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Abstract

We axiomatize the class of groups generated by the point-reflections of a
metric plane with a non-Euclidean metric, the structure of which turns out to
be very rich compared to the Euclidean metric case, and state an open problem.

Mathematics Subject Classification: 51M05, 51M10, 51F15, 03B30.

1 Introduction

There is a very large literature on characterizations of groups of motions in terms of
line-reflections or hyperplane-reflections (see [1]), but relatively little about groups
generated by point-reflections. This subject has received some attention much later,
in [4], [5], [6] (and, in a different setting, with an added differential structure, in e. g.
[2] or [3]).

The purpose of this paper is to determine the theories of point-reflections that
one obtains from the groups of isometries of Bachmann’s metric planes.

If the metric plane is elliptic, i. e. if there are three line-reflections whose product
is the identity, then the point-reflections coincide with the line-reflections, so that
the axiom system of the group generated by point-reflections is identical to the one
expressed in terms of line-reflections. The interesting case is thus that of non-elliptic
metric planes.

2 Non-elliptic metric planes

2.1 Axiom system in terms of line-reflections

We shall first present non-elliptic metric planes as they appear in [1]. Our language
will be a one-sorted one, with variables to be interpreted as ‘rigid motions’, containing
a unary predicate symbol G, with G(x) to be interpreted as ‘x is a line-reflection’, a
constant symbol 1, to be interpreted as ‘the identity’, and a binary operation ◦, with
◦(a, b), which we shall write as a ◦ b, to be interpreted as ‘the composition of a with
b’.

To improve the readability of the axioms, we introduce the following abbrevia-
tions:
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a2 :⇔ a ◦ a,

ι(g) :⇔ g 6= 1 ∧ g2 = 1,

a|b :⇔ G(a) ∧G(b) ∧ ι(a ◦ b),

J(abc) :⇔ ι((a ◦ b) ◦ c),

pq|a :⇔ p|q ∧G(a) ∧ J(pqa).

The axioms are (we omit universal quantifiers whenever the axioms are universal
sentences):

B 1 (a ◦ b) ◦ c = a ◦ (b ◦ c)

B 2 (∀a)(∃b) b ◦ a = 1

B 3 1 ◦ a = a

B 4 G(a) → ι(a)

B 5 G(a) ∧G(b) → G(a ◦ (b ◦ a))

B 6 (∀abcd)(∃g) a|b ∧ c|d → G(g) ∧ J(abg) ∧ J(cdg)

B 7 ab|g ∧ cd|g ∧ ab|h ∧ cd|h → (g = h ∨ a ◦ b = c ◦ d)

B 8
∧

3

i=1
pq|ai → G(a1 ◦ (a2 ◦ a3))

B 9
∧

3

i=1
g|ai → G(a1 ◦ (a2 ◦ a3))

B 10 (∃ghj) g|h ∧G(j) ∧ ¬j|g ∧ ¬j|h ∧ ¬J(jgh)

B 11 (∀x)(∃ghj)G(g) ∧G(h) ∧G(j) ∧ (x = g ◦ h ∨ x = g ◦ (h ◦ j))

B 12 G(a) ∧G(b) ∧G(c) → a ◦ (b ◦ c) 6= 1

Since a ◦ b with a|b represents a point-reflection, we may think of an unordered
pair (a, b) with a|b as a point, an element a with G(a) as a line, two lines a and b
for which a|b as a pair of perpendicular lines, and say that a point (p, q) is incident

with the line a if pq|a. With these figures of speech in mind, the above axioms make
the following statements: B1, B2, and B3 are the group axioms for the operation
◦; B4 states that line-reflections are involutions; B5 states the invariance of the set
of line-reflections, B6 states that any two points can be joined by a line, which is
unique according to B7 (we shall denote the line joining the points (a, b) and (c, d) by
〈(a, b), (c, d)〉); B8 and B9 state that the composition of three reflections in lines that
have a common point or a common perpendicular is a line-reflection; B10 states that
there are three lines g, h, j such that g are h are perpendicular, but j is perpendicular
to neither g nor h, nor does it go through the intersection point of g and h; B11 states
that every motion is the composition of two or three line-reflections, and B12 states
that the composition of three line-reflections is never the identity. The function of
the last axiom, B12, is to exclude elliptic geometries, and thus to ensure that the
perpendicular from a point not on a line to that line is unique. The theory of non-
elliptic metric planes, axiomatized by {B1−B12} will be denoted by B.
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2.2 Axiom system in terms of ternary geometric operations

