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Without going out-of-doors,

one may know all under heaven;
Without peering through windows,
one may know the Way of heaven.
Lao Tzu, Tao Te Ching

ABSTRACT

For several characterizations of geometric transformations — which state that a map, which satisfies
certain conditions like injectivity, surjectivity, bijectivity and preserves certain geometric notions ~;,
must preserve another notion v as well —~ we provide the definitional counterpart,. i.e. a definition
that satisfies certain syntactic constraints of the notion v in terms of the notions +;.

2000 MSC: 51IM0S5 51B10 03C40

1. The basis for our logical reformulations of characterizations of geometric
transformations under mild hypotheses is the following'

Theorem 1 (Lyndon [11]; Keisler [9, Corollary 1.4a]). Let L be a first order lan-
guage containing a sign for an identically false formula, T be a theory in L, and
¢(X) be an L-formula in the free variables X = (X),...,X,). Then the following
assertions are equivalent:

' thank Lou van den Dries for referring me to [9].
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(1) there is a positive existential (positive existential, but negated equality is
allowed, positive) L~formula ¥(X) such that T F p(X) « ¥(X);
(ii) for any U,B € Mod(T), and each homomorphism (monomorphism; epi-
morphism) [ : A — B, the following condition is satisfied:
ifc e A and A E ¢(c), then BE o(f(c)).

The validity of characterizations of geometric transformations under mild hy-
potheses can be thus seen inside the geometric theory itself, it is an intrinsic
property, for which one need not make any reference to maps of models of that
theory.

We start with the following

Theorem 2 (Kestelman [10]). Let V be a real pre-Hilbert space of dimension > 2
andf : V. — V be a map that preserves orthogonality. Then f is a similarity.

This theorem says that mappings that preserve orthogonality must preserve
equidistance, collinearity, and ratios as well. But ratios are not a first-order
notion (given three points p, g and rin ¥, such thatr = (1 — A)p + Aq, A is said
to be a ratio of p, q and r), so we should not expect that they will be preserved.
In fact, the preservation of ratios is a consequence of the Archimedeanity of the
ordered field of real numbers, and Archimedeanity is again not a first-order
notion. The most general spaces that we may replace V with and still reach the
conclusion that f preserves equidistance and collinearity are Euclidean spaces
as defined and axiomatized in [13]. V is a vector space over a commutative field
K of characteristic # 2, withdim V' > 2, g : V' — K a quadratic form such that
g(v) = 0if and only if v = 0, and 3 the associated symmetric bilinear form, i.e.
q(v) = B(v,v). The points p, q and r from V are collinear, a relation to be de-
noted by L(pgr), if p=q or r = (1 — A)p + A\q for some X € K; the pairs of
points (a, b) and (¢, d) are equidistant (or the segment ab is congruent to segment
cd), a relation to be denoted by ab = cd, if and only if g(a — b) = g(c — d); and
ab is perpendicular to ac, to be denoted by ab L ac if and only if a, b, and ¢ are
different and 3(b — a,¢ — a) = 0. The proof given in [10] remains unchanged in
this more general situation, and allows us to conclude that f preserves L and =.
Let 7, be the theory axiomatized in [13], formulated inside the language L;—,
(the first order language with one sort of variables, for ‘points’ and with L, =,
and L1 as primitive notions), all of whose models are the #-dimensional Eu-
clidean spaces defined above. The definitional counterpart of the generalized
version of Theorem 2 was given by D. Scott [15] (cf. also [14]), who proved that
the midpoint operation M (abc) (to be interpreted as ‘b is the midpoint of ac’)
can be defined by an existential fromula in L :

Mxyz): o [(y=xAy=2z)V (3uv) (ux LuzAvx LvzAxu L xv

1
M ANzu LzvAyx LyuAyx LyvAyz L yuAyz L pv)],

and Pieri’s I (I(abc) stands for ab = ac) by:
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(2) I(xyz) : & [y =2V M(yxz) v (Iw) (M (ywz) Awx L wy Awx L wz)),

thus equidistance is positively existentially definable in L, by the following
definition

(3) ab = cd: — (3uv) M(aud) N M(cuv) A\ I{abv).

It is now easy to see that, for every n > 2, collinearity is positively definable in
L. Forn =2 we have

(4) L{abc) : < (Fuv)uv LuaAuv L ubAuv L uc,

whereas for higher dimensions we can express positively existentially that
ai,...any lie in a hyperplane, by the formula

H(ay...am): « (Juy) /\ uv | ua,
i=1

and thus can succesively lower the dimension until we get to the 2-dimensional
case, and use inside it (4) to express the collinearity of g, b, c. It is an open pro-
blem whether L can be be positively existentially defined in terms of L in di-
mension-free Euclidean planes, i.e. if there is a positive existential definition of
Lin terms of L valid in Ny >27,.

