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Summary. We give axiom systems for plane affine geometries, using the notion of parallelity, which
are most simple in the sense that their axioms require, when written in prenex form, the least number of
variables. By allowing the language to contain operation symbols we show that all interesting affine planes,
with the exception of Desarguesian planes, are axiomatizable by axioms containing at most 4 variables.

1 Introduction

Given that for translation planes, as well as for Desarguesian and for Pappian planes, there are several
possible configuration theorems characterizing these classes (cf. [3, p. 85], [4], [5], [7] and [1]), it is of some
interest to determine whether the classical (and oldest) configuration theorems, namely the minor Desargues,
the Desargues and the Pappus configurations are in any way simpler than their competitors.

In this paper we shall analyze to what extent this is true, based on a concept of simplicity that we have
already used in the case of Euclidean geometry (cf. [11], [12], [13]): axioms that, roughly speaking, refer to
n points are considered simpler than axioms that refer to more than n points.

Definition A first-order theory T will be said to have simplicity degree n if n is the smallest number for
which all of the axioms in some axiom system X for T contain, when written in prenex form, at most n
variables. Such an aziom system ¥ will be called simple.

The affine geometries for which we shall determine the simplicity degree are being considered as parallelity
geometries, i. e. they are expressed in a first-order language L with one sort of variables (to be interpreted
as “points”) and with a quaternary relation ||, where ab || cd is being read as “ab is parallel to cd”.! As a
convenient abbreviation, we shall define L(abc) ¢+ ab || ac, which may be read as “the points a, b, ¢ are
collinear”. The axiomatization of affine planes as parallelity planes was introduced by W. SZMIELEW in [17].

The simplicity degrees will turn out to be: 5 for the L-theories of parallelity planes, non-Fano parallelity
planes, translation planes of characteristic # 2, and 6 for the L-theory of Pappian planes (both of charac-
teristic # 2 and of unspecified characteristic). The simplicity degrees of the L-theory of translation planes
of characteristic 2, as well as that of Moufang and Desarguesian affine geometry have not been determined.
One would expect the last two to be 7 (the proof that they are at least 6 is contained in the proof of Theo-
rem 3). The ordered version of any of these geometries turns out to have the same simplicity degree as the
corresponding non-ordered one. In languages with operation symbols, all of these affine geometries, with the
exception of the Desarguesian non-ordered planes, are shown to have simplicity degree 4.

ITheories will be referred to as “geometries” and models will be referred to as “planes”: parallelity planes are models of
parallelity geometry, or equivalently, the latter is the L-theory of the former. An axiom system for a certain geometry will also
be called an axiom system for the corresponding class of models.



2 A simple axiom system for affine planes
Consider the following axioms (all having (in prenex form) at most 5 variables):
A1l ablled— abl de,

A 2 ab|| ce,

A 3 ab|| ac — ba || be,

A4 (iJ)atbAab|decAabl| ec— dc| ec,
(i) a#bAab | deAab | ac — de || ac,

A 5 (Jabc) —L(abc),

A 6 (Yabp)(3q) (ab || pg Ap # q),
A 7 (Yabed)(Fp) —(ab || ed) — L(pab) A L(pcb),
A 8 ab||cdAac || bdAad | be — L(abc).

Let ¥ = {A1 - A7} and ¥’ = U {A8}.
The axiom system ¥ differs from the one given in [17, p. 19] in that it lacks two axioms: Ax 2.2.0, which
states that ab || ba, and Ax 2.2.2 which states that

aZbAab||pgAab|rs— pql|| rs. (1)
Ax 2.2.0. can be deduced from ¥, as A3 (with ¢ = a) implies, since its antecedent is A2,
ba || ba, (2)

and using Al we get Ax 2.2.0.
Using (2) and A4(ii) we can prove that, for a # b,

ab || ed — cd || ab, (3)
and, as an easy consequence of A2 and (3), we get, for b # ¢,
aa || be. (4)

Notice that (3) and (4) are true for a = b and b = ¢ as well (by A2).

We now turn to the proof of Ax 2.2.2 using ¥.