The same class of models can also be axiomatized in the following manner: the
language L contains only one sort of individual variables, to be interpreted as ‘points’,
three individual constants a0, a1, a2, to be interpreted as three non-collinear points,
and two operation symbols, F and π. F (abc) is the foot of the perpendicular from c
to the line ab, if a 6= b, and a itself if a = b, and π(abc) is the fourth reflection point
whenever a, b, c are collinear points with a 6= b and b 6= c, and arbitrary otherwise.
By ‘fourth reflection point’ we mean the following: if we designate by σx the mapping
defined by σx(y) = σ(xy), i. e. the reflection of y in the point x, then, if a, b, c are
three collinear points, by [1, §3,9, Satz 24b], the composition (product) σcσbσa, is the
reflection in a point, which lies on the same line as a, b, c. That point is designated
by π(abc).

In order to formulate the axioms in a more readable way, we shall use the following
abbreviations:

σ(ab) := π(aba), (1)

R(abc) := σ(F (abc)c), (2)

L(abc) :↔ F (abc) = c ∨ a = b, (3)

where σ has the same meaning as above, R(abc) stands for the reflection of c in ab
(a line if a 6= b, the point a if a = b), and L(abc) stands for ‘the points a, b, c are
collinear (but not necessarily distinct)’.

The axiom system consists of the following axioms

C 1 F (aab) = a

C 2 σ(aa) = a

C 3 σ(aσ(ab)) = b

C 4 L(aba)

C 5 L(abc) → L(cba) ∧ L(bac)

C 6 L(abσ(ab))

C 7 L(abF (abc))

C 8 σ(ax) = σ(bx) → a = b

C 9 a 6= b ∧ F (abx) = F (aby) → L(xyF (abx))

C 10 a 6= b ∧ c 6= d ∧ F (abc) = c ∧ F (abd) = d → F (abx) = F (cdx)

C 11 ¬L(abx) ∧ F (xF (abx)y) = y → F (abx) = F (aby)

C 12 a 6= b ∧ a 6= c ∧ F (abc) = a → F (acb) = a

C 13 a 6= x ∧ x 6= y ∧ F (axy) = x → F (aσ(ax)σ(ay)) = σ(ax)
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C 14 σ(σ(xa)σ(xb)) = σ(xσ(ab))

C 15 u 6= v ∧ a 6= b ∧ F (abc) = a → F (R(uva)R(uvb)R(uvc)) = R(uva)

C 16 ¬L(oab) ∧ ¬L(obc) → σ(F (xR(ocR(obR(oax)))o)x) = R(ocR(obR(oax)))

C 17 ¬L(oab) ∧ ¬L(obc) ∧ σ(mx) = R(ocR(obR(oax)))
∧σ(ny) = R(ocR(obR(oay))) → L(omn)

C 18 a 6= b ∧ b 6= c ∧ F (abc) = c ∧ a 6= a′ ∧ b 6= b′ ∧ c 6= c′ ∧ F (aba′) = a ∧ F (bab′)
= b ∧ F (cbc′) = c → σ(F (xR(cc′R(bb′R(aa′x)))π(abc))x)

= R(cc′R(bb′R(aa′x))) ∧ F (π(abc)cF (xR(cc′R(bb′R(aa′x)))π(abc))) = π(abc)

C 19 ¬L(a0a1a2)

The axioms make the following statements: C1 defines the value of F (abc) when
a = b — it is an axiom with no geometric function (we could have opted to leave
it undefined, but that would have lengthened the statements of the axioms C16 and
C18); C2: the point a is a fixed point of the reflection σa, C3: reflections in points
are involutory transformations (or the identity); C8: reflections of a point in two
different points do not coincide; C4: a lies on the line determined by a and b; C5:
collinearity of three points is a symmetric relation; C6: the reflection of b in a is
collinear with a and b; C7: for a 6= b, the foot of the perpendicular from c to the
line ab lies on that line; C9 states the uniqueness of the perpendicular to the line ab
in the point F (abx); C10: the foot of the perpendicular from x to the line ab does
not depend on the particular choice of points a and b that determine the line ab;
C11: if x is a point outside of the line ab, and y is a point on the perpendicular from
x to ab, then the feet of the perpendiculars of x and y to the line ab coincide; C12
states that perpendicularity is a symmetric relation (if ca is perpendicular to ab, then
ba is perpendicular to ac); C13: if yx is perpendicular to xa, the so are σa(y)σa(x)
and σa(x)a; C14: reflections in points preserve midpoints; C15: reflections in lines
preserve the orthogonality relation; C16 and C17 together state the three reflections
theorem for lines having a point in common; C18 is the three reflections theorem for
lines having a common perpendicular; C19: a0, a1, a2 are three non-collinear points.
With Σ = {C1-C19}, we proved in [8] the following

