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Abstract

We provide a first order axiomatization for Bachmann’s metric planes in

terms of points and the ternary relation ⊥ with ⊥ (abc) to be read as ‘a, b, c are

the vertices of a right triangle with right angle at a’. The axioms can be chosen

to be ∀∃-statements.

1 Introduction

The concept of a metric plane grew out of the work of Hessenberg, Hjelmslev, and A.

Schmidt, and was provided with a simple group-theoretic axiomatics by F. Bachmann.

His axiomatics (cf. [2, §3,2, p. 33]) can be rephrased in a first-order language with

points and lines as individual variables, and with a binary operation % for reflections

in lines, with %(l, P ) denoting the point obtained by reflecting the point P in the line

l, or with only one sort of variables, for lines, and a binary operation ρ, with ρ(g, h)

denoting the line obtained by reflecting line h in line g (cf. [3] for an axiom system in

this language). Bachmann ([2, §2,3]) also described metric planes by an axiom system

in a language with points and lines as individual variables, and point-line incidence,

line-orthogonality, and mappings of models as non-logical notions (cf. also [1]). That

axiom system cannot be rephrased in first-order logic, as it contains references to line

reflections, which are defined as bijections of the collection of all points and lines,
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which preserve incidence and orthogonality, are involutory transformations, different

from the identity, and fix all the points of a line. We shall nevertheless state that

axiom system. Its axioms are (the words ‘intersect’, ‘through’, ‘perpendicular’, ‘have

in common’ are the usual paraphrases):

MP 1 There are at least two points.

MP 2 For every two different points there is exactly one line incident with those

points.

MP 3 If a is orthogonal to b, then b is orthogonal to a.

MP 4 Orthogonal lines intersect.

MP 5 Through every point P there is to every line l a perpendicular, which is unique

if P is incident with l.

MP 6 To every line there is at least a reflection in that line.

MP 7 The composition of reflections in three lines a, b, c which have a point or a

perpendicular in common is a reflection in a line d.

There are other axiom systems in the literature for non-elliptic metric planes (i.

e. metric planes in which the composition of three reflections in lines is never the

identity): (i) in terms of points and the quaternary relation of congruence ≡ ([7],

[4]), (ii) in terms of points and two ternary operations in [5], (iii) in terms of ‘rigid

motions’, and a unary predicate symbol G, with G(x) to be interpreted as ‘x is a

line-reflection’, a constant symbol 1, to be interpreted as ‘the identity’, and a binary

operation ◦, with ◦(a, b), to be interpreted as ‘the composition of a with b’ ([6]); and

(iv) in terms of the two sorts of variables, points and rigid motions, and a binary

operation ·, the first argument of which is a rigid motion, the second argument a

point, and whose value is a point, ·(g,A) standing for ‘the action of g on A’ ([6]).

The aim of this paper is to show that Bachmann’s metric planes can be axiom-

atized in terms of points and the notion of orthogonality as single primitive notion.

By this we do not mean that the axiom system is simple or that it were preferable

to its competitors, but simply that the theory of metric planes can be expressed in

these very simple terms.
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Figure 1: The reflection of p in the line ab obtained by means of ϕ.

2 The axiom system

The language in which we will express the axiom system for metric planes contains

one sort of variables, standing for points, and a ternary relation ⊥, with ⊥ (abc) to

be read as ‘a, b, c are the vertices of a right triangle with right angle at a’.

To shorten the formal aspect of the axioms, we shall use the following abbrevia-

tions (see Fig. 1 for the definition of ϕ):

Le(abc) :⇔ ⊥ (abe)∧ ⊥ (ace)

ϕ(abpmnoqq′rr′uvp′) :⇔ a 6= b ∧ (o = a∨ ⊥ (oap)) ∧ (o = b∨ ⊥ (obp))

∧Lo(pqr) ∧ q 6= r ∧ Lo(mqq′) ∧ q 6= q′

∧Lo(nrr′) ∧ r 6= r′ ∧ Lo(p
′q′r′) ∧ Lm(opp′) ∧m 6= n

∧Lp(omn) ∧ Lu(orq′) ∧ Lv(oqr
′)

