matched to a stored template. \oliemetr
Applications include shape-based dynamic modeling of the

human silhouette as in [26] to perform gait recognition. approaches on the_other hand do not gxtract f_eatures on a
frame-by-frame basis. Instead, they consider a video as a 3D

_ volume of pixel intensities and extend standard image featu

D. Filter Responses such as scale-space extrema, spatial filter responses etc to

There are several other features which can be broadhe 3D case. Parametric time-series approaches spegificall
classified as based on spatio-temporal filter responsekeln timpose a model on the temporal dynamics of the motion. The
work, Zhong et al [13] process a video sequence usingparticular parameters for a class of actions is then estighat
spatial Gaussian and a derivative of Gaussian on the teinpdram training data. Examples of parametric approachesidecl
axis. Due to the derivative operation on the temporal axisidden Markov Models (HMMs), Linear Dynamical Systems
the filter shows high responses at regions of motion. ThiDSs) etc. We will first discuss the non-parametric methods
response was then thresholded to yield a binary motion makken the volumetric approaches and finally the parametric
followed by aggregation into spatial histogram bins. Suchtame-series methods.



A. Non-Parametric Approaches for Action Recognition

1) 2D-templates:One of the earliest attempts at action-
recognition without relying on 3-D structure estimationswa
proposed by Polana and Nelson [30], [31]. First, they penfor
motion-detection and tracking of humans in the scene. After
tracking, a ‘cropped’ sequence containing the human is con-
structed. Scale changes are compensated for by normalizing
the size of the human. A periodicity index is computed for
the given action and the algorithm proceeds to recognize the
action if it is found to be sufficiently periodic. To perform
recognition, the periodic sequence is segmented into iioha
cycles using the periodicity estimate and combined to get
an average-cycle. The average-cycle is divided into a few
temporal segments and flow-based features are computed for 20
each spatial location in each segment. The flow-features in 0
each segment are averaged into a single frame. The average- X
flow frames within an activity-cycle form the templates for
each action class. Other related approaches for repreismtag,ig- 8. 3D space-time object, similar to [39], ohtained by kiag together

" . . h . inary background subtracted images of a person waving tmd.ha
and recognition of quasi-cyclic actions have been propased

[32], [33]. Since these methods are based on periodic motigf\houettes, accurate correspondence between pointgcdsu
they are best suited to quasi-periodic actions such as mglkisjye silhouettes in the sequences needs to be establishasi Q
running, swimming etc. view-invariance for this representation was shown théwatky
Bobick and Davis [34], [35] proposed ‘temporal templatesy assuming an affine camera model. Similar to this approach,
as models for actions. In their approach, the first step el [39], [40] proposed using background subtracted blobatst
is background subtraction, followed by an aggregation of g contours, which are then stacked together to create an
sequence of background subtracted blobs into a singlee stgti, i, ¢) binary space-time volume (for example, see figure
image. They propose two methods of aggregation — the figyt Since this approach uses background subtracted blobs,
method gives equal weight to all images in the sequenghe problem of establishing correspondence between points
which gives rise to a representation called the ‘Motion Bger on contours in the sequence does not exist. From this space-
Image’ (MEI). The second method gives decaying weightine volume, 3-D shape descriptors are extracted by solving
to the images in the sequence with higher weight given tgPoisson equation [39], [40]. Since these approachesresqui
new frames and low weight to older frames. This leads tocareful segmentation of background and the foreground, the
representation called the ‘Motion History Image’ (MHI) (fo are limited in applicability to fixed camera settings.
example, see figure 7). The MEI and MHI together comprise 3) Manifold Learning MethodsMost approaches in action
a template for a given action. From the templates, tramslati recognition involve dealing with data in very high-dimesrsal
rotation and scale invariant Hu-moments [22] are extract@@aces. Hence, these approaches often suffer from thee‘curs
which are then used for recognition. It was shown in [3%f dimensionality’. The feature-space becomes sparsenin a
that MEI and MHI have sufficient discriminating ability for exponential fashion with the dimension, thus requiringrgea
several simple action classes such as ‘sitting down’, ‘b&Jid  number of samples to build efficient class-conditional nigde
‘crouching’ and other aerobic postures. However, it wagdot|_earning the manifold on which the data resides enables us to
in [36] that MEI and MHI lose discriminative power for determine the inherent dimensionality of the data as opptuse
complex activities due to over-writing of the motion histor the raw dimensionality. The inherent dimensionality corga
and hence are unreliable for matching. fewer degrees of freedom and allows efficient models to be
2) 3D Object models:Successful application of modelsdesigned in the lower-dimensional space. The simplest way
and algorithms to object recognition problems led reseaschto reduce dimensionality is via Principal Component Analys
in action-recognition to propose alternate represematiof (PCA) which assumes that the data lies on a linear subspace.
actions as spatio-temporal objects. Syeda-Mahmood et Bkcept in very special cases, data does not lie on a linear
proposed a representation of actions as generalized eyfindsubspace, thus requiring methods that can learn the iiatrins
in the joint(x, y,t) space [37]. Yilmaz and Shah [38] represergeometry of the manifold from a large number of samples.
actions as 3-D objects induced by stacking together tra2kedNonlinear dimensionality reduction techniques allow fepne-
D object contours. A sequence of 2-D contoursany) space sentation of data points based on their proximity to eackroth
can be treated as an object in the jo{nty,t) space. This on nonlinear manifolds. Several methods for dimensiopalit
representation encodes both the shape and motion charagtmtuction such as PCA, locally linear embedding (LLE) [41],
istics of the human. From ther, y, t) representation, conciselLaplacian eigenmap [42], and Isomap [43] have been applied
descriptors of the object’s surface are extracted corretipg to reduce the high-dimensionality of video data in action-
to geometric features such as peaks, pits, valleys andsiidgecognition tasks (c. f. [44], [45], [46]). Specific recotion
Since this approach is based on stacking together a seqoenadgorithms such as template matching, dynamical modeling e
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Fig. 7. Temporal templates similar to [34]. Left: Motion Energyage of a sequence of a person raising both hands, RightoMeétistory Image of the
same action.

