VICTOR PAMBUCCIAN Groups and Plane
Geometry

Abstract. We show that the first-order theory of a large class of plane geometries and
the first-order theory of their groups of motions, understood both as groups with a unary
predicate singling out line-reflections, and as groups acting on sets, are mutually inter-
pretable.
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1. Introduction

Klein’s Erlanger Programm established a connection between geometries and
their groups of transformations and gave rise to the belief that the group
somehow carries the same information as the geometry itself. This is by
no means the case with arbitrary structures, which can even be rigid, i. e.
have trivial automorphism group. The extent to which it is possible, for
complete theories satisfying certain properties, to recover the structure of
a model from its automorphism group has been analysed in [2]. The belief
that knowledge of the group of automorphisms enables one to recover the
geometry that group emerged from is undoubtedly strengthened by the size
of the automorphism groups geometries usually have.

We shall establish in this paper that, in a very precise sense, for the class
of Bachmann’s non-elliptic metric planes — which is a class significantly
larger than that of plane absolute geometry — the first-order theories of
the group of automorphisms, of the underlying geometric structure, and of
the group of automorphisms, as a group acting on the set of points of the
geometric structure, are mutually interpretable.

It was shown in [12] that, in the Euclidean case over real closed fields,
the theories of the group of automorphisms and of the underlying geometry
are mutually interpretable. The present paper can be seen as an extension of
that result to both a wider class of geometries and a larger class of theories
under comparison. Similar investigations on the mutual interpretability of
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2 Victor Pambuccian

the group of automorphisms and the corresponding geometric structure can
be found in [9] and [10].

2. Non-elliptic metric planes in group-theoretic presentation

We shall first present non-elliptic metric planes as they appear in [1]. Our
language will be a one-sorted one, with variables to be interpreted as ‘rigid
motions’, containing a unary predicate symbol G, with G(z) to be inter-
preted as ‘x is a line-reflection’, a constant symbol 1, to be interpreted as
‘the identity’, and a binary operation o, with o(a, b), which we shall write as
a o b, to be interpreted as ‘the composition of a with b’.

To improve the readability of the axioms, we introduce the following
abbreviations:

2

a® & aoa,
ug) = g#1ng* =1,
alb = G(a) NG() Ai(aob),
J(abc) = ((aob)oc),
pgla = plg AGla) A J(pga).

The axioms are (we omit universal quantifiers whenever the axioms are
universal sentences):

B 1. (aob)oc=ao(boc),

B 2. (Ya)(3b)boa = 1,

B3. loa=a,

B 4. G(a) — t(a),

B 5. G(a) NG(b) — G(ao (boa)),

B 6. (Vabed)(3g) alb A c|d — G(g) A J(abg) A J(cdg),
B 7. ablg Aedlg ANablh Aedlh — (g=hVaob=cod),
B 8. Ay palai — G(ay o (a2 0 ag)),

B 9. ALy glai — Glar o (a2 0 as)),

B 10. (3ghj) glh A G(5) A =jlg A =gk A =T (Ggh),
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B 11. (Vz)(3ghj) G(g) NG(h) NG(j) AN(z =gohVz=go(hoj)),
B 12. G(a) NG(b) ANG(c) —ao(boc) # 1.

Since a o b with alb represents a point-reflection, we may think of an
unordered pair (a,b) with a|b as a point, an element a with G(a) as a line,
two lines a and b for which a|b as a pair of perpendicular lines, and say that
a point (p, q) is incident with the line a if pgla. With these figures of speech
in mind, the above axioms make the following statements: B1, B2, and B3
are the group axioms for the operation o; B4 states that line-reflections are
involutions; B5 states the invariance of the set of line-reflections, B6 states
that any two points can be joined by a line, which is unique according to B7
(we shall denote the line joining the points (a,b) and (¢, d) by ((a,b), (¢,d)));
B8 and B9 state that the composition of three reflections in lines that have
a common point or a common perpendicular is a line-reflection; B10 states
that there are three lines g, h, 7 such that g are h are perpendicular, but j
is perpendicular to neither g nor h, nor does it go through the intersection
point of g and h; B11 states that every motion is the composition of two
or three line-reflections, and B12 states that the composition of three line-
reflections is never the identity. The function of the last axiom, B12, is to
exclude elliptic geometries, and thus to ensure that the perpendicular from
a point not on a line to that line is unique. The theory of non-elliptic metric
planes, axiomatized by {B1-B12}, will be denoted by B.