First, assuming a # b, ab || ¢d and ab || ¢f, we want to deduce cd || cf. We get, by Al, ab || dc and
ab || fe, hence, by A4(i), we deduce that dc || fe, and by Al that dc || cf as well. From (3) we further get
cf || de, hence cf || cd (by Al),i. e. cd || ef (by (3)), q. e. d.

Suppose a # b, e # ¢, ab || cd, ab || ef, but —(cd || ef) (by A2 and (4) this implies e # f and ¢ # d).
Then, by A7, there is a p such that L(pcd) A L(pef). By A3 we get L(cpd) and L(epf). By (3) we have
cd || ab as well as L(cdp), hence, with cd || ab A L(edp) — ab || cp (by A4(ii)), we get ab || cp.

Using (3) we get ef || ab and L(efp), hence, with ef || abA L(efp) — ab || ep (by A4(ii)), we get ab || ep.
From ab || ¢p and ab || ep we get, using A4(ii), cp || ep-

Assuming ¢ # p and using cp || ep A L(cpd) — ep || ed (by A4(ii)) we get ep || ed. Assuming that e # p
as well and using ep || ed A L(epf) — cd || ef (by A4(ii)), we finally get cd || ef, contradicting our initial
assumption.

We now need to show that the same contradiction follows if ¢ = p or e = p.



Suppose ¢ = p. Then L(cef), hence L(ecf) (by A3). Since ab || ef and L(ecf), and by (3) we also have
ef || ab and L(efc), we deduce from A4(ii) (e # f Aef || abA L(efc) — ab || ec) that ab || ec. From ab || ed
we get ab || de (by Al). By A4(i) (a ZbAab||dcAab|| ec — de || ec) we get dc || ec, hence ec || de (by (3)),
and ec || ed as well (by Al). By A4(ii) (e ZcAecl|lcdAec| ef — cd|| ef) we obtain cd || ef, q. e. d.

Suppose finally that e = p. We may also assume that ¢ # d, since in the case ¢ = d the conclusion we
wish to derive, namely cd || ef, follows from (4). Then L(ecd), hence L(ced) (by A3), hence L(cde) (by (3))-
Since cd || ab as well (by (3)), c #dAcd || ab A L(cde) — ab || ce (by A4(ii)), we get ab || ce. Since ab || ef
as well, and hence also ab || fe (by Al), we deduce from A4(i) (a ZbAab| ce Aab | fe — ce || fe) that
ce || fe, and therefore ce || ef as well (by Al). Now A4(ii) (c # eAce || ef AL(ced) — ef || cd) gives ef || cd,
and from (3) we deduce cd || ef, q. e. d.

We have thus proved

Theorem 1 ¥ is an aziom system for parallelity planes (i. e. for plane affine geometry) and X' is an axiom
system for non-Fano parallelity planes.

3 A simple axiom system for translation planes of characteristic
# 2

Let now A’ = ¥ U {A9}, where

A 9 (Vab)(3c)(Vde) [a # b — L(abe) Ac # a N (—~L{abd) A ab || de A ad || be — bd || ce)

As in [17, p. 28], let P be the operation of “completing the parallelogram”: if ~L(abc), then P(abc) = d ¢
ab || ed A ac || bd.

Theorem 2 A’ is an axiom system for translation planes of characteristic # 2.

Proof. For any two points a and b with a # b, the point ¢ given by A9 is unique — for, if d is any point for
which —L(abd) (the existence of such points follows from ¥), then ¢ must be equal to P(dbP(abd)) — and
will be denoted by op(a). We also set a3(b) = b, and want to show that, for every point b, the mapping o}
is the reflection in b, i. e. that o3 is an involutory homothety with centre b, which amounts to proving that

zy || op(z)op(y) for all z and v, (5)

since the fact that b is a fixpoint is in our definition of o, the fact that it is the only fixpoint follows from
the condition ¢ # a in A9, and the fact that oy is involutory also follows from A9.