can be performed more efficiently once the dimensionality tfie appropriate bandwidth of the filters is not known a priori

the data has been reduced. thus a large filter bank at several spatial and temporal scale
_ is required for effectively capturing the action dynamics.
B. Volumetric Approaches Moreover the response generated by each filter has the same

The approaches discussed above relied on extracting fdémensions as the input volume, hence using large filter bank
tures such as shape and optical-flow from each frame indi-several spatial and temporal scales is prohibitive.
vidually, hence are limited to conditions where these fsstu  2) Part-Based ApproachesSeveral approaches have been
can be reliably extracted. A different approach is to armlyproposed that consider a video volume as a collection of loca
chunks of video in 3D directly as opposed to sequentialgarts, where each part consists of some distinctive motion
analyzing frames. This is possible in large part due to agattern. Laptev and Lindeberg [27], [28] proposed a spatio-
vances in processing power and memory capacities of modégmporal generalization of the well-known Harris interest
computers. Further, these methods do not require sopdtistic point detector, which is widely used in object recognition
segmentation and tracking algorithms, instead relying xon eapplications and applied it to modeling and recognizingpast
tracting volumetric features. In this section, we reviewnso in space-time. This method is based on the 3D generalization
of the approaches that directly extend the 2D approachesofsscale-space representations. A given video is convolitd
3D video volumes. a 3D Gaussian kernel at various spatial and temporal scales.

1) Spatio-temporal Filtering:These approaches are based@hen, spatio-temporal gradients are computed at each level
on filtering a video volume using a large filter bank. Thef the scale-space representation. These are then combined
responses of the filter bank are further processed to derivithin a neighborhood of each point to yield stable estimate
action specific features. These approaches are inspireldeby af the spatio-temporal second-moment matrix. Local fesstur
success of filter-based methods on other still image reeogaie then derived from these smoothed estimates of gradient
tion tasks such as texture segmentation [47]. Furtherjcspatmoment matrices. In a similar approach, Dollar et al. [29]
temporal filter structures such as oriented Gaussian kernelodel a video sequence by the distribution of space-time
and their derivatives [48] and oriented Gabor filter bankg [4 (ST) feature prototypes. The feature prototypes are obdain
have been hypothesized to describe the major spatio-teinpdry k-means clustering of a large set of features — space-time
properties of cells in the visual cortex. Chomat et al. [5@radients — extracted at ST interest points from the trginin
model a segment of video ag:, y, t) spatio-temporal volume data. Neibles et al. [52] use a similar approach where they
and compute local appearance models at each pixel usingsa a bag-of-words model to represent actions. The bag-of-
Gabor filter bank at various orientation and spatial scates awords model is learnt by extracting spatio-temporal irgere
a single temporal scale. A given action is recognized usimgints and clustering of the features. These interest paig
a spatial average of the probabilities of individual pixiela be used in conjunction with machine learning approaches suc
frame. Since actions are analyzed at a single temporal,scale SVMs [53] and graphical models [52]. Since the interest-
this method is not applicable to variations in executior.rdis points are local in nature, longer term temporal correfetiare
an extension to this approach, local histograms of normdlizignored in these approaches. To address this issue, a method
space-time gradients at several temporal scales are ®dradased on correlograms of prototype labels was presented in
by Zelnik-Manor and Irani [51]. The sum of the chi-squargb4]. In a slightly different approach Nowozin et al [55]
metric between histograms is used to match an input videonsider a video as a sequence of sets - where each set sonsist
with a stored exemplar. Filtering with the Gaussian kernel of the parts found in a small temporally sliding window.
space and the derivative of the Gaussian on the temporal akimse approaches do not directly model the global geometry
followed by thresholding of the responses and accumulatiof local parts instead considering them as a bag-of-feature
into spatial-histograms was found to be a simple yet effectiDifferent actions may be composed of similar space-timéspar
feature for actions in a far field settings [13]. but may differ in their geometric relationships. Integnati

Filtering approaches are fast and easy to implement dgiebal geometry into the part-based video representatiasm w
to efficient algorithms for convolution. In most applicatf® investigated by Boiman et al [56] and Wong et al [57]. This



approach may be termed as a constellation-of-parts as eppos 4) Tensor based approacheJensors are generalizations
to the simpler bag-of-parts model. Computational compyexiof matrices to multiple dimensions. A 3D space-time volume
can be large for constellation models with a large number o&n naturally be considered as a tensor with three indepen-
parts which is typically the case for human actions. Sond eta@gent dimensions. Vasilescu [64] proposed the modeling of
[58] addressed this issue by approximating the connectionshuman action, human identity and joint angle trajectorigs b
the constellation via triangulation. Niebles et al [59] posed considering them as independent dimensions of a tensor. By
a hierarchical model where the higher level is a consteltatidecomposing the overall data tensor into dominant modes (as
of parts much smaller than the actual number of featuredh Eac generalization of principal component analysis), one can
of the parts in the constellation consists of a bag-of-fiemtu extract signatures corresponding to both the action and the
at the lower level. This approach combines the advantagdentity of the person performing the action. Recently, Katn

of both the bag-of-features and the constellation model aatl[65] extended canonical correlation analysis to tensors
preserves computational efficiency at the same time. match videos directly to templates. In their approach, the d