According to [1, S3,4], there is, for every point (a,b) and line [, a unique
line h through (a, b) which is perpendicular to [ (i. e. such that ab|h and [|h),
which will be denoted by (a,b) L I.

3. Non-elliptic metric planes in terms of group actions

Another language in which one can express a theory equivalent to that of
group-theoretically expressed non-elliptic metric planes is a two-sorted lan-
guage, with uppercase variables for points and lowercase variables for rigid
motions, and a binary operation -, the first argument of which is a rigid mo-
tion, the second argument a point, and whose value is a point. The intended
interpretation of -(g, A), which will be written as g - A, is ‘the action of g on
A’ (see e. g. [5] for geometries defined by groups acting on sets).

Such an axiomatization was presented in [3].

For improved readability of the axioms we shall use the following abbre-
viations: 1 stands for the motion which satisfies

(VP)1-P = P;
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a o b stands for the motion satisfying
(VP)(aob)-P=a-(b-P);

any equality a = b or negated equality a # b between motions, in which o
or 1 appears in a or b is understood as standing for (VP)a-P =b- P, or, in
the negated case, for (3P)a- P # b- P. Since we use the abbreviation o, we
may also use ¢«. We now define unary predicates characterizing rigid motions
as proper rotation (g), point-reflections (), and line reflections (o).

o(a) =& (@P)(VP)(a-P=PA(a-P' =P — P =P)),

w(a) = o(a) Ala),

ola) = (@APQ)a#1ANP#QNa-P=PAa-Q=Q.

The axioms are:
M 1. (Vab)(3P)a-P #b-PVa=b,

M 2. (Vab)(3c)aob =c,

M 3. (Va)(Fb)aob =1,

M 4. (3AB)A # B,

M 5. (VAB)(39)A#B —-g#1Ng-A=ANg-B =B,
M 6. o(a) Ao(b) — —o(aob),

M 7. o(a) A o(b) — —o(aob),

M 8. (Va)(3P)i(a) — a- P =P,

)
M 9. 7(a) A7(b) — —m(aob),
M 10. (VaAB)(3bP)a-A=B —b-P=PAb-A=DB,
M 11. o(a) Ao(b) Ao(c) — —m((aob)oc).

Axiom M1 states that two motions a and b, with a - P = b - P for all
P, must coincide, M2 states that there is a motion ¢ whose action is that of
a o b, M3 states the existence of an inverse for any given rigid motion, M4
that there are two different points, M5 that for any pair of different points
there is a rigid motion which fixes both but is not the identity, M6 and M7
that the composition of two line-reflections or proper rotations is never a
line-reflection, M8 that any involutory rigid motion has a fixpoint, M9 that
the composition of two point-reflections is never a point-reflection, M10 that
if A can be mapped into B by means of a rigid motion, then this can also
be accomplished by means of a rigid motion which has a fixpoint, and M11
that the composition of three line-reflections is never a point-reflection.

The theory axiomatized by M1-M11 will be denoted by M.
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4. Non-elliptic metric planes as a theory of geometric
constructions

Non-elliptic metric planes can also be axiomatized in the traditions of both
synthetic geometry and geometric constructions.

The language contains only one sort of individual variables, to be inter-
preted as points, and two ternary operation symbols, F' and 7. F'(abc) is the
foot of the perpendicular from c to the line ab, if a # b, and a itself if a = b,
and 7(abc) is the fourth reflection point whenever a, b, ¢ are collinear points
with a # b and b # ¢, or a = b = ¢, and arbitrary otherwise. By ‘fourth
reflection point’ we mean the following: if we designate by o, the mapping
defined by o, (y) = o(xy), where o(xy) stands for the reflection of y in the
point z, then, if a,b, ¢ are three collinear points, by [1, S3,9, Satz 24b], the
composition o.0p04, is the reflection in a point, which lies on the same line
as a,b,c. That point is called the fourth reflection point corresponding to
the triple (a, b, c), and is denoted by m(abc).

For improved readability we shall use the following abbreviations:

o(ab) = mn(aba),
R(abe) = o(F(abc)c),
L(abc) :— F(abc)=cVa=Db,

where o has the same meaning as above, R(abc) stands for the reflection of ¢
in ab (a line if a # b, the point a if a = b), and L(abc) stands for ‘the points
a, b, ¢ are collinear (but not necessarily distinct)’.