Rab(pp′) :⇔ (∃mnoqq′rr′uv) (((⊥ (abp)∧ ⊥ (bpa)) ∨ (a 6= b ∧ (Lo(pab)

∨p = a ∨ p = b))) ∧ p′ = p) ∨ (¬(⊥ (abp)∧ ⊥ (bpa))

∧ϕ(abpmnoqq′rr′uvp′))

Le(abc) stands for ‘a, b, c are three collinear points, with a different from b and c,

and a, b, e are the vertices of a right triangle with right angle at a’; Rab(pp′) stands,

if a is different from b, for ‘p′ is the reflection of p in the line ab’.

The axioms are:
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A 1 ⊥ (abc)→ a 6= b ∧ b 6= c ∧ c 6= a,

A 2 ⊥ (abc)→⊥ (acb),

A 3 (∀ab)(∃c) a 6= b→⊥ (abc),

A 4 Lb(acd)∧ ⊥ (ced)→⊥ (cea),

A 5 Le(abc)∧ ⊥ (abf)→⊥ (acf),

A 6 ⊥ (apb)∧ ⊥ (bpa) ∧ Le(abc)→⊥ (cpa),

A 7 (∀abp)(∃mnoqq′rr′p′uv) p = a ∨ p = b ∨ Lo(pab) ∨ (⊥ (apb)∧ ⊥ (bpa))

∨ϕ(abpmnoqq′rr′uvp′),

A 8 (⊥ (apb)∧ ⊥ (bpa)) ∨ ((
∧

2

i=1
ϕ(abpminioiqiq

′

irir
′

iuivipi))→ p1 = p2),

A 9 ⊥ (xyz) ∧Rab(xx′) ∧Rab(yy′) ∧Rab(zz′)→⊥ (x′y′z′),

A 10 (∀abcefg)(∃dd′)(∀pqrs)Lf(bac)∧ ⊥ (aeb)∧ ⊥ (cgb) ∧Rae(pq) ∧Rbf (qr)

∧Rcg(rs)→ Ld′(dab) ∧Rdd′(ps),

A 11 (∀oabc)(∃d)(∀pqrs)Roa(pq) ∧Rob(qr) ∧Roc(rs)→ Rod(ps),

A 12 (∃ab) a 6= b.

Somewhat informally (given that we refer to ‘lines’, which are not objects of our

language), A1 states that if ab is orthogonal to ac, then a, b, c must be three different

points; A2 states that if ab is orthogonal to ac, then ac is orthogonal to ab, A3

states that one can raise a perpendicular in a on a given line ab; A4 states that if

a, c, d are three different collinear points, and ce is perpendicular on the line cd, then

it is perpendicular on the line ca as well (‘naturally’, since the lines cd and ca are

identical); A5 states that if a, b, c are three collinear points, and af is perpendicular

to ab, then it is perpendicular to ac as well (‘naturally’, since the lines ab and ac

are identical); A6 states that if both pa and pb are perpendicular to line ab, then

the line pc is perpendicular to ca for any point c on the line ab; A7 states that if p

is not on the line ab, and if pa and pb are not both perpendicular to ab, then there

is a point p′, which is the reflection of p in the line ab; A8 states that the point

p′ which A7 claims to exist, is unique; A9 states that reflections in lines preserve
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orthogonality; A10 states that the composition of reflections in the lines ae, bf , cg,

which are perpendicular to the line on which a, b, c lie, is a reflection in a line, namely

the reflection in the line dd′; A11 states that the composition of the reflections in

the lines oa, ob, and oc, which have the point o in common, is a reflection in a line,

namely the reflection in od.

3 Proof of the main result

We now proceed to prove that the axioms A1-A12 axiomatize Bachmann’s metric

planes.

Lemma 1 If a 6= b ∧ (Lp(oab) ∨ (o = a∧ ⊥ (opb)) ∨ (o = b∧ ⊥ (opa))), then, for no

x can we have Lx(pab).