In most of these approaches the detection of the paﬁ'@nsions o_f the tensorwe_re_simply the space-time dimesision
is usually based on linear operations such as filtering af@rresponding tdz, y, ¢). Similarly, Wolf et al [66] extended
spatio-temporal gradients, hence the descriptors ardtigens 10W-rank SVM techniques to the space of tensors for action
to changes in appearance, noise, occlusions etc. It has &RgPgnition. . o
been noted that interest points are extremely sparse intsmoo Tensor-based approaches offer a direct method for holistic
human actions and certain types of actions do not give rigtatching of videos without recourse to mid-level represent
to distinctive features [52], [29]. However, due to theicdb tONS such as the previous ones. Moreover, they can incatgor

nature they are more robust to non-stationary backgroundsPther types of features such as optical flow, space-time filte
) responses etc into the same framework by simply adding more
3) Sub-volume matchingAs opposed to part-based aPindependent dimensions to the tensor.
proaches, researchers have also investigated matching of

videos by matching sub-volumes between a video and a .
template. Shechtman et al [60] present an approach derifed Parametric Methods

from space-time motion based correlation to match actionsthe previous section focused on representations and models
with a template. The main difference of this approach frofg simple actions — known as atomic or primitive actions.
the part-based approaches is that it does not extract actitfbse approaches can model short-term actions but are not
descriptors from extrema in scale-space, rather it looks f@e|| suited for temporally extended actions. The pararmetri
similarity between local space-time patches based on h@Wproaches that we will describe in this section are better
similar the motion is in the two patches. However, computingjited for these actions. Parametric methods such as HMMs
this correlation throughout a given video volume can bgnd LDSs are well suited to model more complex actions
computationally intensive. Inspired by the success of Haajhere the underlying process is characterized by complex
type features or ‘box-features’ in object detection [61¢ & temporal dynamics. In such cases, simple template matching
al [62] extended this framework to 3D. In their approachytheypproaches would either require too many templates or would
define 3D Haar-type features which are essentially outplts @t capture the dynamics of the action at all. Examples df suc
3D filter banks with+1's and —1's as the filter co-efficients. complex actions include the steps in a ballet dancing video,
The filters themselves are very coarse and simple in natyiggler juggling a ball and a music conductor conducting an
but when several of these filters are convolved with a givgfichestra using complex hand gestures.
video at various spatial and temporal scales and used in cONThe most popular method used for modeling complex tem-
junction with boosting approaches, very robust performaac poral dynamics are the so called state-space approaches: St
obtained. They also propose an efficient means of extractigngace approaches model the temporal evolution of featsres a
the large number box-features using a generalization of theyajectory in some configuration space, where each point
integral-image to integral-video. In another approacheKel o the trajectory corresponds to a particular ‘configuretay
[63] consider a video volume as a collection of sub-volunfes @iate’ — for instance, a particular pose or stance of theract
arbitrary shape, where each subvolume is a spatially cahere 1) Hidden Markov ModelsOne of the most popular state-
region. The subvolumes are obtained by clustering the $’ix‘§|pace models is the Hidden Markov Model. In the discrete
based on appearance and spatial proximity. A given videoygm formalism, the state space is considered to be a finite
over-segmented into many subvolumes or ‘supervoxels’. ARt of discrete points. The temporal evolution is modeled as
action template is matched by searching among the ovgrsequence of probabilistic jumps from one discrete state to
segmented volumetric regions and finding the minimal set gfe other (figure 9). HMMs first found wide applicability in
regions that maximize overlap between their union and tgeech recognition applications in the early 80s. An ezoell
template. source for a detailed explanation of HMMs and its associated
Sub-volume matching approaches such as these are sustleee problems — inference, decoding and learning — can be
tible to changing backgrounds but are more robust to noigmind in [67]. Beginning in the early 90’s, HMMs began to
and occlusions. Another advantage is that these approacfied wide applicability in computer vision systems. One daf th
can be extended to features such as optical flow as in [62]darliest approaches to recognize human actions via HMMs was
achieve robustness to changes in appearance. proposed by Yamato et al. [68] where they recognized tennis



@ @ z(t) = Azt — 1) +w(t), w~ N(0,Q) 1)

y(t) = Cx(t) +v(t), v~ N(0,R) )

wherez € R is thed-dimensional state vector ande R™

is the n-dimensional observation vector with<< n. w and

v are the process and observation noise respectively which

are Gaussian distributed with zero-means and covarianee ma
Fig. 9. Graphical lllustration of a Hidden Markov Model. trices Q and R respectively. The LDS can be interpreted

as a continuous state-space generalization of HMMs with

shots such as backhand stroke, backhand volley, foreha‘{iné3 aussian observation model: Several appllcatllons such as
: recognition of humans and actions based on gait ([78], [7],
stroke, forehand volley, smash etc by modeling a seque

. i 5]), activity recognition ([80]) and dynamic texture nelthg
of background subtracted images as outputs of C|aSS-$pe(I1£rl1 d recognition [81], [82], [83], [84] have been proposeitigs

ml\fé\g? [87%\]/63[?'1?l:ﬁgsssg)u(lgfssixri;icggﬂlltlﬂol\;'ssﬁmigzgaﬁr].DSs. First order LDSs were used by Vaswani et al [9] to
' ' y del the configuration of groups of people in an airport

2u?§3tt;ence of tracked features such as hand blobs as Htarmac setting by considering a collection of moving points
' (humans) as a deforming shape.

