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Abstract

We axiomatize the class of groups generated by the point-reflections of a
metric plane with a non-Euclidean metric, the structure of which turns out to
be very rich compared to the Euclidean metric case, and state an open problem.
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1 Introduction

There is a very large literature on characterizations of groups of motions in terms of
line-reflections or hyperplane-reflections (see [1]), but relatively little about groups
generated by point-reflections. This subject has received some attention much later,
in [4], [5], [6] (and, in a different setting, with an added differential structure, in e. g.
[2] or [3]).

The purpose of this paper is to determine the theories of point-reflections that
one obtains from the groups of isometries of Bachmann’s metric planes.

If the metric plane is elliptic, i. e. if there are three line-reflections whose product
is the identity, then the point-reflections coincide with the line-reflections, so that
the axiom system of the group generated by point-reflections is identical to the one
expressed in terms of line-reflections. The interesting case is thus that of non-elliptic
metric planes.

2 Non-elliptic metric planes

2.1 Axiom system in terms of line-reflections

We shall first present non-elliptic metric planes as they appear in [1]. Our language
will be a one-sorted one, with variables to be interpreted as ‘rigid motions’, containing
a unary predicate symbol G, with G(x) to be interpreted as ‘x is a line-reflection’, a
constant symbol 1, to be interpreted as ‘the identity’, and a binary operation o, with
o(a, b), which we shall write as a o b, to be interpreted as ‘the composition of a with
b.

To improve the readability of the axioms, we introduce the following abbrevia-
tions:
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a® & aoa,
Wg) & g#1ng>=1,
alp = G(a) NG(b) Ai(aob),
J(abc) & ((aob)oc),

pqla & plg AGla) A J(pga).

The axioms are (we omit universal quantifiers whenever the axioms are universal
sentences):

B 1 (aob)oc=ao(boc)

B 2 (Va)(3b)boa =1

B3 loa=a

B 4 G(a) — (a)

B 5 G(a) NG(b) — G(ao (boa))

B 6 (Vabed)(3g) alb A c|d — G(g) A J(abg) A J(cdg)
B 7 ablg Aed|lg Aablh Acdlh — (9g=hVaob=cod)
B 8 A;_, pglai — G(ax o (az 0 a3))

B 9 AL, glai — G(a1 o (az 0 a3))

B 10 (3ghj) glh A G(5) A =jlg A=jlh A =T (Ggh)

B 11 (Vz)(3ghj) G(g) NG(h) NG(j) AN(x =gohVz=go(hoj))
B 12 G(a) NG(b) NG(c) — ao(boc) #1

Since a o b with a|b represents a point-reflection, we may think of an unordered
pair (a,b) with a|b as a point, an element a with G(a) as a line, two lines a and b
for which a|b as a pair of perpendicular lines, and say that a point (p, q) is incident
with the line a if pgla. With these figures of speech in mind, the above axioms make
the following statements: B1, B2, and B3 are the group axioms for the operation
o; B4 states that line-reflections are involutions; B5 states the invariance of the set
of line-reflections, B6 states that any two points can be joined by a line, which is
unique according to B7 (we shall denote the line joining the points (a, b) and (¢, d) by
((a,b), (c,d))); B8 and B9 state that the composition of three reflections in lines that
have a common point or a common perpendicular is a line-reflection; B10 states that
there are three lines g, h, j such that g are h are perpendicular, but j is perpendicular
to neither g nor h, nor does it go through the intersection point of g and h; B11 states
that every motion is the composition of two or three line-reflections, and B12 states
that the composition of three line-reflections is never the identity. The function of
the last axiom, B12, is to exclude elliptic geometries, and thus to ensure that the
perpendicular from a point not on a line to that line is unique. The theory of non-
elliptic metric planes, axiomatized by {B1 — B12} will be denoted by B.