Proof. Assume a 6= b, Lp(oab), and Lx(pab). Let e be such that ⊥ (abe) (such an

e exists by A3). By A4,

Lx(pab)∧ ⊥ (aeb)→⊥ (aep)

Lp(oab)∧ ⊥ (aeb)→⊥ (aeo)

Given that the hypotheses of the above implications hold, we must have ⊥ (aep) and

⊥ (aeo), and thus, by A2, ⊥ (aoe) as well, which means that Le(aop) holds. By A4,

we have

Le(aop)∧ ⊥ (oap)→⊥ (oaa),

contradicting A1.

Assume o = a, ⊥ (opb), as well as Lx(pab). By A4, Lx(pab)∧ ⊥ (apb)→⊥ (app),

and since the hypothesis holds, so must the conclusion, i. e. ⊥ (app), contradicting

A1.

Assume o = b, ⊥ (opa), as well as Lx(pab). Again A4 leads to ⊥ (bpp), contra-

dicting A1. �

Notice also that, by A1, Lp(oab)→ p 6= a ∧ p 6= b. Thus:

ϕ(abpmnoqq′rr′uvp′)→ ¬(Lx(pab) ∨ p = a ∨ p = b).(1)

We now turn to the proof of

Lb(acd)∧ ⊥ (cea) ∧ c 6= d→⊥ (ced)(2)
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Proof. Since c 6= d, by A3 and A2, we have (∃f) ⊥ (cfd). By A4, Lb(acd) and

⊥ (cfd) imply ⊥ (cfa). Since we have both ⊥ (cfa) and ⊥ (cea), we have La(cfe).

Since we also have ⊥ (cfd), we get, using A5, ⊥ (ced). �

Let us define a new predicate λ, with λ(abc) to be read as ‘a, b, c are (not neces-

sarily different) collinear points’, defined by

λ(abc) :⇔ (∃e)Le(abc) ∨ a = b ∨ a = c.(3)

To show that the axiom system A1-A12 axiomatizes metric planes, we need to

define the notions of line, point-line incidence, and line-orthogonality, and to show

that these notions, as well as the line-reflections that are induced by these notions

satisfy the axioms MP1-MP7.

For any two different points a and b, we define a new object, the line ab, and we

say that a point x is incident with ab if and only if λ(abx). We say that two lines

ab and cd are equal if and only if they are incident with the same points, and we say

that they are orthogonal if and only if there is a point o incident with both lines, and

there are points p on ab and q on cd, such that ⊥ (opq).

Notice that, from the very definition of L we have

Le(abc)→ Le(acb).(4)

We now turn to proving that

λ(abc)→ λ(cba) ∧ λ(bac).(5)

Proof. By (3) and λ(abc), Le(abc) for some e, or a = b or a = c. Notice that λ(abb)

holds for all a and b by (3) and A3, thus, in case a = b or a = c, the conclusion of (5)

holds. Suppose a 6= b and a 6= c, and Le(abc). By A3 (∃f) ⊥ (cbf). Given that, by

(4) and A2, we have Le(acb) and ⊥ (cfb), and os, by A4 and A1, ⊥ (caf). Together

with ⊥ (cbf), this gives Lf (cba), thus λ(cba). Since a 6= b, by A3, (∃g) ⊥ (bag). By

(2) and A2, given Le(abc) and ⊥ (bag), we get ⊥ (bcg), so Lg(bac), i. e. λ(bac). �

Next, we prove that

a 6= b ∧ λ(abc) ∧ λ(abd)→ λ(acd).(6)

Proof. Suppose a 6= b, λ(abc) and λ(abd). By (3), a = c or there is an e such that

Le(abc), and a = d or there is an f such that Lf (abd). If a = c or a = d, there is
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nothing to prove, since λ(acd) follows from (3). Suppose Le(abc) and Lf (abd). By

A5, we deduce from Le(abc) and ⊥ (abf) that ⊥ (acf) holds. From this and ⊥ (adf)

we get Lf (acd), thus λ(acd). �

We now check the validity, with our defined notions, of the axioms MP1-MP7.