2. Wenowlook attheorems characterizing maps that preserve circles, with the
aim of finding the most general framework in which they remain valid, and to find
an intrinsic, intra-theoretical expression of these theorems. We begin with

Theorem 3 (Gardner, Mauldin [7, Theorem 18]). Let H be areal Hilbert space of
dimension > 2 and f : H — H be a bijection that maps circles onto circles. Then f
is a similarity.

Again, the fact that f preserves ratios is a consequence of Archimedeanity,
thus, if we formulate this theorem in its entire generality, as one about maps of
Euclidean spaces, then all we can expect of f is that it preserves orthogonality,
for then the generalized version of Theorem 2 allows us to conclude that f
preserves = and, in the finite-dimensional case, L as well. In Euclidean spaces,
by circles we understand sets of points x that lie in a plane 7 such that ox = oa
for some fixed distinct points o and a. Concyclicity, a quaternary predicate C,
with C(abcd) to be read as ‘a,b,c,d are four different concyclic points’, is a
covenient way to express the notion of a circle in a first-order language with
points as variables. The condition that / maps circles onto circles may be ex-
pressed in three different ways. First, it may be expressed as ‘f preserves the
concyclicity and nonconcyclicity of four distinct points, i.e. C and ~C’. To see
that the hypotheses of the above theorem do imply the preservation of non-
concyclicity, let a,b,c¢,d be four distinct points with —C(abed). If among
a, b, ¢, d there are three noncollinear points, then there is a circle, whose point-
set we denote by K, passing through them. Its image under f, f(K) has to be the
point-set of a circle, so the image under f of the fourth point, the one not in X,
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cannot be in f(K), since f is injective. If the points a, b, ¢,d are different and
collinear, then let K be the pointset of a circle which passes through a and b.
Then f(K) is a the pointset of a circle which passes through f(a) and f(b).
Suppose that f(a), f(b), f(c), and f(d) are concyclic, and let K’ denote the
pointset of that circle. Since f is injective, f(K) # K'. Let p be the intersection
of the tangent in f(a) to f(K) with K’, and let z be any point in
K'\ {p, f(a),f(b)}. Then the line joining f(a) and z has a second intersection
point with f(K), say « Since f is surjective, there is an x € K and a y on the
line ab with f(x) = u and f(y} = z (¥ has to be on ab, since otherwise there
would exist a circle G passing through a, b, y, and f(G) # K', thus
f(G)YNK ={f(a),f(b)}, thus f(y) would not be in f(G) N K', contradiction).
Since both x and y are different from a and from b, by the injectivity of £, a, x, y
are three different noncollinear points, so their images, f(a), u, z should lie on
a circle, which is impossible, since these points are collinear.

For n = 2, a stronger version of Theorem 3, in which f is required to preserve
only C, was proved in [2].

Other two ways to express this theorem may be obtained in a two-sorted
language L;,, with lower-case variables for ‘points’ and upper-case variables
for ‘circles’, and a binary relation of incidence between points and circles, 1,
with pIK to be read as ‘pis incident with K, and the ternary relation L among
points that we have already encountered. One of these two versions asks f to
preserve I and —I, the other to preserve I and circle inequality, both of which
are easily seen to follow from the condition that f map circles onto circles and
be one-to-one.

Theorem 4. Let IR, N be Euclidean spaces of dimensionn > 2, andf : M — N a
surjective map that satsifies one of the following conditions:
(i) f preserves C and —C,
(i1) f preserves 1, -L, and # between point variables,
(i) f preserves 1 and # between both point and circle variables.
Then f also preserves L (orthogonality), thus = and, if n is finite, L as well. For
n = 2 the same conclusion holds with (1) or (ii) weakened to
(i) f preserves C,
(i)’ f preserves 1 and # between point variables.

Proof. Suppose f satisfies (). According to Theorem 1 we have to define L in
terms of C. Checking that the following is a definition of L in terms of C and L
(regardless of dimension) is a simple exercise in linear algebra (see Fig. 1).

ab i ac: — (Imnp) L(bmp) A L{cap) A L(cnm) A L(anb) A C(acbm)
A C{anmp).

(5)
That L may be defined in terms of C is readily seen from
L{abc) : — (Vd) -~C(abcd).
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Figure 1: Definition of ab 1 ac

Suppose n = 2 and (i)’ holds. We need to show that L may be defined positively
in terms of C, and

Laazas) : = (3x1)(3x)(I1)(32)(v0)E3a)(3) \ @ = @
i£j

2 2
V| Claaxixs) J\ Claasxiys) A (p =a V Claapq) v ( A C(alx,-pqi)))}

i=1 i=1

is such a definition, which states that, in case @), a,, a3 are all different, there are
two points x; and x2, not on the line asaj, not collinear with a;, such that any
point p, different from a,, which is on the line a,a;, cannot be on any one of the
lines a; x; or ayxy, i.e. that a; is the intersection point of aya3 and both a;x; and
a1 xz. This clearly holds if a;, a3, a; are collinear, and does not hold otherwise,
since aas must intersect one of the lines a;x; and a;x; (as only one of them
could be parallel to asas), and the intersection point is not «;.