2.2 Axiom system in terms of ternary geometric operations

The same class of models can also be axiomatized in the following manner: the
language £ contains only one sort of individual variables, to be interpreted as ‘points’,
three individual constants ag, a1, az, to be interpreted as three non-collinear points,
and two operation symbols, ' and m. F(abc) is the foot of the perpendicular from ¢
to the line ab, if a # b, and a itself if a = b, and 7(abc) is the fourth reflection point
whenever a, b, ¢ are collinear points with a # b and b # ¢, and arbitrary otherwise.
By ‘fourth reflection point’ we mean the following: if we designate by o, the mapping
defined by o,(y) = o(zy), i. e. the reflection of y in the point x, then, if a,b, c are
three collinear points, by [1, §3,9, Satz 24b], the composition (product) o .00, is the
reflection in a point, which lies on the same line as a,b,c. That point is designated
by m(abc).

In order to formulate the axioms in a more readable way, we shall use the following
abbreviations:

o(ab) := w(aba), (1)
R(abc) := o(F(abc)c), (2)
L(abc) i+ F(abc) =cVa =Db, (3)

where o has the same meaning as above, R(abc) stands for the reflection of ¢ in ab
(a line if a # b, the point a if @ = b), and L(abc) stands for ‘the points a, b, ¢ are
collinear (but not necessarily distinct)’.

The axiom system consists of the following axioms

C 1 F(aab) =a
C 2 olaa) = a

C 3 o(ac(ab)) = b

C 4 L(aba)

C 5 L(abe) — L(cba) A L(bac)

C 6 L(abo(ab))

C 7 L(abF(abe))

C 8 o(az) = o(bx) — a=b

C 9 a#bAF(abx) = Flaby) — L(xyF(abz))

C 10 a£bAc#dAF(abe) = c A Flabd) = d — F(abz) = F(cda)
C 11 —~L(abx) A F(zF(abx)y) = y — F(abx) = F(aby)

C12 a£bAa+cAF(abe) =a — Flach) = a

Cl13 a#xNz#yAFlary) =2 — F(ao(azx)o(ay)) = o(ax)



C 14 o(o(za)o(zb)) = o(xo(ab))
C 15 u#vAa#bAF(abc) = a — F(R(uva)R(uvb)R(uve)) = R(uva)
C 16 —L(oab) A =L(obc) — o(F(xR(ocR(obR(oazx)))o)x) = R(ocR(obR(oax)))

C 17 —L(oab) A =L(obc) A o(mz) = R(ocR(0bR(oax)))
No(ny) = R(ocR(0bR(oay))) — L(omn)

Cl18 a#bAb#cAF(abc)=cNha#d Nb£bW Nec#d ANF(aba') =a N F(bab')
=bA F(cbd) = ¢ — o(F(zR(cd R(bV' R(ad'z)))w(abe))x)
= R(cd R(bV'R(ad’x))) N F(m(abc)cF (zR(cc’ R(bY' R(ad'x)))m(abe))) = m(abe)

C 19 —|L(a0a1a2)

The axioms make the following statements: C1 defines the value of F'(abc) when
a = b — it is an axiom with no geometric function (we could have opted to leave
it undefined, but that would have lengthened the statements of the axioms C16 and
C18); C2: the point a is a fixed point of the reflection o,, C3: reflections in points
are involutory transformations (or the identity); C8: reflections of a point in two
different points do not coincide; C4: a lies on the line determined by a and b; C5:
collinearity of three points is a symmetric relation; C6: the reflection of b in a is
collinear with a and b; C7: for a # b, the foot of the perpendicular from ¢ to the
line ab lies on that line; C9 states the uniqueness of the perpendicular to the line ab
in the point F(abx); C10: the foot of the perpendicular from x to the line ab does
not depend on the particular choice of points a and b that determine the line ab;
C11: if z is a point outside of the line ab, and y is a point on the perpendicular from
x to ab, then the feet of the perpendiculars of z and y to the line ab coincide; C12
states that perpendicularity is a symmetric relation (if ca is perpendicular to ab, then
ba is perpendicular to ac); C13: if yx is perpendicular to za, the so are o,(y)oq(x)
and o4(x)a; Cl4: reflections in points preserve midpoints; C15: reflections in lines
preserve the orthogonality relation; C16 and C17 together state the three reflections
theorem for lines having a point in common; C18 is the three reflections theorem for
lines having a common perpendicular; C19: ag, a1, as are three non-collinear points.
With ¥ = {C1-C19}, we proved in [8] the following

Theorem 1 X is an axiom system for non-elliptic metric planes. In every model of
>, the operations F' and w have the intended interpretations.