HMMs have also found applicability in modeling the tempo-  advances in system identification theory for learning LDS
ral evolution of human gait patterns both for action rectigni model parameters from data [85], [86], [87], [88], [81] and
and biometrics (cf. Kale et al. [72], Liu and Sarkar [73])distance metrics on the LDS space [89], [82], [90] have
All these approaches are based on the assumption that fig@je LDSs popular for learning and recognition of high-
feature sequence being modeled is a result of a single pergRfensional time-series data. More recently, in-deptidystf
performing an action. Hence, they are not effective in appkhe DS space has enabled the application of machine lgarnin
cations where there are multiple agents performing an mactigygls on that space such as dynamic boosting [91], kernel
or interacting with each other. To address this issue, BEindmethods [92], [93] and statistical modeling [94]. Newer met
al [74] proposed a coupled HMM to represent the dynamiggjs to learn the model parameters [81] have made learning
of interacting targets. They demonstrate the superiority guch more efficient than in the case of HMMs. Like HMMs,
their approach over conventional HMMs in recognizing tWorDSs are also based on assumptions of Markovian Dynamics
handed gestures. Incorporating domain knowledge into thed conditionally independent observations. Thus, as én th
HMM formalism has been investigated by several researcheggse of HMMs, the time-invariant model is not applicable to
Moore et al [75] used HMMs in conjunction with objecthon-stationary actions.
detection modules to exploit the relationship betweenoasti 3) Non-linear Dynamical SystemsWhile time-invariant
and objects. Hongeng and Nevatia [76] incorporateriori  HMMs and LDSs are efficient modeling and learning tools,
beliefs of state-duration into the HMM framework and theney are restricted to linear and stationary dynamics. idens
resultant model is called Hidden semi-Markov Model (semite following activity — a person bends down to pick up an
HMMs). Cuntoor and Chellappa [77] have proposed a mixegject, then he walks to a nearby table and places the ohject o
state. HMM formalism to model non-stationary activitieSyhe taple and finally rests on a chair. This activity is conaabs
where the state-space is augmented with a discrete label §pf sequence of short segments each of which can be modeled
higher-level behavior modeling. as a LDS. The entire process can be seen as switching between

HMMs are efficient for modeling time-sequence data arldDSs. The most general form of the time-varying LDS is given
are useful both for their generative and discriminativeagapby equations (3) and (4)
bilities. HMMs are well-suited for tasks that require resive

robabilistic estimates [69] or when accurate start and end
tFi)mes for action units aEe l]mknown. However, their utility i z(t) = At)z(t — 1) +w(t), w~N(0Q) ®)
restricted due to the simplifying assumptions that the rhode y(t) =Ct)z(t) +v(t), v~NOR) (4
is based on. Most significantly the assumption of Markovian which looks similar to the LDS in equations (1) and (2)
dynamics and the time-invariant nature of the model rdstric '

h licability of HMMs to relatively simple arstati except that the model parametedsand C' are allowed to
€ applicabriity 0 s lo refalively simple anstationary vary with time. To tackle such complex dynamics, a popular
temporal patterns.

approach is to model the process using Switching Linear
2) Linear Dynamical Systemd.inear dynamical systems Dynamical systems (SLDS) or Jump Linear Systems (JLS).
are a more general form of HMMs where the state-spaceAs SLDS consists of a set of LDSs with a switching function
not constrained to be a finite set of symbols but can takeat causes model parameters to change by switching between
on continuous values ifR¥ where k is the dimensionality models. Bregler [95] presented a multi-layered approach to
of the state-space. The simplest form of LDS is the first ordezcognize complex movements consisting of several levels o
time-invariant Gauss-Markov processes which is descrilyed abstraction. The lowest level is a sequence of input images.
equations (1) and (2) The next level consists of ‘blob’ hypotheses where each blob



is a region of coherent motion. At the third level, blob track Huang et al. [19] used DBNs for vision based traffic
are grouped temporally. The final level, consists of a HMM fanonitoring. Buxton and Gong [104] used Bayesian networks
representing the complex behavior. North et al [96] augmetat capture the dependencies between scene layout and low-
the continuous state vector with a discrete state componével image measurements for a traffic surveillance apidica
to form a ‘mixed’ state. The discrete component represeremagnino et al [105] present an approach using DBNs for
a mode of motion or more generally a ‘switch’ state. Correscene description at two levels of abstraction — agent level
sponding to each switch state, a Gaussian autoregressiel madescriptions and inter-agent interactions. Modeling pveoson
is used to represent the dynamics. A maximum likelihoddteractions such as pointing, punching, pushing, hugeiicg
approach is used to learn the model parameters for eachmmotieas proposed by Park and Aggarwal [106] in a two-stage
class. Pavlovic and Rehg [97], [98] model the non-lineainty process. First, pose estimation is done via a BN and temporal
human motion in a similar framework, where the dynamiasvolution of pose is modeled by a DBN. Intile and Bo-
are modeled using LDS and the switching process is modelgidk [107] use Bayesian networks for multi-agent inter@csi
using a probabilistic finite state-machine. Other applicet where the network structure is automatically generatethfro
of this framework include the work of Del Vecchio et al [99]the temporal structure provided by a user. Usually the sirac
[100] who used this framework for classifying drawing task®f the DBN is provided by a domain expert. But this is difficult

Though the SLDS framework has greater modeling arid real life systems where there are a very large number of
descriptive power than HMMs and LDSs, learning and inariables with complex inter-dependencies. To address thi
ference in SLDS are much more complicated, often requiringsue Gong et al [108] presented a DBN framework where
approximate methods [101]. In practice, determining the afhe structure of the network is discovered automaticalipgis
propriate number of switching states is challenging androft Bayesian Information Criterion [109], [110].
requires large amounts of training data or extensive handDBNs have also been used to recognize actions using the
tuning. Apart from maximum likelihood (ML) approachesgcontextual information of the objects involved. Moore et al
algebraic approaches which can simultaneously estimate 5] conduct action recognition using belief networks lshse
number of switching states, the switching instants andthiso on scene context derived from other objects in the scene.
parameters of the model for each state have been proposedsiopta et. al [111] present a Bayesian network for interpicia
Vidal et al [102]. However, algebraic approaches are often nof human-object interactions that integrates informafiamm
robust to noise and outliers in the data. perceptual tasks such as human motion analysis, manipu-
lable object detection and “object reaction” determiratio
Filipovyich et. al [112] proposed a probabilistic graphica
model of primitive actor-object interactions that comlsine