MP1 holds by A12. The existence part of MP2, i. e. the existence of a line incident

with two different points a and b follows from the fact that we have λ(aba) and λ(abb)

by (3), thus a and b are incident with the line ab. To see that the uniqueness part of

MP2 holds, we need to show that

u 6= v ∧ a 6= b ∧ L(uva) ∧ L(uvb)→ (L(uvx)↔ L(abx)).(7)

Proof. If a = u or a = v or b = u or b = v, then (7) follows from applying once

or twice (6). Suppose now a 6= u, b 6= u, a 6= v, b 6= v, u 6= v, a 6= b, λ(uva),

λ(uvb), λ(uvx). By (6) we have λ(uab) and λ(uax), thus λ(bua) and λ(aux) (by

(5)). By (5) we also get λ(buv) and λ(auv). Since b 6= u, λ(buv) and λ(bua) imply

λ(bva) (by (6)), and, since a 6= u, λ(aux) and λ(auv) imply λ(avx). By (5) we also

have λ(avb). Since a 6= v, λ(avb) and λ(avx) imply λ(abx) (by (6)). Suppose now

a 6= u, b 6= u, a 6= v, b 6= v, u 6= v, a 6= b, λ(uva), λ(uvb), λ(abx). If x = a, then

λ(uvx) and we are done. Suppose x 6= a. From u 6= v, λ(uva), λ(uvb) we get λ(uab)

(by (6)) and λ(vab) (by (5) and (6)). By (5) we have λ(abu), λ(abv) and λ(abx),

which together with a 6= b give us λ(aux) and λ(avx) (by (6)). By (5) we have λ(xau)

and λ(xav), thus, since x 6= a, we have λ(xuv) as well by (6)), so λ(uvx) (by (5)). �

By (3) and (5) we have

If a 6= b and c 6= d, then ab = cd if and only if λ(abc) and λ(abd),(8)

By A5, (8), and A2 we get

If a 6= b, a 6= c, a 6= b′, a 6= c′, ab = ab′ and ac = ac′,(9)

then ⊥ (abc) if and only if ⊥ (ab′c′),

and by the definition of line perpendicularity and (9) we get

If a 6= b, a′ 6= b′, c 6= d, c′ 6= d′, ab = a′b′ and cd = c′d′,(10)

then ab is orthogonal to cd if and only if a′b′ is orthogonal to c′d′.
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Thus orthogonality is well-defined as a binary relation between lines. That it

satisfies MP4, i. e. that orthogonal lines intersect, is part of the definition of line-

orthogonality. By A2 and the definition of line-orthogonality, we deduce that MP3

holds as well.

To see that MP5 holds, notice that, by A7, for a 6= b, and p not on ab, we have

either ⊥ (apb) and ⊥ (bpa) or ϕ(abpmnoqq ′rr′uvp′). If ⊥ (apb), then the lines pa and

ab are orthogonal, and pa passes through p. Suppose we have ϕ(abpmnoqq ′rr′uvp′).

Then po is a line that passes through p and is orthogonal to ab, given that o is on

both lines, and that ⊥ (oap) or ⊥ (obp) must hold by the definition of ϕ and A2.

Should p be on ab, the the existence of a line through p orthogonal to ab follows from

A3. The uniqueness of the orthogonal to ab through p in this case is a consequence

of our definition of L, (3), and A2.

We now define the reflection %ab in the line ab, with a 6= b, by assigning to

each point p the point p′, for which Rab(pp′) holds. This point is p in case one of

⊥ (abp)∧ ⊥ (bpa) or λ(pab) holds, and thus is unique. Notice that, by A6 and (8),

the choice of p′ as p does not depend on the particular points a and b we have chose to

represent the line ab. If neither ⊥ (abp)∧ ⊥ (bpa) nor λ(pab) hold, then, by A7, there

must be m,n, o, q, q′, r, r′, p′, u, v such that ϕ(abpmnoqq′rr′uvp′). Thus, according to

the definition of R, p′ must, in this case be the point for which ϕ(abpmnoqq ′rr′uvp′)

(notice that, by (1), we cannot have both λ(pab) and ϕ(abpmnoqq ′rr′uvp′), so that %

is well-defined). The point p′ is unique in this case as well, by A8. Notice again that,

given p, the point p′ is determined by the line ab, and not by the particular choice of

a and b used to represent it. This can be seen by noticing that, in the definition of

ϕ the only occurrence of a and b is in a 6= b ∧ ((Lp(oab) ∨ (o = a∧ ⊥ (opb)) ∨ (o =

b∧ ⊥ (opa))), and that, by A5, (6), (5), (3), we have

a 6= b ∧ (Lp(oab) ∨ (o = a∧ ⊥ (opb)) ∨ (o = b∧ ⊥ (opa))) ∧ λ(abc) ∧ λ(abd)

∧c 6= d→ Lp(ocd) ∨ (o = c∧ ⊥ (opd)) ∨ (o = d∧ ⊥ (opc)).