Suppose that f satisfies (ii). One can readily translate the definition (5) of L
in Ly, by replacing every occurrence of C{xyuv) with (3K) # (xyuv)
A (x,y,u, vIK) (with different K for different quadruples (x, y, u, v)).? Therefore,
to show that f preserves L we need to show that L is definable in terms of I,
without using # between circle variables. Such a definition is:

Lipgr): = p=gqVgqg=rVr=pV ¥K)(¥x)(3K') (p,q,xIK) — x

(6) =pV(q,r xIK').

It states that three different points p, ¢, r are collinear if and only if for all circles
K through p and g, the only points on K which may be collinear with g and r are

SisllSis

(ai,...,a.1Ky,...Ky), and # (a1,...,a,) stands for Ai#j a; # aj.
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p and g (the noncollinearity of three points is equivalent to the existence of a
circle through them).

In case f satisfies (iti) the desired result follows from the positive definabihity
of =l in terms of I and # between point and circle variables, with definition

(1) -xIK: e GK)E)E) K # KA # (p.4,%) A 9,4, XIK') A (p, gIK).

It states that x is not on X if and only if there is a circle K’, different from X, that
passes through x and intersects K in two points p and g, both different from x.

By replacing every occurence of —I in the definiens of (7) (after rephrasing it
without the use of —) by the definiens of (8) corresponding to it, we obtain a
definition of L, positive in I, but which contains # between both point and cir-
cle variables.

To prove that f satisfying (ii)’ preserves L as well, all we need to show is that
L is positively definable in terms of I, with negated equality allowed. Such a
definition is

L{ayazas) = —(3x1)(3%2)(3G1)(3G2) (Vp)(AL1)(3Lo) \/ @i = g
i#)

2
v [# (.X1,XZ,611,612,613) A (al,X1,X21K) /\(a2aa3ainGf)

i=1

ANp=arV(p#aAp#a3A(a,as3,plly)

2
V(A @, xpIL))]. H
i=1

A definition of L in terms of I, valid in Euclidean planes, without imposing any
syntactical constraints on the definiens, was given in [12, Theorem 2].

Corollary. The quaternary relation C may serve, in a first-order language with
only one sort of variables, to be interpreted as ‘points’, as the only primitive notion
for axiomatizing Euclidean spaces of finite dimension > 2. These may also be
axiomatized in a language with two sorts of individuals, for ‘points’ and circles,
using the binary relation L.

A like-minded result on maps preserving circles is the following

Theorem 5 (Carathéodory [5]). Letf : R? — R*bean injection that maps circles
onto circles. Then fis a similarity.

An intrinsic expression for this theorem may be formulated in Ly, . If f is an
injection between two Euclidean spaces of dimension 2 that maps circles onto
circles, then f ought to preserve L as well. The condition that f be ‘surjective on
circles’ translates into the syntactic constraint on the formula that should de-
fine L in terms of I that requires it to be an existential formula with negated
equality between points and ‘bounded universal quantification’ over points al-
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lowed (we abbreviate this syntactic constraint as b.u.e.). By bounded universal
quantification over points we understand quantifications of the type
(Vp) pIK — ¢, for which we write (in analogy to set theory or arithmetic)
(¥pIK) . To prove that 1 is b.u.e.-definable in terms of I, all we need do is to
show that collinearity of points, L, is b.u.e.-definable in terms of I, since we can
get an existential definition of 1 in terms of L and I (thus a b.u.e. definition in
terms of I) by eliminating C from the definiens in (5) as indicated in the proof of
Theorem 4. The desired definition of L is:

L(pipaps) : < \[ pi = p; V [(3K1)(3K2) K1 # Ko A (p1,p21K0, Ka)
i#j

/\ (VXIK))(3L)x # p3 A (x = p1 V (12, p3, %1L))).

It states that three different points py, py, p3 are collinear if and only if there
exist two different circles K; and X, through p; and p;, not passing through ps,
such that every point x, different from p; and p,, on one of these two circles is
not on the line p,p3 (where the noncollinearity of three points is again expressed
by the existence of a circle through them). If py, ps, p3 were not collinear, then
the line pyp; could be tangent to at most one of the two circles X and K3, and
thus would have to intersect at least one of the circles in a point x that is dif-
ferent from p;. No circle would pass through p,, ps3, x.