Most activities of interest in applications such as surveiinformation about the interactions dynamics, and actgeaib
lance and content-based indexing involve several actdns, wstatic appearances and spatial configurations. The model is
interact not only with each other, but also with contextudéarned without any manual input of object and contextual
entities. The approaches discussed so far are mostly cwtcerinformation.
with modeling and recognizing actions of a single actor. Mod Though DBNs are more general than HMMs by considering
eling a complex scene, the inherent structure and semantiependencies between several random variables, the tempor
of complex activities require higher-level representatand model is usually Markovian as in the case of HMMs. Thus,
reasoning methods. The previously discussed approackesamly sequential activities can be handled by the basic DBN
not suited to deal with the complexities of spatio-temporahodel. Development of efficient algorithms for learning and
constraints on actors and actions, temporal relations sschinference in graphical models (c. f. [113], [114]) have made
sequencing and synchronization, and the presence of teultithem popular tools to model structured activities. Methtmls
execution threads. Thus, structural and syntactic appesaclearn the topology or structure of Bayesian networks from
such as dynamic belief networks, grammars, petri-netsretc aata [115] have also been investigated in the machine legrni
well-suited to tackle these problems. Moreover, some amowommunity. However, to learn the local CPDs for large net-
of domain knowledge can be exploited to design concise amdrks requires very large amounts of training data or extens
intuitive structural descriptions of activities. hand-tuning by experts both of which limit the applicalilit

of DBNs in large-scale settings.
) 2) Petri Nets: Petri Nets were defined by Carl Adam

A. Graphical Models Petri [116] as a mathematical tool for describing relations

1) Belief Networks:A Bayesian network (BN) [103] is a between conditions and events. Petri Nets are particularly
graphical model that encodes complex conditional dependerseful to model and visualize behaviors such as sequencing,
cies between a set of random variables which are encodedcascurrency, synchronization and resource sharing.-Retsi
local conditional probability densities (CPD). Dynamicligé are bi-partite graphs consisting of two types of nodes -d&ac
networks (DBNSs) are a generalization of the simpler Bayesiand Transitions. Places refer to the state of an entity and
networks by incorporating temporal dependencies betwetansitions refer to changes in the state of the entity. Aiviae
random variables. DBNs encode more complex conditionial specified by a set of entities and how the entities interact
dependence relations among several random variables aswith other. Consider an example of a car pickup activity
posed to just one hidden variable as in a traditional HMM. represented by a probabilistic Petri Net as shown in figure 10

V. MODELING AND RECOGNIZINGACTIVITIES
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In this figure, the places are labelgd . .., p5 and transitions % P )
ti,...,ts. In this PN,p; andps are the start nodes ang is Skip o Skip
the terminal node. When a car enters the scene, a ‘token’ is &«
placed in place,. The transitiort; is enabled in this state, but

it cannot fire until the condition associated with it is séeid

i.e., when the car stops near a parking slot. When this occurs,
the token is removed fromy, and placed ip5. Similarly when

a person enters the parking lot, a token is placegsirand
transitiont; fires after the person disappears near the parked
car. The token is then removed frgm and placed ims. Now

with a token in each of the enabling places of transitignit

is ready to fire when the associated condition i.e. car leavin
the parking lot is satisfied. Once the car leavgsfires and
both the tokens are removed and a token placed in the final
placeps. This example illustrates sequencing, concurrency af@. 10. A probabilistic Petri-Net representing a pickupdar activity.
synchronization. Figure taken from [121].

Petri-nets allow multiple parallel threads of executiord Nspphisticated temporal ordering constraints such as pagt,
have traditionally found use in modeling hybrid systems,,q f,tyre. This structure is termed the PNF (past-nowré)tu
where they are well-suiteql to model complex beha\_/ior SUCRtwork. Similarly, Shi et al [123], [124] have proposed
as concurrency, synchronization and resource sharmg],[l]@sing Propagation nets to represent activities using adrti
[118]. Petri-Nets were used by Castel et al [119] to develQRyereq temporal intervals. In their approach an activity i
a system for high-level interpretation of image sequentres. cnqirained by temporal and logical ordering and duration
their approach the structure of the Petri-net was specifiedaihe activity intervals. More recently, Hamid et al [125]
priori. This can be tedious for large networks representing,qiqer a temporally extended activity as a sequence ot eve
complex aCt'V't'eS} Ghanem et al [120] propose.d amethod g0 pue to contextual and activity specific constrathes
semi-automate this task by automatically mapping a small $&.4ence labels are observed to have some inherent partial
of logical, spatial and temporal operators to the graphestriy ering. For example, in a kitchen setting the refrigarato
ture. Using this method, they developed an interactive fimol |\, J.\14 have to be opened before the eggs can be accessed.
querying surveillance videos by mapping user queries t6-Pej i these constraints, they consider an activity moded as
nets. However, these approaches were based on determinigly ot sypsequences which encode the partial ordering con-
Petri-nets. Hence they cannot deal with uncertainty in the inis of varying lengths. These subsequences are afficie
low-level modules as is usually the case with traCkers'mbjerepresented using Suffix trees. The advantage of the Suffx-t
detectors etc. Further, real-life human activities do moiform representation is that the structure of the activity canelenit

to hard-coded models - the models need to allow deviatiopg, (raining data using standard graph-theoretic methods
from the expected sequence of steps while penalizing signif