Thus, using A6 as well, we have

¬(⊥ (apb)∧ ⊥ (bpa)) ∧ ϕ(abpmnoqq′rr′uvp′) ∧ λ(abc) ∧ λ(abd) ∧ c 6= d

→ ¬(⊥ (cpd)∧ ⊥ (dpc)) ∧ ϕ(cdpmnoqq′rr′uvp′),

showing that the point p′ depends, in case p is not such that there are two orthogonal

from it to ab, only on p and the line ab.
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The map %ab is orthogonality-preserving by A9, and thus, given our definitions of

L and λ, collinearity-preserving as well. It fixes all the points on the line ab, and it

is involutory, given that ϕ(abpmnoqq ′rr′uvp′)→ ϕ(abp′mnoq′qr′ruvp).

MP6 and MP7 follow from A10 and A11.

To show that the two axiom systems axiomatize the same class of models, we

need to define in the language of the axioms MP1-MP7, the notion ⊥, and to show

that, with that definition, the axioms A1-A12 can be derived from MP1-MP7. The

definition of ⊥ (abc) is, as expected, ‘a 6= b, a 6= c, and the lines ab and ac are

orthogonal’. By the main theorem of [2, §6,§8]:

Representation Theorem. Every model of a metric plane (i. e. of MP1-MP7)

can be represented as an embedded subplane (i. e. containing with every point all the

lines of the projective-metric plane that are incident with it) that contains the point

(0, 0, 1) of a projective-metric plane P(K, f) over a field K of characteristic 6= 2, from

which it inherits the collinearity and orthogonality relations.

By projective-metric plane P(K, f) over a field K of characteristic 6= 2, with f a

symmetric bilinear form, which may be chosen to be defined by f(x,y) = λx1y1 +

µx2y2 + νx3y3, with λµ 6= 0, for x,y ∈ K3 (where u always denotes the triple

(u1, u2, u3), line or point, according to context), we understand a set of points and

lines, the former to be denoted by (x, y, z) the latter by [u, v, w] (determined up

to multiplication by a non-zero scalar, not all coordinates being allowed to be 0),

endowed with a notion of incidence, point (x, y, z) being incident with line [u, v, w]

if and only if xu + yv + zw = 0, an orthogonality of lines defined by f, under which

lines g and g′ are orthogonal if and only if f(g,g′) = 0.

Thus, all we need to check is that the axioms A1-A12 hold in these embedded

subplanes of projective-metric planes.1

The only axioms that need to be checked, the others being known to hold in metric

planes, are A7 and A8. To simplify computations, we will assume, to prove that both

of these axioms hold, that the line ab is the line [0, 1, 0], and that p = (0, α, 1),

for some α ∈ K \ {0}, the metric plane being denoted by M. This choice of p is

possible whenever we know that there do not exist two different lines through p that

are orthogonal to [0, 1, 0] (if two such perpendiculars exist, then p would have to be

1It would have been preferable to have a synthetic proof that the axioms A7 and A8 can be

derived from Bachmann’s axioms for metric planes, but we could not find such a proof for A8 (see

the Appendix for synthetic proofs).
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(α, β, 0)), and that p does not lie on ab. That there exist m,n, o, q, q ′, r, r′, p′, u, v such

that ϕ(abpmnoqq′rr′uvp′) can be seen by taking m = (x, 0, 1), n = (−x, 0, 1), o =