If L(xyb), then (5) follows from the fact that for all z we have L(zboy(z)) by A9. Suppose now —L(zyb).
By A9 and (1) we have bz || o3(y)P(yxb) and boy(y) || zP(yxb). We can now apply A9 again to get
bP(yxzb) || ob(z)os(y). Since, by the definition of P, we also have yz || bP(yzb), we get yz || op(x)ob(y), and
hence (5).

We have thus shown that for every point of a model of A’ there is an involutory homothety with that
point as centre. According to a theorem of R. BAER (cf. [14, p. 213] or [8]), such an affine plane is a
translation plane of characteristic # 2.

O

Let A10, A11 stand for the minor Desargues axiom (des in [17, p. 41]) and the Pappus axiom (Papp
in [17, p. 45]) and let A = ¥ U {A10}, II = ¥ U {A11}, IT' = ¥’ U {A11}. Here are, for convenience, the
statements of these axioms:

A 10 —L(abp) A—L(abr) Nab || pgAab| rs Aap|| bg A ar || bs = pr || gs,

A 11 p1 # paAp2 # P3AP3 # P1AQL # @2Ag2 # q3Ag3 # @i AL(P1pap3) AL(q1G293) A~ L(p1g192) A= L(p2g1g2) A
= L(p3g1g2) A= L(g1p1p2) A—L(gepip2) A~ L{gzspip2) A= (012 || 1G2) AP1G2 || P21 Ap2qs || P3g2 — p1gs || psqa-



We then have the following

Theorem 3 X, ¥/, A", II and I are simple aziom systems (and the corresponding theories have simplicity
degrees 5, 5, 5, 6 and 6 respectively) for parallelity planes, non-Fano parallelity planes, translation planes of
characteristic # 2, Pappian planes and Pappian planes of characteristic # 2.

Proof. We have to prove that:

(i) for Cn(X), Cn(X') and Cn(A'), there is no axiom system, all of whose axioms contain, when written
in prenex form, at most 4 variables;

(ii) for Cn(II) and Cn(II') there is no axiom system, all of whose axioms contain, when written in prenex
form, at most 5 variables.

In order to prove each of these statements, we shall provide two models. One of them will be a model of
the particular theory 7 for which we claim to have provided a simple axiom system, the other will not be a
model of T, such that both models satisfy the same 4-variable statements (for (i)), or the same 5-variable
statements (for (ii)).

Denoting by L,, the language that contains the same symbols as L, except that there are not countably
many, but only n individual variables, let T, := Cn({¢ | € T N Ly, p is written in prenex form}).

In order to prove that, for a given theory 7 and a particular natural number n, 7 # 7,, we shall use
the model-theoretic method of EHRENFEUCHT-FRAISSE games, as described in [6]. The method allows us
to prove that two models 2 and 9B, with 2 € Mod(T) and B ¢ Mod(T), satisfy the same L,-sentences of
a particular quantifier-type, and so, by using it for all possible quantifier-types, that the two models satisfy
the same prenex L,-sentences (it, in effect, implies more than that the two models satisfy the same prenex
sentences with n quantifiers, but this is all that we need for our present purpose). This would prove that
T #T.

To prove (i), let A = (Q x @, ||gp) be the parallelity plane over the field of rational numbers, and let
B = (Q x Q|ls), where ab ||p cd iff ab ||gp ¢d or {a,b} = {(0,0),(1,0)} and {c,d} = {(0,1),(1,2)} or
{c,d} ={(0,0),(1,0)} and {a,b} = {(0,1),(1,2)}.

The EHRENFEUCHT-FRAISSE game to be used in order to prove that 21 and 9B satisfy the same prenex
L4-sentences of a certain prefix can be described as follows:

In this game, there are two players, I and II, that alternate in making choices from the universes of the

two models, u(2) and u(B), (it depends on the prefix which set a player is supposed to choose from at the

nth move; a universal quantifier in the nth position forces I to choose from u(8), an existential one forces

I to choose from u(2A)). The choice of T at the n*h move will be denoted by x,, the choice of II at the nth
move by y,. Let {a,} = {x,, ¥y} Nu(?A) and {b,} = {x,,y.} Nu(B). Player II wins the game, which in
our case consists of 4 moves, if at the end of the game the function f, defined by f(a,) = b, is a partial
isomorphism from 2 to B. The fact that 2 and B satisfy the same prenex sentences of that prefix containing
4 quantifiers follows from the existence of a winning strategy for II in the corresponding game.