icant deviations. To address this issue Albanese et al [121] )
proposed the concept of a probabilistic Petri Net (PPN) (sBe Syntactic Approaches
figure 10). In a probabilistic PN the transitions are asgedia Syntactic pattern recognition approaches based on gram-
with a weight which encodes the probability with which thatars express the structure of a process using a set of pro-
transition fires. By using skip transitions and penalizingnh  duction rules. To draw a parallel to grammars in language
with a low probability, robustness is achieved to missinmodeling, the production rules specify how complex sen-
observations in the input stream. Further, the uncertaimty tences (activities) can be constructed in a grammaticallyd
the identity of an object or the uncertainty in the unfoldiofy manner from simpler words (activity primitives), and how to
an activity can be efficiently incorporated into the tokerfis gecognize if a given sentence (video) conforms to the rules
the Petri-net. of a given grammar (activity model). Syntactic approaches
Though Petri-Nets are an intuitive tool for expressing conare useful when the structure of a process is difficult to
plex activities, they suffer from the disadvantage of hgvinlearn but may be known a priori. Syntactic pattern recogni-
to manually describe the model structure. The problem tibn approaches were first successfully applied to stikgmm
learning the structure from training-data has not yet beeecognition tasks such as shape modeling [126]. Success in
formally addressed. these domains coupled with the success of HMMs and DBNs
3) Other Graphical Models:Other graphical models havein action-recognition tasks led to renewed interest in agfit
been proposed to deal with the drawbacks in DBNs - maapproaches for activity recognition.
significantly the limitation to sequential activities. @hacal 1) Context free GrammarsOne of the earliest use of
models that specifically model more complex temporal relgrammars for visual activity recognition was proposed by
tions such as sequentiality, duration, parallelism, symayp Brand [127], who used a grammar to recognize hand ma-
etc have been proposed in the DBN framework. Examplagpulations in sequences containing disassembly tasksy Th
include the work of Pinhanez and Bobick [122] who usenade use of simple grammars with no probabilistic modeling.
a simplified version of Allen’s interval algebra to modeRyoo and Aggarwal [128] used the CFG formalism to model

Person Disappears
Near Car
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and recognize composite human activities and multi-perserrors and missed detections in the input stream, they share
interactions. They followed a hierarchical approach wtthee many of the temporal relation modeling limitations of CFGs
lower-levels are composed of HMMs and Bayesian Networkas discussed above.
The higher-level interactions are modeled by CFGs. Context
free grammar approaches present a sound theoretical basis_f .
modeling structured processes. In syntactic approachres, g - Knowledge and Logic-based Approaches
only needs to enumerate the list of primitive events thatinee ~ Logic and knowledge based approaches express activities
be detected and the set of production rules that define highigr terms of primitives and constraints on them. These meth-
level activities of interest. Once the rules of a grammareha@ds can express more complex constraints than grammar
been formulated, efficient algorithms to parse them ex@9]1 based approaches. While grammars can be efficiently parsed
[130] which have made them popular in real-time applicationdue to their syntactic structure, logical rules can lead to a
Since deterministic grammars expect perfect accuracyein tbomputational overhead due to constraint satisfactiorckche
lower-levels, they are not suited to deal with errors in lowBut logical rules are often far more intuitive and human-
level tasks such as tracking errors and missing obsengatipn interpretable than grammatical rules.
complex scenarios involving several agents requiring tmalp 1) Logic Based Approached:ogic-based methods rely on
relations that are more complex than just sequencing — ssicif@mal logical rules to describe common-sense domain knowl
parallelism, overlap, synchrony — it is difficult to formtéahe edge to describe activities. Logical rules are useful taesp
grammatical rules manually. Learning the rules of the grammdomain knowledge as input by a user or to present the results
from training data is a promising alternative, but it hasve of high-level reasoning in an intuitive and human-readable
to be extremely difficult in the general case [131]. format. Declarative models [136] describe all expectedvact
2) Stochastic GrammarsAlgorithms for detection of low- ities in terms of scene structure, events etc. The model for
level primitives are frequently probabilistic in naturehul, an activity consists of the interactions between the object
Stochastic Context-free grammars (SCFGs) which are a pratf-the scene. Medioni et al. [137] propose a hierarchical
abilistic extension of CFGs were found to be suitable fgepresentation to recognize a series of actions perfornged b
integration with real-life vision modules. SCFGs were useal single agent. Symbolic descriptors of actions are exdact
by Ivanov and Bobick [132] to model the semantics dffom low-level features through several mid-level layetsxt,
activities whose structure was assumed to be known. Thayule based method is used to approximate the probability of
used HMMs for low-level primitive detection. The grammaoccurrence of a specific activity by matching the properties
production rules were augmented with probabilities and & the agent with the expected distributions (represented b
‘skip’ transition was introduced. This resulted in increds mean and a variance) for a particular action. In a later work,
robustness to insertion errors in the input stream and alsoHongeng et al [138] extended this representation by conside
errors in low-level modules. Moore et al [133] used SCFGBg an activity to be composed of several action threadsh Eac
to model multi-tasked activities — activities that haveesay action thread is modeled as a stochastic finite-state atboma
independent threads of execution with intermittent depand Constraints between the various threads are propagated in a
interactions with each other as demonstrated in a Blackjateknporal logic network. Shet et al [139] propose a systern tha
game with several participants. Ogale et al automaticafd4] relies on logic programming to represent and recognize-high
learn a Probabilistic Context-free grammar (PCFG) for hmmaevel activities. Low level modules are used to detect giimi
actions from sequences of human silhouettes. events. The high level reasoning engine is based on Prolog
In many cases, it is desirable to associate additional amrd recognizes activities which are represented by logites
tributes or features to the primitive events. For examplbgtween primitives. These approaches do not explicitlyesid
the exact location in which the primitive event occurs mathe problem of uncertainty in the observation input stre@on.
be significant for describing an event, but this may not baddress this issue, a combination of logical and probabilis
effectively encoded in the (finite) primitive event set.ifiitites models was presented in [140] where each logical rule is
are also useful where the number of primitive events tepresented as first-order logic formula. Each rule is @rrth
unbounded such as in an event involving arbitrary number pfovided with a weight, where the weight indicates a belief
objects each having distinct primitive events associatétl win the accuracy of the rule. Inference is performed using a
it. Thus, attribute grammars achieve greater expressiwepo Markov-logic network.
than traditional grammars. Probabilistic attribute graamen  While logic based methods are a natural way of incor-
have been used by Joo and Chellappa [135] for multi-aggrarating domain knowledge, they often involve expensive
activities in surveillance settings. In the example shown constraint satisfaction checks. Further, it is not cleav hauch
figure 11, one can see the production rules and the primitidemain knowledge should be incorporated in a given setting -
events such as ‘appear’, ‘disappear’, ‘moveclose’, ‘mosa incorporating more and more knowledge can make the model
etc in the description of the activity. The primitive eveatg rigid and non-generalizable to other settings. The loglesu
further associated with attributes such as location (ldegne require extensive enumeration by a domain expert for every
the appearance and disappearance events occur, clagsificateployment individually.
(class) into a set of objects, identity (idr) of the entityaived 2) Ontologies:In most practical deployments that use any
etc. of the afore-mentioned approaches, symbolic activity defin
While stochastic grammars are more robust than CFGstions are constructed in an empirical manner, for examme th
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S — BOARDINGy

BOARDING — appearoCHEC K disappear;

(isPerson(appear.class) N isInside(appear.loc, Gate) A isInside(disappear.loc, Plane))
CHECK — moveclosegCHECK,

CHECK — moveaway,CHECK;

CHECK — moveclosegmoveaway, CHECK;

(isPerson(moveclose.class) A moveclose.idr = moveaway.idr)

Fig. 11. Example of an attribute grammar for a passenger ba@patinairplane taken from [135].