Since we have used the negation of equality among circles in this definition,
we need to show that K; # K5 is b.u.e-definable. The definition is:

2
K #K) (Elalaz)(‘v’xllKl)(‘v’leKz) \/ (X1 =a;A\NXxy = a,-) V X| # X3.

i=1

The model theoretic counterpart of the theorem we proved syntactically is:

Theorem 6. Let MM, N be Euclidean spaces of dimension 2, and f : I — N be an
injection (i.e. it preserves # between points) that preserves incidence, 1, and such
that [\ is surjective for all circles K. Then f must preserve L and 1 as well.

The last theorem, which we state in its most general form, and whose logical
counterpart we express is:

Theorem 7 (Carathéodory [5]; Aczél, McKiernan [1]). Let f : C — C be a one-
to-one map that maps circles (real circles or lines) onto circles (real circles or
lines). Then f is either a Mdbius transformation or a conjugate Mdbius transfor-
mation.

The elementary content, i.e. the purely geometric content, that does not depend

on topological properties or the Archimedeanity of R, of this theorem amounts
to:
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Theorem 8. Let N, N be models of Miquelian Mdbius geometry with fields of
characteristic # 2, f : I — N be a mapping which is one-to-one on both points
and circles, and which preserves incidence. Then | preserves circle-orthogonality
as well.

This theorem is a generalization of Theorem 7 in a different sense as well: we no
longer require that the map f be onto on circles, but just that it map different
circles into different circles.

An axiom system for Miquelian Mobius planes in terms of point-circle in-
cidence can be found in [3, p. 205f], and the van der Waerden and Smid rep-
resentation theorem is proved for them in [3, Satz II1.2.1]. It is shown in [3, Satz
I11.6.3] that for Miquelian Mdbius planes of characteristic # 2 there is a unique
orthogonality relation satisfying three natural orthogonality axioms, (OI),
(OII), (OIII). In logical terms, this amounts to the implicit definability of circle-
orthogonality (which we denote by _L.) in models of the theory of Miquelian
Maobius planes of characteristic # 2. Let M denote the theory of Miquelian
Mobius planes of characteristic # 2 with the orthogonality axioms (OI), (OII),
(OIII). By the Beth definability theorem ([4], [8, Theorem 6.6.4]) implicit de-
finabilty of L is equivalent with the explicit definability of L. in terms of I, the
definition being valid in M. The syntactic counterpart of Theorem 8 is a
stronger result than plain explicit definability of L, for it states the existence of
a definition of L, by a positive existential sentence in terms of point-circle in-
cidence, in which negated equality is allowed for both points and circles. The
definition that proves Theorem 8 is (see Fig. 2):

Figure 2: Definition of K| 1, K;
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Ky Le Ky 2 o (3a)(35)(3c)(3m)(In)(3p) (3)(AV)(IV)(3X)(3Y) K # K,
N # (abemnpg) N # (UVXY) A (1K, K5, U, V)
A (a,b,nIK1) A (a, c, pIK>) A (e,m,nLU) A (b, m, pI V)
A(a,b,e,mlX) A (a,m,n,plY).

(8)

To see that this sentence holds in M, notice that it is a rephrasing of (5) in the
context of Mobius geometry. To prove —, notice that if K; L. K, then, by
(OII), K, and K; have exactly 2 points in common, say @ and q. There is a Mo-
bius transformation that maps g into co. With g = oo, K} and K5 become lines,
if we ignore the point oo and consider them as lying in the Euclidean plane from
which the Mobius plane was obtained by adjoining oo, and (8) becomes (5),
which is valid, and since Mobius transformations preserve all the notions in-
volved, so is (8). To prove — we apply again a Mdbius transformation mapping
g to oc, and argue analogously.

So far, the only explicit definition of circle perpendicularity that I am aware
of in the literature goes back to {6, p. 465], where it is shown to be valid in a
Mobius geometry provided with a richer structure:

Ki 1. Ky: o K # K A (Fa)(3B)(3e)(3U)(IV) a # b A (a,b1K), K7)
NIKy AT(a, U, K) AT(b, VK A1(c, U, V)

where 7(a, K, L) stands for ‘a is the point of tangency of the circles K and L,
which requires bounded universal quantification when expressed in terms of I,
such as in

m(a, K, L) : & (alK, L) A (VXIK)(WyIL)x #yV x = a.

Notice that we have used Theorem 1 to provide the syntactic equivalent for the
theorems above, although we have not assumed that the corresponding lan-
guages contain a sign for an identically false formula. That one does not need
such an assumption follows from the fact that (3a) aa L aa, (3a) C(aaaa), and
(Ix) x # x, may serve as such identically false formulas for the theories dealt
with in Theorems 2, 4 (i) or (i)', and 4 (i1) or (ii)’ or (iii) or 6 or 8 respectively.
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