Theorem 1 Σ is an axiom system for non-elliptic metric planes. In every model of

Σ, the operations F and π have the intended interpretations.

3 Axiom system for metric planes with non-Euclidean

metric in terms of point-reflections

We now turn to yet another axiomatization of non-elliptic metric planes with non-
Euclidean metric (i.e. in which there exists no rectangle), in terms of motions which
are products of point-reflections, the individual constant 1, and the binary operation
◦, with a ◦ b standing for the composition of the motions a and b. In case a is a
point-reflection, we will refer to a as a ‘point’ as well.
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Figure 1: The definition of perpendicularity in terms of σ

To improve the readability of the axioms we introduce the following abbreviations:

P (a) :⇔ a 6= 1 ∧ a ◦ a = 1

P (a1, . . . , an) :⇔

n∧

i=1

P (ai)

L(abc) :⇔ (a ◦ b) ◦ c = (c ◦ b) ◦ a

σ(ab) := (a ◦ b) ◦ a

ϕ(eabcd) :⇔ (¬L(abc) ∧ L(abd) ∧ L(cde) ∧ σ(eσ(bc)) = σ(σ(db)c))

∨(a 6= b ∧ L(abc) ∧ d = c) ∨ (a = b ∧ d = a)

π(abc) := c ◦ (b ◦ a)

%(eabcd) :⇔ ϕ(eabcu) ∧ d = σ(uc).

Here P (a) stands for ‘a is a point-reflection’, given that, in the group generated
by point-reflections the only involutory elements are the point-reflections themselves.
The subsequent abbreviations will be used only when all the variables that appear in
them are point-reflections. L(abc) stands for ‘a, b, c are collinear’; σ(ab) is the point
obtained by reflecting b in a; ϕ(eabcd) holds, in case a 6= b, if d is the foot of the
perpendicular from c to ab (as shown, for a, b, c not collinear in [9, Prop. 1] (e is
a point needed in this construction, see Fig. 1)) and, in case a = b, if d = a; and
%(eabcd) stands for ‘d is the reflection of c in the line ab if a 6= b or in point a if a = b.

The axioms for this axiom system are: B1, B2, B3, axiom P1, which ensures that,
whenever a, b, c are collinear points, π(abc) is a point as well, the axioms P2 and P3
stating the existence and uniqueness of the foot of the perpendicular from point c to
line ab, whenever c does not lie on the line ab, as well as P4-P14, which are slightly
changed variants of C8-C19.

P 1 P (a, b, c) → a ◦ b 6= c

P 2 (∀abc)(∃de)P (a, b, c) ∧ ¬L(abc) → P (e, d) ∧ ϕ(eabcd)
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P 3 P (a, b, c, d, e, d′ , e′) ∧ ¬L(abc) ∧ ϕ(eabcd) ∧ ϕ(e′abcd′) → d = d′

P 4 P (a, b, x) ∧ σ(ax) = σ(bx) → a = b

P 5 P (a, b, d, e, f, x, y) ∧ a 6= b ∧ ϕ(eabxd) ∧ ϕ(fabyd) → L(xyd)

P 6 P (a, b, c, d, e, f, u, v, x) ∧ a 6= b ∧ c 6= d ∧ L(abc) ∧ L(abd)
∧ϕ(eabxu) ∧ ϕ(fcdxv) → u = v