PROCESS(cruise-parking-lot(vehicle v, parking-lot Jot) VI. DIRECTIONS FORFUTURE WORK AND CONCLUSION
Sequence(enter(v, lot),
set-to-zero(i), A lot of enthusiasm has been generated in the vision
Repeat-Until( community by recent advances in machine recognition of
AND(move-in-circuit(v), inside(v, lot), increment(i)), activities. However, several important issues remain to be
equal(i, n)), addressed. In this section, we briefly discuss some of these
exit(v, lot))) issues.

Fig. 12. Ontology for Car Cruising in Parking Lot activityx&mple taken
from [143]. .
A. Real-World Conditions

Most action and activity recognition systems are currently

rules of a grammar or a set of logical rules are specified ma#gsigned and tested on video sequences acquired in con-
ually. Though empirical constructs are fast to design armhevstrained conditions. Factors that can severely limit the ap
work very well in most cases, they are limited in their ugilit Plicability in real world conditions include noise, occiass,

to specific deployments for which they have been designédiadows etc. Errors in feature extraction can easily prateag
Hence, there is a need for a centralized representation t@figher-levels. For real-world deployment, action reuiign
activity definitions or ontologies for activities which aree- Systems need to be tested against such real-world corslition
pendent of algorithmic choices. Ontologies standarditeigc Methods that are robust to these factors also need to be
definitions, allow for easy portability to specific deploym ~investigated. Many practically deployed systems do natnec
enable interoperability of different systems and allowyea¥ideos at high spatio-temporal resolution partly due to the
replication and comparison of system performance. Sevefdfficulty in storing the large data that is produced. Hence,
researchers have proposed ontologies for specific doméingigaling with low-resolution video is an important issue. In
visual surveillance. For example, Chen et al. [141] prodoséhe approaches discussed so far, it is assumed that reliable
an ontology for analyzing social interaction in nursing fesm features can be extracted in a given setting such as optical-
Hakeem et al for classification of meeting videos [142] ani#PW or background subtracted blobs. In analyzing actions in
Georis et al [8] for activities in a bank monitoring settifig far-field settings this assumption does not usually hold.&hi
consolidate these efforts and to build a common knowledg&searchers have addressed these issues in specific setting
base of domain ontologies, the Video Event Challenge Worl&- f- [33], [146]), a systematic and general approach i sti
shop was held in 2003. As a result of this workshop, ontolgitacking. Hence, more research needs to be done to address
have been defined for six domains of video surveillance [148]ese practical issues.

- 1) Perimeter and Internal Security, 2) Railroad Crossing

Surveillance, 3) Visual Bank Monitoring, 4) Visual Metro

Monitoring, 5) Store Security, 6) Airport-Tarmac Securiéyn  B. Invariances in Human Action Analysis

example from the ontology output is shown in figure 12 which One of the most significant challenges in action recognition
describes car cruising activity. This ontology keeps tratk . 9 9 9

the number of times the car moves around in a circuit inside to fmq r_n_eth_ods that can explain and be _ro_bust to the
; . : . W{de variability in features that are observed within thensa
the parking lot without stopping. When this exceeds a Sgct'on class. Sheikh et. al. [147] have identified three i
threshold, a cruising activity is detected. The workshamalSO Irces tr?ai . el fise io .a[tr'ab]'l't Yn Iobselrle d feat 'Wlémﬂﬂm
led to the development of two formal languages - The Videor(;I gvern vanabiity 1 v uieEy
Event Representation Language (VERL) [144], [145] which
provides an ontological representation of complex evemts i 1) Viewpoint
terms of simpler sub-events and the Video Event Markup2) Execution Rate