In the EHRENFEUCHT-FRAISSE game for 2 and 9B the strategy for II would be, regardless of prefix, the
following;:
For the first three moves II chooses the point with identical coordinates to the one chosen by I. In the
move II chooses the point whose coordinates are identical to the one chosen by I unless:
(a) T has chosen a point from u(%8) and {b, b, bz, bs} = {(0,0),(1,0),(0,1),(1,2)}, in which case II
chooses a point in u(2() such that a;, as, a3, a4 form a parallelogram and the corresponding relations hold;

(8) T has chosen a point from u(2) and {a;,as,as,as} = {(0,0),(1,0),(0,1),(1,2)}, in which case II
chooses a point in u(B) such that by, ba, bs, by form a trapezium that is not a parallelogram, and the
corresponding relations hold.

Since A is a model of Cn(Il'), hence a fortiori of Cn(X), Cn(¥') and Cn(A'), none of these theories can
be axiomatized by prenex sentences in L4, which proves (i).

To prove (ii), let A be the affine plane over GF(9) and B be the exceptional nearfield plane of order 9
(cf. [9, I1.7-8] for a definition). B is a non-Fano translation plane and 2 is a non-Fano Pappian plane. The
winning strategy for II in a game with 5 moves would be:

4th



For clarity’s sake, let’s denote by p; (for i = 1,2,...,k — 1) the previous choices (of either player) that
were made from the model from which IT has to choose at move k, and by o; (for i =1,2,..., k) the choices
made in the other model, where the indices denote the move at which the choice was made.

In the first two moves the choices are arbitrary, subject to the only condition that ps = p; if and only
if 0o = 01 (since both 2l and 9B have doubly transitive collineation groups, there is no distinguished pair of
points). In the third move, if =L(0;0203) holds, then II chooses any ps for which —L(p;p2p3) holds. If
L(o10203) holds, but o3 is not a midpoint of 0102 (note that this means that none of the o’s is a midpoint
of the pair formed by the remaining two 0’s), then II chooses ps such that L(p;p2ps) and the condition of it
not being a midpoint of p;p2 holds. If o3 is a midpoint of 0705, then choose for ps the midpoint of p;p2. In
the fourth move the choice will be such that parallelity (under which we subsume collinearity as well) or the
absence thereof and the midpoint-relation or the absence thereof in the set {01, 02, 03,04} will be respected
by the choice of ps. The choice in the fifth move will be such as to produce a partial isomorphism. That
this is possible follows from our previous strategy. This proves (ii). O

It is natural to ask whether A9 could be replaced by a set of configuration theorems (Schliefungssdtze),
as it replaces the minor Desargues axiom. By analyzing all the possible 5-point configurations in non-Fano
affine planes, one notices that there is none that is true in translation planes of characteristic # 2, but not in
all non-Fano affine planes as well, i. e. A"\ ¥’ contains no universal 5-variable prenex sentence. However this
can not be seen by playing an EHRENFEUCHT-FRAISSE game, because player I will have a winning strategy
in a game with 5 moves for any two structures 2 and B, the first a translation plane of characteristic # 2, the
second not a translation plane. The reason behind this is that there is a universal 5-variable sentence, which
is not in prenex form, that is equivalent to A9, namely (with Par(abcd) :<> =L(abc) A ab || ¢d A ac || bd):
(Vabe)L(abc) Aa £ bAb# cAc#a— ((Vey)Par(abzy) — Par(bexy)) V (Vzy) Par(abzy) — —Par(bczxy)).
Written in prenex form, it would require 7 variables.