The axiom system consists of the following axioms:

C 1. F(aab) = a,

C 2. o(aa) = a,
C 3. o(ao(ab)) = b,

C 4. o(az) = o(bx) — a = b,

C 5. L(aba),

C 6. L(abe) — L(cba) A L(bac),
C 7. L(abo(ab)),

C 8. L(abF(abc)),
C9. a#bA F(abx) = F(aby) — L(zyF (abx)),
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C10. a #bAc#dA Flabe) = ¢ A Flabd) = d — F(abz) = F(cdz),
C 11. —L(abx) A F(zF(abx)y) = y — F(abx) = F(aby),

C12. a#bAacA Flabe) = a — Flach) = a,

C13. a#x Az #yAFlary) =z — Flao(az)o(ay)) = o(az),

C 14. o(o(za)o(zb)) = o(zo(abd)),

C15. u#vAabA Flabe) = a — F(R(uwva)R(uvh)R(uve)) = R(wva),
C 16. ~L(oab) A ~L(ob g

¢) — o(F(xR(ocR(0bR(0ax)))o)x)
= R(ocR(0bR(oax))),

)

C 17. = L(oab) A =L(obc) A o(mz) = R(ocR(0bR(oax)))
Ao (ny) = R(ocR(obR(oay))) — L(omn),

C18. a#bANb#cANF(abc)=cNha#ad Nb#£V Ne#
AF(aba') =a N\ F(bab') =bA F(cbd) = ¢
— o(F(zR(cd R(bY R(ad'x)))w(abe))z) = R(cc' R(bY R(ad'z)))
AF(m(abe)eF (xR(cc R(bY R(ad'x)))w(abe))) = w(abe),

C 19. (Jabc) —L(abc).

The axioms make the following statements: C1 defines the value of
F(abc) when a = b — it is an axiom with no geometric function (we could
have opted to leave it undefined, but that would have lengthened the state-
ments of the axioms C16 and C18); C2: the point a is a fixed point of the
reflection o,, C3: reflections in points are involutory transformations (or the
identity); C4: reflections of a point in two different points do not coincide;
C5: a lies on the line determined by a and b; C6: collinearity of three points
is a symmetric relation; C7: the reflection of b in «a is collinear with a and
b; C8: for a # b, the foot of the perpendicular from ¢ to the line ab lies
on that line; C9 states the uniqueness of the perpendicular to the line ab in
the point F'(abx); C10: the foot of the perpendicular from z to the line ab
does not depend on the particular choice of points a and b that determine
the line ab; C11: if z is a point outside of the line ab, and y is a point on
the perpendicular from x to ab, then the feet of the perpendiculars of 2 and
y to the line ab coincide; C12 states that perpendicularity is a symmetric
relation (if ca is perpendicular to ab, then ba is perpendicular to ac); C13:
if yx is perpendicular to za, the so are o,(y)o,(z) and o4(z)a; C14 states
a certain preservation of the operation ¢ under reflections in points; C15:
reflections in lines preserve the orthogonality relation; C16 and C17 together
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state the three reflections theorem for lines having a point in common; C18
is the three reflections theorem for lines having a common perpendicular;
C19: there are three non-collinear points.

The theory axiomatized by C1-C19 will be denoted by C.

Another first-order axiomatization for non-elliptic metric planes, with
one sort of variables for lines, and a binary operation p, with o(a,b) to be
interpreted as ‘the reflection of line b in line a’, which follows very closely
Bachmann’s axiom system for B has been provided in [8].

5. Mutual interpretability

To show that the theories B, M, and C are mutually interpretable, we shall
use the notion of mutual interpretability for theories with different intended
interpretations of the individual variables presented in [13], [6], [11].

To translate from C to B, we define a point to a be a pair (g, h) of line-
reflections satisfying g|h, and we define an equivalence notion among such
pairs (to be treated as point-equality) by

(9.h) = (¢, W)= goh=g okl

The operations F' and 7 are defined on these pairs of line-reflections as
follows (the definition given below for F' is valid only for (a,a’) # (b,V'); in
case (a,a’) = (b,b), F((a,d’),(b,V),(c,)) is defined as (a,a’)):

({(a,a’), (b,1)), (¢, ') L ((a,a’), (b,1))),
(g,co(boa)).