Language (VEML) which is used to annotate VERL events 3) Anthropometry

in videos. Any real-world action recognition system needs to be in-

Though ontologies provide concise high-level definitiohs wariant to these factors. In this section, we will review gom
activities, they do not necessarily suggest the right ‘war@’ efforts in this direction that have been pursued in the metea
to ‘parse’ the ontologies for recognition tasks. community.
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1) View-Invariance:A fundamental problem in video-baseddefined on the feature-space. DTW requires accurate teipora
recognition of activities is achieving view-invariant repen- alignment of test and gallery sequences i.e. the start add en
tations of actions. While it may be easy to build statisticadime instants have to be aligned between the test sequence
models of simple actions based on the representations disd the gallery sequence. This is a strong requirement as
cussed so far from a single view, it is extremely challenginglignment may not be accurate in a practical setting. Fyrthe
to generalize them to other views even for very simple actidhe distance computations involved are significant and can
classes. This is due to the wide variations in motion based prohibitive for long sequences involving many templates
features induced by camera perspective effects and oonkisi Thus, more efficient methods are required to achieve resd-ti
One way to deal with the problem is to store templates froperformance.
several canonical views as done in [35] and interpolatesacro 3) Anthropometric Invariance:Anthropometric variations
the stored views as proposed by [148]. This approach howeseich as those induced by the size, shape, gender etc. of Ruman
is not scalable since one does not know how many views i®another important class of variabilities that requiraseéul
consider as canonical. Another approach is to assume thtiention. Unlike viewpoint and execution-rate varialah
point correspondences across views are available as in [@Hich have received significant attention, a systematidystu
and compute a transformation that maps a stored modelafoanthropometric variations has been receiving interesf o
an example from an arbitrary view. Similarly, [32] present ain recent years. Ad hoc methods which normalize the extdacte
approach to recognize cyclic motion that is affine-invariarieatures to compensate for changes in size, scale etc. are
by assuming that feature correspondence between suazesssually employed when no further information is available.
time-instants is known. It was shown by Rao and Shah [14®)yawing on studies on human anthropometry Gritai et al [161]
[150] that extrema in space-time curvature of trajectorges suggested that the anthropometric transformation betiveen
preserved across views which was exploited to perform viewifferent individuals can be modeled as a projective transf
invariant action recognition. Another example is the wofk anation of the image co-ordinates of body joints. Based on
Parameswaran et al [151], [152] who define a view-invariattiis, they define a similarity metric between actions by gsin
representation of actions based on the theory of 2D and &pipolar geometry to provide constraints on actions peréat
invariants. In their approach, they consider an action tabeby different individuals. Further research is needed ineord
sequence oposes They assume that there exists at least orte understand the effects of anthropometric variations and
key-posen the sequence in which points are aligned on a building algorithms to achieve invariance to this factor.
plane in the 3-D world coordinates. Using this assumption,
they derive a set of view-invariant descriptors. More régen ¢ Evaluation of Complex Systems
the notion of motion-history [34], [35] was extended to 3-

D by Weinland et al [153] where the authors combine views Establishing standardized test-beds is a fundamental re-
from multiple cameras o arrive at a 3-D binary occupan quirement to compare algorithms and assess progress. It is

. . : Cé’ncouraging to see that several datasets have been made
volume. Motion history is computed over these 3-D volume$

and view-invariant features are extracted by computingtar available by research groups and new research is expected

FFT of the volume. All these approaches are strongly tied 0 report results on these datasets. Examples include the

o . : Ig:F activity dataset [149], TSA airport tarmac dataset [9],
the specific choice of feature. There is no general approa'g:ree Viewpoint INRIA dataset [153] and the KTH actions
of achieving view-invariance that can be extended to séve

L . fhtaset [53]. However, most of these datasets consist @leim
features, thus making it an open research issue.

. : . actions such as opening a closet door, lifting an object etc.
2) Execution Rate InvarianceThe second major source of . : .
o . . .~ Very few common datasets exist for evaluating higher-level
observed variability in features arises from the diffeesn

. . . . .. _complex activities and reasoning algorithms. Complexvagti
execution rates while performing the same action. Vanegtio o ) .
. . . oo . recognition systems consist of a slew of lower-level dédect
in execution style exist both in inter-person and intraspar : : .
: . and tracking modules. Hence, a straightforward comparison
settings. State-space approaches are robust to minor ehan 7
. . . : . systems is not easy. One reasonable approach to evaluate
in execution rates, but are not truly rate-invariant sirms/tdo . :
_ : . complex systems is to create ground truth corresponding to
not explicitly model transformations of the temporal axdsf( ) !
. L : outputs from a predefined set of low-level modules. Evatunati
[154], [155]). Mathematically, the variation in executioate . . .
: i . would then focus solely on the high-level reasoning engines
is modeled as a warping function of the temporal scale. T

: . . While this is one criteria of evaluation, the other critegahe
simplest case of linear time-warps can be usually dealt with .. . . i

. X . . ability to deal with errors in low-level modules. Particijoen
fairly easily (c. f. [35], [156]). To model highly non-linea o . .

. : . from the research community is required to address this

warping functions, the most common method is Dynamll(r:n ortant issue
Time Warping (DTW) of the feature sequence such as mp '
[157], [148], [158], [159]. Recently, Veeraraghavan etE6(] ) ) N
proposed using dynamic time-warping with constraints fg- Integration with other Modalities
account for the fact that the space of all time-warp fundion A vision-based system to recognize human activities can
does not produce physically meaningful actions, hence the seen as a crucial stepping stone toward the larger goal of
best time-warp has to be searched within some constrairdesigning machine intelligence systems. To draw a parallel
DTW is a promising method as it is independent of the choiegth natural intelligence, humans rely on several modsditi
of feature. The only requirement is that a distance metric becluding the five classical senses — vision, audition jtiact
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olfaction, gustation — and other senses such as thermooepti[11] Y. Rui, T. S. Huang, and S. F. Chang, “Image retrieval: rent
(temperature) and Equilibrioception (balance and acatter)
for everyday tasks. It has also been realized that alternate
modalities can improve the performance of vision-based sy$12]
tems e.g. inertial sensors in structure-from-motion (Sfidint
audio-video based tracking [162] etc. Thus, for the longer
term pursuit to create machine intelligence, or for the her
term pursuit of increasing the robustness of action/agtivi [14]
detection modules, integration with other modalities sash
audio, temperature, motion and inertial sensors needs to he)
investigated in a more systematic manner.

E. Intention Reasoning

Most of the approaches for recognizing and detecting action
and activities are based on the premise that the actiovitgcti
has already occurred. Reasoning about the intentions ohhum[18]

and inferring what is going to happen presents a significal
intellectual challenge. Security applications are amdrgfirst

[13]

[16]

(17]

Mo

that stand to benefit from such a system, where detection of
threat is of utmost importance.

Providing a machine the ability to see and understan

o

as humans do has long fascinated scientists, engineers dgad
even the common man. Synergistic research efforts in variou

scientific disciplines — Computer Vision, Al, Neuroscience 5]
Linguistics etc — have brought us closer to this goal than at

any other point in history. However, several more technicaf?!
and intellectual challenges need to be tackled before we get
there. The advances made so far need to consolidated, [#4]
terms of their robustness to real-world conditions and-real
time performance. This would then provide a firmer groungss)
for further research.
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