We do not know whether A is a simple axiom system for translation planes, since it is not known whether
there are planes satisfying Fano’s axiom (—A8) that are not translation planes (GLEASON [2] showed that all
finite Fano planes must be Pappian, in particular, must be translation planes, therefore any non-translation
plane satisfying A8 must be infinite.) If there are such planes, then A is simple; if there are no such planes,
then A is not simple, and the simplicity degree of translation planes would be 5, since ~A8 V A9 — which
can be stated in prenex form by using only 5 variables — would, together with ¥ axiomatize translation
planes (of unspecified characteristic).

4 Ordered affine planes

By enlarging the language L by a ternary relation symbol B standing for the betweenness relation and adding
to any of the axiom systems ¥/, A’, and II' the order axioms

O 1 (i) L(abc) — B(abc) V B(bca) V B(cab),
(#1) B(abc) — L(abc),

O 2 B(abc) — B(cba),
O 3 B(abc) A B(acd) — B(bed),
O 4 —L(abb") A L(ab'c") AbBY || e’ A B(abe) — B(ab'd),

we obtain simple axiom systems for ordered non-Fano parallelity planes, ordered translation planes and
ordered Pappian planes, respectively. The simplicity degree of the ordered theories will remain the same as
before. To see this, one needs to modify the strategy of player II in the relevant games in Theorem 3, by
adding the condition that IT’s choice should also match the order relation that exists among the o’s for all
moves beginning with the third one.



5 The simplest possible axiom systems

A natural question to ask in this context would be whether there is any language for affine geometry in
which the simplicity degrees of the various theories analyzed in the previous sections are lower than the
ones obtained when these geometries are expressed using the single quaternary relation of parallelity. The
notions of such a language for affine geometry should be required to be invariant under collineations. If the
language is supposed to contain only relation symbols, then we know of no language for which the simplicity
degree of any of the affine geometries previously referred to would be less than the simplicity degree of the
corresponding L-theory. However, if we allow operation symbols in the language, then the simplicity degree
of all but Desarguesian affine geometry (both of characteristic # 2 and of unspecified characteristic) will be
shown to be 4, which is the absolute minimum for any axiomatization of affine geometry with only one sort
of variables, to be interpreted as “points”, and without constants.

The language L., in which these axiom systems will be expressed consists of a ternary relation symbol L,
a ternary operation symbol P, both having the same intended interpretation as the respective defined notions
in the axiom systems given above, and a quaternary operation symbol I, with the intended interpretation:
‘I(abed) is the intersection point of ab and cd, provided that ab and cd are not parallel, and arbitrary,
otherwise’. Consider the following axioms

C 1 L(aba),

C 2 L(abc) — L(cba) A L(bac),

C 3 a#bA L(abe) A L(abd) — L(acd),

C 4 P(abc) = P(acb),

C 5 =L(abc) A ~L(cdP(bac)) — L(I(abed)ab) A L(I(abed)cd),
C 6 L(cP(abc)d) A L(abd) — L(abc).

Let ¥.0n, = {C1 — C6, A5}. For two given points a and b of a model 9 of ¥,,, we define the line [ab]
to be the set {x € 9 |L(abx)} and we say that x is incident with (or lies on) [ab] if x € [ab]. It is easy
to see that the usual axioms of incidence for rudimentary affine geometry (cf. [3, p. 16]) hold in any model
of ¥.on, in which the notions of line and incidence have been defined as above. This means that .., is an
axiom system for affine geometry, i. e., with || defined by

ab || ¢d <+ L(cdP(bac)), (6)
we get the following
Theorem 4 X, U{(6)} F X.

In order to obtain an axiom system for translation planes, all we need is a variant of the minor Desargues
axiom, which can be expressed as

C 7 P(abd) = P(cP(abc)d).

A more elegant axiom system for translation planes can be obtained by replacing C6 by the following three
axioms (for convenience, we shall also use the abbreviation o, defined as above by o(ba) = P(abb)):

C 8 P(abc) =c—a=0b,
C 9 L(abc) — L(a'P(aba')P(aca')),

C 10 L(abo(ab)).



In the presence of these axioms, C1 becomes redundant and C2 can be weakened to
C 2' L(abc) — L(bac).