P 7 P (a, b, d, e, f, u, v, x) ∧ ¬L(abx) ∧ ϕ(eabxu) ∧ L(xyu) ∧ ϕ(fabyv) → u = v

P 8 P (a, b, c, x, y, u) ∧ ¬L(abc) ∧ ϕ(xabca) ∧ ϕ(yacbu) → u = a

P 9 P (a, e, f, u, x, y) ∧ ¬L(axy) ∧ ϕ(eaxyx) ∧ ϕ(faσ(ax)σ(ay)u) → u = σ(ax)

P 10 P (a, b, c, a′, b′, c′, e,m, n, p, q, u, v, x) ∧ ¬L(abc) ∧ ϕ(eabca) ∧ u 6= v
∧%(nuvaa′) ∧ %(puvbb′) ∧ %(quvcc′) ∧ ϕ(ma′b′c′x) → x = a′

P 11 P (o, a, b, c,m, n, p, q, x, y, z, u, v) ∧ ¬L(oab) ∧ ¬L(obc) ∧ %(moaxy) ∧ %(nobyz)
∧%(poczu) ∧ ϕ(qxuov) → σ(vx) = u

P 12 P (o, a, b, c,m, n, p,m′, n′, p′, x, y, z, u, x′, y′, z′, u′, t, t′) ∧ ¬L(oab) ∧ ¬L(obc)
∧%(moaxy) ∧ %(nobyz) ∧ %(poczu) ∧ %(m′oax′y′) ∧ %(n′oby′z′) ∧ %(p′ocz′u′)
∧σ(tx) = u ∧ σ(t′x′) = u′ → L(ott′)

P 13 P (a, b, c, a′, b′, c′,m, n, p, t, u, v, w, x, y, z, w, o, g)∧L(abc)∧¬L(aba′)∧¬L(bab′)
∧¬L(cbc′) ∧ ϕ(maba′a) ∧ ϕ(nbab′b) ∧ ϕ(pcbc′c) ∧ %(taa′xy) ∧ %(ubb′yz)
∧%(vcc′zw) ∧ ϕ(qxwπ(abc)o) ∧ ϕ(rπ(abc)cog) → σ(ox) = w ∧ g = π(abc)

P 14 (∃abc)P (a, b, c) ∧ ¬L(abc)

Finally, we need an axiom that lets us know that every rigid motion is a product of
point-reflections. We do not know whether every element of the subgroup generated
by point-reflections of the motion group G of a metric plane can be written as a
product of at most a certain fixed number of point-reflections (whereas we do know
that every element of G can be written as a product of at most three line-reflections).
Unless we establish that there is an upper bound on the number of point-reflections
needed (or that such an upper bound does not exist), we cannot determine the first-
order theory of the group generated by point-reflections (as it may be either (1) the
theory axiomatized by the axioms {B1 − B3,P1 − P14} in case there are, for every
natural number k, products of point-reflections that cannot be written as a product
of at most k point-reflections, or (2) the theory axiomatized by those axioms and
an axiom stating that every rigid motion is a product of at most k point-reflections,
should k be the least number with this property).1 What we can do is to determine
the Lω1ω-theory of point-reflections, i. e. to state that every rigid motion is a product
of an unspecified number of point-reflections as an infinite disjunction of first-order
formulas. The axiom thus is

1It was shown in [11] that, under additional assumptions, it is possible to write every product of
point-reflections as a product of at most 4 point-reflections, but no such reduction is known in the
general non-Euclidean metric case.
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P 15 (∀a)
∨
∞

n=1
(∃p1 . . . pn)P (p1, . . . , pn) ∧ a = p1 ◦ (. . . ◦ pn) . . .)

Let Π = {B1 − B3,P1 − P15}. Given that we can define F in terms of ϕ, given
that P2 and P3 ensure the existence and uniqueness of the value of F (abc) for c not
on ab, that C1-C7, C14 follow from our definitions of L, F and σ, and that the axioms
C8-C19 follow from their translations P4-P14 into our language, we deduce that in
every model of Π the individual variables x for which P (x) holds can be interpreted
as points, the defined notions F and π have the desired geometric interpretation, and
thus, that the resulting structure is a non-elliptic metric plane with non-Euclidean
metric (the metric cannot be Euclidean, given that, by P14 there are three non-
collinear points a, b, c, and by P2, P3, there is precisely one point d on the line ab for
which a point e with ϕ(eabcd) exists; had the metric been Euclidean, then all points
would have been “collinear” and for every point d on ab there would have been a
point e with ϕ(eabcd)).