F((a,a"), (b)), (c,c)) :

=
7((g,a),(9,0),(g:0)) : &
It is easy to verify that with these definitions, F' and m do satisfy the
axioms of C.
To translate in the opposite direction, from B to C, we first introduce
some abbreviations: I(xyz) & y = z V o(F(yzx)y) = z stands for ‘zy is
congruent to xz’. We define, for o(mb) #b', n := F(b'o(mb)a’) and

p = F(Ob'n(mF (mno(mb))n)). (1)

If I(a’t'oc(mb)), then n represents the midpoint of the segment o(mb)b’, and
p represents the midpoint of the segment bb’. That in a (possibly degenerate)
triangle, in which two sides have midpoints, the third side has a midpoint
as well, was proved in [1, S4,2, Satz 2 (Satz von der Mittellinie)], and it is
the construction from that proof that we have used to obtain p.
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We now define a rigid motion to be a 7-tuple (a,b,c,a’, V', ¢, m) with

=L(abc) A o(ma) = a’ A I(a'b/a(mb)) A I(a'do(me)) A ((o(mb) # b
ANV a(pe)) V (a(mb) =V ALY da(me)))).

Thus a rigid motion is defined by its action on a triangle abc, and the
definition states that a/b’c’ is a triangle that is congruent to abc, and that m
is the midpoint of aa’. That the segment having as endpoints a point and
its image under a rigid motion always has a midpoint in a metric plane was
proved in [1, S3,10, Satz 28|.

Let

Maba'b'xz') = (o(mb) =V A F(d'b2') = o(mF(abx))) V (o(mb) # b
AF(d'V'x') = R(d'R(o(mb)b a’)o(mF(abr))))

stand for ‘the distances to a and b of the foot F'(abx) of the perpendicular
from z to the line ab are equal to the corresponding distances to a’ and b’ of
the foot F'(a’b'z’) of the perpendicular of 2’ to the line a'b’.

We now introduce another abbreviation, x(abca’t'c'mxz’), standing for
‘2’ is the image of x under the rigid motion (a, b, c,a’,b',¢/,m)’, defined by

k(abca't'dmax’) = Naba'b'zx') A Macd' ' xz').

For every rigid motion (a,b,c,a’,b’,c’,;m) and every z there is exactly one
2’ such that x(abca’b'¢'maxz’) holds.

Two 7-tuples, (a;,b;, ¢;,al, b, c;,m;) for i = 1,2 represent the same rigid
motion, i. e. (ay,by,c1,a), by, cy,mi) = (ag,ba, ca,ab, by, ch,ma) if

X / N / N /
k(ar1bicraibicimyiagas) A k(arbicraibicimibaby) A k(a1bicraibicimycacs).

A rigid motion 7 := (a,b,c,a’, V', ¢, m) is a line-reflection, that is, G(r) holds,
if and only if

(m # p A F(mpc) = g A F(mpa) =m A F(mpb) = p)
V(m # q A F(mgc) = g A F(mga) = m A F(mgb) = p)
V(g # p A F(pge) = g A F(pga) = m A F(pgb) = p),

where p and ¢ denote the midpoints of bb’ and cc/, which are defined in
terms of a’,b,b',c,¢/,m as done for p in (1). The definition states that
(a,b,c,a’ b, ,m) is a line-reflection if and only if the midpoints m, p, ¢ of
aa’, bb', cc’ are not all equal, and a’, V/, ¢’ are reflections of a, b, ¢ in the line
determined by m,p, q.
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We are now left with the task of defining o for these 7-tuples. We start
with two 7-tuples (a,b,c,a’,b',¢,m) and (a’,V',c,z,y,z,n) and define

(a'7 b? C? al? bl? C/7 m) © (a/7 bl? C/7 x? y? Z’ n) = (a7 b’ C’ :L‘, y’ z7p)7

where p is the midpoint of ax, which exists by [1, S4,2, Satz 2|, given
that aa’ and @’z have midpoints, and can be determined as in (1). Now
(a,b,c,ad’ b, m)o(d,e, f,d' e, f',;m') is defined to be (a,b,c,a’,b',,m)o
(a0, ,x,y,2z,n), where (a',V/,c,x,y,z,n) is the T-tuple for which (d, e, f,
d,e,f'm")=(d,V,d,x,y,2,n). Here x,y, z were determined as the unique
solutions to k(defd'e' f'm'a’'z), k(defd'e' f'm'b'y), k(defde f'm'cz) and n
is the midpoint of a’z.

That all axioms of B are satisfied with these definitions is now a matter
of verification, for the most part accomplished in [7].