Let Acon, = {C2',C3 —C5,C7—C10,A5}. In order to prove that Aoy, is an axiom system for translation
planes, we shall prove that, with parallelity defined by (6), all the axioms of A can be derived from A, i.
e. that

Theorem 5 A, U {(6)} - A.

Proof. Suppose P(abx) = P(aby). We want to conclude that z = y. By C7 and C4 we have P(abzx) =
P(yxzP(aby)), hence P(yxzP(aby)) = P(aby). Therefore, by C8,

P(abz) = P(aby) - z = y. (7
By C7 we have P(abb) = P(aP(aba)b), so using C4 and (7) we get
P(aba) = P(aadb) = b. (8)

As a special case of (8) we get
o(aa) = a. 9)

We also notice that, from the definition of ¢ and C8 we deduce
o(ab) =a —a=0. (10)
With ¢ = b and d = a, C7 becomes P(bP(abb)a) = P(aba), which, by (8) and C4, implies
P(bac(ba)) = b. (11)

Let @' = o(ba). By C7 we have P(a'ba’) = P(bP(a'bb)a’), i. e. P(bP(a'bb)

a') = b (by (8)). By (11) this
means that P(bP(a'bb)a’) = P(baa'). Using C4 and (7) we conclude that P(a’'bb) = a, i

i. e. that
a(bo(ba)) = a. (12)

We now turn to the proof of the deleted part of axiom C2, i. e. to L(abc) — L(cba). We shall first
prove it for a # b and a # ¢. Suppose L(abc) and a # b. By C10 we have L(abo(ab)), whereas C3
gives a # b A L(abo(ab)) A L(abc) — L(ac(ab)c). Since the antecedent of the above implication holds, its
consequent, L(ao(ab)c), holds as well. By C10 we have L(ac(ab)o(ac(ad))), i. e. , since o(ac(ab)) = b, we
have L(ac(ab)b). Since a # o(ab) (by (10)), the antecendent of a # o(ab) AL(ac(ab)c) AL(ac(ab)b) — L(acb)
(which holds by C3) holds, and so its consequent, L(acb), holds as well. This proves

a#bAa# cA L(abc) — L(ach). (13)

Applying C2' with antecedent L(acb), we get L(cab). Since a # ¢, we can apply (13) with L(cab) as
antecendent to get L(cba). Notice that, if a = ¢, then L(abc) — L(cba) is a tautology. We have thus shown
that

a # b A L(abc) — L(cba). (14)

We now turn to the proof of C1. Let a # b. Then o(ab) # a (by (10)). We have L(bao(ba) (by C10)),
therefore L(bo(ba)a) (by (13). By C3, a # b A L(bo(ba)a) A L(bo(ba)a) — L(baa), therefore L(baa); hence
L(aba) (by C2), which is C1 for a # b. For a = b, C1 is a consequence of C10 and of (9).

Apply now C2' with L(aca) (which holds, by C1) as antecedent to get L(caa). This shows that (14)
holds without the condition a # b as well, and proves that C2 holds in A,,,.

Since P(baP(abc)) = P(bP(acb)a) = P(aca) = c (the first equation follows from C4, the second from C7
and the third from (8)) and
P(bac) = P(P(abc)P(baP(abc))c) (by C7), we get

P(bac) = o(cP(abc)). (15)



We are now ready to prove Ax 2.2.0 of [17, p. 19], i. e. ab || ba. According to (6) ab || ba is equivalent to
L(baP(bab)), i. e. to L(baa) (by (8)), which is a consequence of C1 and C2.

To see that A2 follows from A.,, U {(6)}, notice that ab || cc means, by (6), that L(ccP(bac)), which
follows from C1 and C2.