Let M be a model of Π. We now associate to every element a ∈ M a mapping
of the set S of points, i. e. of those members x of the universe of M for which P (x)
holds, into itself, which we denote by ã and define by ã(x) := a ◦ x ◦ a−1. Note

that ã ◦ b = ã · b̃, where by · we have denoted the operation of composition of maps.
If a ∈ S, then ã(x) = σ(ax), so the set {ã : P (a)} generates a group G inside
Sym(S), which is precisely the group generated by the point-reflections of a non-
elliptic metric plane with non-Euclidean metric (given that we know that σ has the
desired interpretation). Given P15, the map˜defines an isomorphism of M onto G.
We have shown that

Theorem 2 Π is an Lω1ω-axiom system for the group generated by the point-reflections

of non-elliptic metric planes with non-Euclidean metric.

We now turn to metric planes whose metric is Euclidean, also called ‘metric-
Euclidean planes’.

4 Point-reflections in metric-Euclidean planes

If axiom R (“There exists a rectangle” (see [1, §6,7])) holds in a metric plane, i. e.

(∃abcd) a 6= b ∧ c 6= d ∧ a|c ∧ a|d ∧ b|c ∧ b|d,

is added to B, then the group generated by point-reflections can be described very
simply by means of B1-B3 and

E 1 (∃ab)P (a, b) ∧ a 6= b

E 2 P (a, b) ∧ a ◦ b = b ◦ a → a = b

E 3 (∀x)(∃ab)P (a, b) ∧ (x = a ∨ x = a ◦ b)

E 4 P (a, b, c) → P (a ◦ (b ◦ c))
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Let M be a model of B1-B3, E1-E4, let M be its universe, and let P = {m ∈
M : P (m)} be the set of points in M . We define on P × P an equivalence relation
∼ by (a, b) ∼ (c, d) if and only if a ◦ c = b ◦ d, and denote by [a, b] the equivalence
class of (a, b). Let G := P × P/ ∼. We define on G an addition operation + by
[a, b] + [c, d] := [a, b ◦ c ◦ d], which turns G into an Abelian group, as can be easily
checked. We fix a point o in P , and consider all elements in G written as [o, x] (notice
that [a, b] = [o, b◦(a◦o)]). Writing x for [o, x], we check that σ(ab) = 2a−b (i. e. that
[o, σ(ab)]+[o, b] = [o, a]+[o, a]). By E2 we know that G must satisfy 2x = 0 → x = 0.

Any metric-Euclidean plane can be embedded in a Gaussian plane associated with
the pair of fields (K,L), where K ⊂ L, [L : K] = 2 (a generalization of the Gauss
plane over (C,R), see [7]), the points being elements of L, and thus the algebraic
representation of point-reflections x̃ is given by x̃(y) = 2x − y and (x̃ · ỹ)(z) =
2(x − y) + z. Given that the only operations involved in the description of point-
reflections and their composition is + and −, every first-order sentence that is true
in all metric-Euclidean planes must hold over arbitrary Abelian groups which satisfy
2x = 0 → x = 0 as well. Thus

Theorem 3 {B1− B3,E1− E4} is an axiom system for the group generated by the

point-reflections of metric-Euclidean planes.

Related results have been proved in [10].
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[3] Á. Figula, K. Strambach, Affine extensions of loops, Abh. Math. Sem. Univ. Hamburg
74 (2004), 151–162

[4] E. Gabrieli, H. Karzel, Point reflection geometries, geometric K-loops and unitary ge-
ometries, Resultate Math. 32 (1997), 66–72.

[5] H. Karzel, A. Konrad, Reflection groups and K-loops, J. Geom. 52 (1995), 120–129.

[6] H. Karzel, H. Wefelscheid, A geometric construction of the K-loop of a hyperbolic space,
Geom. Dedicata 58 (1995), 227–236.

[7] V. Pambuccian, Fragments of Euclidean and hyperbolic geometry, Sci. Math. Jpn. 53
(2001), 361-400.

[8] V. Pambuccian, Constructive axiomatization of non-elliptic metric planes, Bull. Polish
Acad. Sci. Math. 51 (2003), 49–57.

[9] V. Pambuccian, Hyperbolic geometry in terms of point-reflections or of line-
orthogonality, Math. Pannon. 15 (2004), 241–258.

8
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