(0, 0, 1), q = (x, α, 1), q′ = (x,−α, 1), r = (−x, α, 1), r′ = (−x,−α, 1), p′ = (0,−a, 1),

u any point, different from (0, 0, 1), on the line [α, x, 0], and v any point, different

from (0, 0, 1), on the line [α,−x, 0], where x ∈ K \ {0} is such that q = (x, α, 1) is a

point of M (such an x must exist, given that there must be a second point on the line

[0, 1,−α], which is a line of M, given that it passes through a point of M, namely p,

and the requirement that M be an embedded subplane. To see that, with p = (0, α, 1)

and ab = [0, 1, 0], the point p′ given by ϕ(abpmnoqq′rr′uvp′) is unique in case there

do not exist two perpendiculars through p to ab (we know by (1) that p cannot be on

ab), we notice that the conditions Lo(pqr), q 6= r, Lo(mqq′), q 6= q′, Lo(nrr′), r 6= r′,

Lo(p
′q′r′), Lm(opp′), m 6= n,Lp(omn), from the definition of ϕ(abpmnoqq ′rr′uvp′),

imply that m = (x, 0, 1), n = (y, 0, 1), o = (0, 0, 1), q = (x, α, 1), q ′ = (x, β, 1),

r = (y, α, 1), r′ = (y, β, 1), p′ = (0, β, 1), with x 6= y, x 6= 0, y 6= 0, α 6= 0, β 6= 0,

and α 6= β. The last two condition, that, for some u and v, we have Lu(orq′) and

Lv(oqr
′), imply that the points o, r, q′ are collinear, and that the points o, q, r ′ are

collinear. Let [i, j, k] be the line on which o, r, q ′ lie, and [i′, j′, k′] the line on which

o, q, r′ lie. Since both lines pass through (0, 0, 1), we must have k = k ′ = 0. The

remaining four incidences give iy + jα = 0, ix + jβ = 0, i′x + j′α = 0, i′y + j′β = 0.

This is a homogeneous linear system in the unknowns x, y, α, β, and it has a solution

(x, y, α, β) 6= (0, 0, 0, 0) if and only if the determinant of the matrix of this system is

zero. This means that
(

j′

i′

)

2−
(

j

i

)

2 = 0,

i. e. that j′

i′
= ± j

i
. Since j′

i′
= j

i
leads to α = β, we must have j′

i′
= − j

i
, and this

leads to β = −α and y = −x, implying the uniqueness of p′, which must be (0,−α, 1)

regardless of the intermediate points m,n, o, q, q ′, r, r′, u, v.

4 ∀∃-axiomatizability

There is a problem of a logical complexity nature regarding our axiom system A1-

A12. Two of the axioms, A10 and A11 have quantifier complexity ∀∃∀, all the other

axioms being ∀∃-axioms (i. e. all universal quantifier (if any) precede all existential

quantifiers (if any)). However, they can be replaced with axioms which are ∀∃-
axioms, to obtain an axiom system, A1-A9, A12, A13-A16, all of whose axioms are
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∀∃-statements. A10 can be replaced by the two axioms

A 13 (∀abcefg)(∃dd′)Lf (bac)∧ ⊥ (aeb)∧ ⊥ (cgb) ∧Rbf (ee′) ∧Rcg(e
′e′′)

→ Ld′(dab) ∧Rdd′(ee′′),

A 14 Lf (bac)∧ ⊥ (aeb)∧ ⊥ (cgb) ∧Rbf (ee′) ∧Rcg(e
′e′′) ∧ Ld′(dab) ∧Rdd′(ee′′)

∧Rae(pq) ∧Rbf (qr) ∧Rcg(rs)→ Ld′(dab) ∧Rdd′(ps),

and A11 by the two axioms

A 15 (∀oabc)(∃d) o 6= a ∧Rob(aa′) ∧Roc(a
′a′′)→ Rod(aa′′),

A 16 o 6= a∧Rob(aa′)∧Roc(a
′a′′)∧Rod(aa′′)∧Roa(pq)∧Rob(qr)∧Roc(rs)→ Rod(ps).
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We present here the synthetic proofs that the author thought preferable to the algebraic

proof, but could not find for A8, of the fact that the axioms A7 and A8 hold in Bachmann’s

metric planes. This proof removes the need to refer to the representation theorem for Bach-

mann’s metric planes, relying instead only on the fact that metric planes can be embedded

in Pappian Fanoian projective planes (i. e. projective planes that can be coordinatized by

fields of characteristic 6= 2).