Let now a # b, ab || ¢d and ab || ef. We want to show that cd || ef, thus proving Ax 2.2.2 in [17,
p- 19]. If ¢ = d, then cc || ef is a consequence of A, U {(6)}, being equivalent to L(efP(cce)), hence
to L(efe) (by (8)), which is Cl. Suppose now ¢ # d. By (6) our hypothesis amounts to a # b, ¢ # d,
L(cdP(bac)) and L(efP(bae)). From C9 applied to L(cdP(bac)) we get L(eP(cde) P(cP(bac)e)), i. e., since
P(cde) = o(eP(dce)) (by (15)) and P(cP(bac)e) = P(bae) (by C7), we have L(ec(eP(dce))P(bae)). Since
we also have L(eP(dce)o(eP(dce)) (by C10) and o(eP(dce)) # e (by ¢ # d and (10)), using C2 and C3 we
conclude that L(eP(dce)P(bae)). Since we also have L(efP(bae)) from our hypothesis and P(bae) # e (by
C8), using C2 and C3 we get L(efP(dce)), i. e. cd || ef (by (6)). This proves Ax 2.2.2.

We now turn to the proof of A3. Let ab || ac and suppose a, b and ¢ are different (else ba || be will be
true by A2, or by cc || ef which was proved above, or by Ax 2.2.0 and Ax 2.2.2). By (6) we have that
L(acP(baa)), that is L(aco(ab)). Since we also have that L(abo(ab)) and o(ab) # a (by (10)), we get L(abc)
(by C2 and C3). From L(abc) and L(bac(ba)) (by C10) we get, by using C2 and C3, L(bco(ba), i. e. ba || be
(by (6)). This proves A3.

To see that A6 follows from A, U {(6)}, notice that, with ¢ = P(abp), ab || pq becomes (by (6))
L(pP(abp)P(bap)), which in turn becomes (since by (15) we have P(bap) = o(pP(abp))) L(pP(abp)o (pP(abp))),
which follows from C10. If a # b, we also conclude that p # ¢ (by C8). If a = b, any ¢q with ¢ # p satisfies
the conditions of A6.

Now A7 follows from C5 and (6), with p = I(abed), so all the axioms in [17, p. 19] are consequences of
Acon U {(6)}, which has been therefore shown to be an axiom system for affine planes, which means that ||
(as defined by (6)) and L satisfy all the axioms in ¥ (notice also that L(abc) <> ab || ac is also a consequence
of Acon, U{(6)}).

We now turn to the proof that A10 is also a consequence of A.,, U {(6)}. We first notice that

—L(abc) A ab || cd Aac || bd — d = P(abc) (16)

and
ac || bP(abc) (17)

are consequences of A.,,U{(6)}. That this is so can be seen by noticing that (17) requires that L(bP(abc)P(cab)),
i. e. (by (15)) that L(bP(abc)o(bP(acb))), which is a consequence of C10 and C4. On the other hand (16)
states that P(abc) is the unique d satisfying the antecedent of (16). This is true since, according to (17)
and C4, the antecedent of (16) is satisfied with d = P(abc), and this is the unique point satisfying it, since
d is the intersection point of the parallel from d to ac with the parallel from ¢ to ab, two lines that must be
distinct, as = L(abc).

By (16), the antecedent of A10 can be rewritten as = L(abp) A =L(abr) A ¢ = P(abp) A s = P(abr). Now,
by C7, we have P(abr) = P(pP(abp)r), i. e s = P(pqr). By (17) we have pr || ¢P(pgqr), i. e pr || gs, which is
the consequent of A10.

O

For any strong left quasi-field F' (cf. [17, p. 8] for a definition) let ™A.on(F) be the structure (F?,Lp, Pp),
where Lg(abc) iff a; = by = ¢1 V(Tu € F)u(a; —b2) = (az—b2)Au(as—c1) = az—cy and Pp(abe) = b+c—a
(here x = (x1,x2)). From Theorem 5 we deduce the following

Corollary M € Mod(Acon) iff M ~ Acon(F), for some strong left quasi-field F'.

In order to eliminate the possibility that the translation plane is of characteristic 2, we need to add to A,
the axiom

C 11 o(ab)=b—a=0b.