To translate from M to B, we define points in the same manner as
done in the translation from C to B, and, for P = (a,b) we define g - P as
(goaog ' gobog™t). The fact that all axioms of M are satisfied under
this translation has been proved in [3].

To translate from B to M we need only define the meaning of G in M
and the operation o for the rigid motions of M. The definitions are:

G(g) & (JABP)A#BANg-A=ANg-B=BAg-P#P,
goh=m & (VP)g-(h-P)=m-P.

That the axioms of B are satisfied under this translation was shown in [3].

6. Must line-reflections be singled out in B?

To the group-theoretic purist Bachmann’s axiom system for B suffers from a
major deficiency: it is not expressed in purely group-theoretical terms, as it
contains a unary predicate GG for singling out line-reflections. Did we actually
need G or could we have defined it in purely group-theoretical terms? The
positive answer is given in [1, p. 235]. In hyperbolic motion groups it is not
always possible to distinguish the two types of involutory elements, namely
point- and line-reflections. Hyperbolic motion groups satisfy besides the
axioms of B the axioms ~ V* and H from [1, S14,1], and they are isomorphic
to the group PGL(2, K) for some ordered field K. This group consists of
2 x 2 homogeneous matrices with nonzero determinant, and the involutory
elements of the group are represented by traceless 2x 2 homogeneous matrices
with nonzero determinant. The line-reflections are precisely those involutory
elements with negative determinant, and the point-reflections are those with
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positive determinant. Let K = Q(t), ordered such that ¢ turns out to be
‘infinitely large’, i. e. by defining (X1 a;t%)( ;L:lbjtj)_l to be > 0 if and
only if a;,b, > 0. We define an automorphism of PGL(2, K) by extending
the mapping t — t~! to an automorphism of the field K and then to an
automorphism ¢ of the group PGL(2, K). The homogeneous matrix

(1)

which represents a line-reflection, since an element of its determinant’s qua-
dratic class is 1 — t2, thus negative, gets mapped under ¢ into

. =1 -1
1 —t!

which represents a point-reflection, given that an element of its determi-
nant’s quadratic class is 1 — t~2, which is positive. By Padoa’s method, G
cannot be defined in terms of o in the case of hyperbolic motion groups, and
consequently G cannot be defined inside B either.

However, there are two special cases in which G can be defined in group-
theoretic terms: the case in which the metric is Euclidean, that is, in which
there exists a rectangle (axiom R in [1, S6,7]), i. e.

(Jabed) a # b A c# dAaleAaldAbleAbld,

and the case in which for every line there exists a line which has neither a
point nor a perpendicular in common with it. Given that, by [1, Satz 17],
involutions can be only line- or point-reflections, we can express this axiom
as follows

(V9)(3h)(Vp) G(g) — G(h) A ((p) — ~((pog) Ailpoh))). (2)

Axiom (2) is satisfied by plane hyperbolic geometry coordinatized by Eu-
clidean fields, but is weaker than the axiom H* of [1, S15,2], which together
with the axioms of B axiomatize plane hyperbolic geometry coordinatized
by Euclidean fields.

In the presence of axiom R postulating a FEuclidean metric, G can be
defined by

G(g) & (abe)i(g) A(a) Aeb)Alc) Na#£bANc#g
At(goa) ANi(gob) Ailcoa)Ai(cobd).
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This definition states that (i) g is an involution and that (ii) there are
a,b,c, with a # b and ¢ # g, such that a and b are common points or
perpendiculars to both ¢ and g. If ¢ were a point, then a and b would
have to be lines, and g would have to be their intersection point. Since a
and b cannot be perpendiculars from g to ¢, given the uniqueness of the
perpendicular from a point to a line, ¢ must be a point as well. However,
that is not possible either, for the lines a and b cannot have two different
points in common.

In the presence of axiom (2), G can be defined by

G(g) == (3h)(Vp) t(g) A t(h) A ((p) — =(e(p o g) Aulpoh))).

This definition states that (i) g is an involution and that (ii) there exists
an involution A, which has neither a common point nor a common perpen-
dicular with g. If g were a point, then regardless of whether h is a point or
a line, the definiens in the above definition would not be true, for if h were
a point, then the joining line (g, h) would furnish a p with «(pog) A(poh),
and if h were a line, then g L h, the line through ¢ perpendicular to h, would
furnish such a p. Thus g must be a line.
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