Lemma 2 Metric planes satisfy A7.

Proof. Let a, b, p be three given points, satisfying the hypothesis of A7, and let o be the

foot of the perpendicular from p to ab, and q a point different from p on the line through p,
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which is orthogonal to op (see Figure 1). Let p′ := %ab(p) and q′ := %ab(q), where %ab denotes,

as previously defined, the reflection in the line ab. Let r := %op(q) and r′ := %ab = r. The

lines p′r′ and pp′ are orthogonal. The points q′, r, and o lie on the line %ab(qr′), being images

under %ab of the points q, r′, and o. If we denote by m and n the feet of the perpendiculars

from q and respectively from r on ab, we get ϕ(abpmnoqq′rr′uvp′). �

Lemma 3 Metric planes satisfy A8.

Proof. We will present two proofs for this lemma.

1 (by Rolf Struve). Let a, b, p, m, n, o, q, q′, r, r′, u, v, p′ be points of a metric plane M with

ϕ(abpmnoqq′rr′uvp′), and such that there is only one perpendicular from p to ab, i. e. points

as shown in Figure 1. We will show, that p′ is %ab(p), a uniquely determined point. Accord-

ing to Bachmann’s [2] Main Theorem, M can be embedded in a Pappian Fanoian projective

plane P. Let z∞ and a∞ be the points in P that lie on all lines perpendicular to ab and pp′

respectively. Let % be the uniquely determined homology with axis ab and centre z∞ that

maps p into p′. The point q will be mapped by % into a point on the perpendicular from

q to ab, which is incident with p′a∞ (given that a∞ is the intersection point of pq and ab)

thus in q′. Analogously, one shows that %(r) = r′. We also have %(q′) = q, given that q′ is

incident with the perpendicular from q′ to ab and with or, the point %(q′) must be the point

of intersection of the perpendicular from q to ab with or′. Thus %(%(q)) = %(q′) = q. The

projective collineation % ◦ % thus fixes q, z∞, and the line ab pointwise, and must thus be

the identity, so % is involutory. In a Pappian Fanoian projective plane there exists only one

involutory homology with given centre and axis. Thus p′ is uniquely determined: it is the

image of p under the reflection %ab.

2 (by Horst Struve). Under the same assumptions regarding the points a, b, p, m, n, o, q,

q′, r, r′, u, v, p′, let p′∗ := %ab(p), r∗ := %op(q), q′∗ := %ab(q), r′∗ := %ab(r
∗). With n∗ standing

for the foot of the perpendicular from r∗ to ab, we have ϕ(abpmn∗oqq′∗r∗r′∗u∗v∗p′∗). We

will show, that p′ = p′∗ i. e. that p′ = %ab(p).

To this end, we consider the following Desargues configuration: through the point q,

the centre of the configuration, pass the three lines qp, qo, and qq′. On these lines lie the

vertices of the two triangles rr′q′ and r∗r′∗q′∗. Suppose r 6= r∗. Then the vertices of the

two triangles are pairwise different, i. e. r′ 6= r′∗ and q′ 6= q′∗ as well. Thus, according to

the Desargues axiom (which holds in P, in which the Pappus axiom holds) the two triangles

must be perspective from a line as well, i. e. the intersection points of rr′ and r∗r′∗, of q′r′

and q′∗r′∗ and of rq′ and r∗q′∗ must be collinear. Both rr′ and r∗r′∗ are incident with the

pole z∞ of line ab, both q′r′ and q′∗r′∗ are incident with the pole a∞ of line pp′, both rq′

and r∗q′∗ are incident with o. These three points cannot be collinear, for else, we would have

oz∞ = oa∞, and thus pp′ = ab, contradicting the fact that pp′ is perpendicular to ab. This

means that two corresponding vertices of the two triangles rr′q′ and r∗r′∗q′∗ must coincide,
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and thus all three corresponding vertices coincide, given the definition of the points with an

asterisk. Thus also p′ = p′∗ = %ab(p).

�
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