In order to get an axiom system for Moufang planes of characteristic # 2, we need to add to A.,,, in addition
to C11, the axiom Parallelogram-Desargues (cf. [15, Satz 9]), which in L would read

A 12 —L(abp) A=L(abr) Ao aNo#bANo#pANoF#qAhoF# T Ao # s A L(oab) A L(opg) A L(ors) Aap ||
orAar||opAap|| bgAar| bs— pr| gs,

but which could be expressed with fewer variables in L.,,. In expressing it we shall also use (besides the
abbreviation ||, defined in (6)) the abbreviation (cf. [17, p. 29])

T,(abc) = I(ocbP(abc)). (18)
It thus becomes

C 12 —L(aog) Ao #aANo#pAo#qA L(opg) = pP(poa) || ¢P(qoT(pga))-

Similarly A1l becomes

C13 p1 #p2 Ag2 # g3 A ~(p1p2 || @2¢3) A ~L(p1g2q3) A ~L(p2g2q3) A ~L(g2p1p2) A ~L(gspip2) = p13 ||
I(p1p2g2P(q3q2p2))I (q2q3p2 P (p1p242))-

Another simple axiom system for Moufang planes of characteristic # 2 is obtained, as shown in [10], by
adding to A, the axiom C11 and the following special case of the Desargues axiom (which is denoted in
[4, p. 127£] by (d"))

A 13 —L(abp) A=L(abr) No#£aNo#bANo#pANoF#qAhoF# T Ao # s A L(oab) A L(opg) A L(ors) Aap ||
bg A ar || bs A L(arq) — pr || gs,

which differs from the Desargues axiom by having L(arq) added to its antecedent. Expressed it Loy, with
¢, b, and s standing for I(arop), I(oaqP(pga)), and I(orbP(arb)) respectively, it reads

C 14 —L(oap) A—L{oar) No#aANNo#pAoF#r — pr| gs.

D. ScoTT [16] has shown that the simplicity degree of plane Euclidean geometry, axiomatized with only
one sort of variables, whose intended interpretation is “points”, is at least 4.2 This is so because any axiom
which contains at most 3 variables, which holds in the plane would have to hold in all higher dimensions.
The same result is valid for affine geometry, since all the affine notions are Euclidean as well (i. e. invariant
under isometries).

We have thus shown that

Theorem 6 A, and Ao U {C13} are simple axiom systems in Leo, for translation planes and Pappian
planes (of unspecified characteristic). Adding C11 to them one obtains simple axiom systems for the same
structures with characteristic # 2. Acon U {C11, C14} (o1 Agon, U {C11, C12}) is a simple aziom system for
Moufang planes of characteristic # 2. Y.on is a simple aziom system for affine planes. The simplicity degree
of the corresponding L., -theories is 4. This is best possible in the sense of D. SCOTT’s Theorem.

In order to axiomatize ordered affine planes, we need to add a new ternary predicate B to Lc,, but we may
drop L from the list of symbols of L.,,. Let L, be the first-order language containing the ternary relation
symbol B, the ternary operation symbol P and the quaternary operation symbol I. Every occurrence of
L(zyz) in any axiom in this section, as well as in the definition (6) is to be replaced by B(zyz) V B(yzz) V
B(zzy). The resulting axioms and axiom systems will be distinguished from the one containing L by adding

a' (Acon thus becomes Al ). Noticing that O4 can be expressed in L, with only 4 variables as

O 5 —L{abb') A B(abc) — B(ab'T,(beb")).

28¢OTT also requires that the language contains no function symbols, but Theorem 2.2, on which his result depends, remains
valid in languages that contain operation symbols.




and that ordered Moufang planes are Desarguesian (cf. [14, p. 240]), we get the following

Theorem 7 A/ U{C11, 02,03, 05}, A . U{C11, C14', 02, 03, O5} (or
Al U{Cl11,C12', 02,03, 05}), AL U{Cl1, C13, 02, 03, O5} are simple axiom systems for ordered trans-

con
lation planes, ordered Desarguesian planes and ordered Pappian planes respectively. The corresponding

L,-theories thus have simplicity degree 4, which is best possible in the sense of D. SCOTT’s Theorem.

Open Problem. What is the simplicity degree of the L-theory and of the L.,,-theory of Desarguesian
planes (of unspecified characteristic or of characteristic # 2)?
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