3 Axiom system for metric planes with non-Euclidean
metric in terms of point-reflections

We now turn to yet another axiomatization of non-elliptic metric planes with non-
Euclidean metric (i.e. in which there exists no rectangle), in terms of motions which
are products of point-reflections, the individual constant 1, and the binary operation
o, with a o b standing for the composition of the motions a and b. In case a is a
point-reflection, we will refer to a as a ‘point’ as well.



o(be) NV o(o(db)e)

o(dc)
Figure 1: The definition of perpendicularity in terms of o
To improve the readability of the axioms we introduce the following abbreviations:
Pla) & a#1Mhaoca=1

P(ay,...,ap) & /\P(ai)
=1

L(abc) & (aob)oc=(cob)oa
o(ab) = (aob)oa
p(eabed) = (—L(abc) A L(abd) A L(cde) A o(ea(be)) = o(o(db)c))

V(e #bAL(abc) N\d=c)V(a=bANd=a
mw(abc) = co(boa)
o(eabed) & p(eabcu) A d = o(uc).

Here P(a) stands for ‘a is a point-reflection’, given that, in the group generated
by point-reflections the only involutory elements are the point-reflections themselves.
The subsequent abbreviations will be used only when all the variables that appear in
them are point-reflections. L(abc) stands for ‘a, b, ¢ are collinear’; o(ab) is the point
obtained by reflecting b in a; ¢(eabed) holds, in case a # b, if d is the foot of the
perpendicular from ¢ to ab (as shown, for a,b,c not collinear in [9, Prop. 1] (e is
a point needed in this construction, see Fig. 1)) and, in case a = b, if d = a; and
o(eabed) stands for ‘d is the reflection of ¢ in the line ab if a # b or in point a if a = b.

The axioms for this axiom system are: B1, B2, B3, axiom P1, which ensures that,
whenever a, b, ¢ are collinear points, w(abc) is a point as well, the axioms P2 and P3
stating the existence and uniqueness of the foot of the perpendicular from point ¢ to
line ab, whenever ¢ does not lie on the line ab, as well as P4-P14, which are slightly
changed variants of C8-C19.

P 1 P(a,b,c) —aob#c
P 2 (Vabc)(3de) P(a,b,c) A —L(abc) — P(e,d) A p(eabed)



P 3 P(a,b,c,d,e,d',e') N=L(abc) A p(eabed) A p(€’'abed ) — d = d’
P 4 P(a,b,x) No(ax) =o(bx) > a=b
P 5 P(a,b,d,e, f,x,y) Na# bAp(eabxd) N\ o(fabyd) — L(xyd)

P 6 P(a,b,c,d,e, f,u,v,2) Na#bAc#dA L(abe) A L(abd)
Np(eabxu) A p(fedzv) — u=v

P 7 P(a,b,d,e, f,u,v,z) N =L(abzx) A p(eabxu) A L(zyu) A p(fabyv) — u =
P 8 P(a,b,c,z,y,u) A —~L(abc) A p(xzabca) N p(yacbu) — u=a
P 9 P(a,e, f,u,z,y) N L(azy) A p(eaxyx) N\ o(fao(azx)o(ay)u) — u = o(ax)

P 10 P(a,b,c,d’ b, e,m,n,p,q,u,v,x) A —=L(abc) A p(eabca) A u # v
Ao(nuvaa') A o(puvbt’) A o(quued’) A p(ma't/dz) — x =d’

P 11 P(o,a,b,c,m,n,p,q,z,y,z,u,v) A =L(oab) A =L(obc) A o(moaxy) A o(nobyz)
No(poczu) N p(qruov) — o(ve) = u

P 12 P(o,a,b,e,m,n,p,m' 0. p x,y, z,u, 2’ ¢/, 2" v, t,t") A =L(oab) A =L(obc)
Ao(moaxy) A o(nobyz) A o(poczu) A o(m’oax’y") A o(n’oby'2") A o(p'ocz'u’)
No(tx) =uAo(t's’) =u — L(ott)

P 13 P(a,b,c,a’,b',d,m,n,p,t,u,v,w,x,y, 2, w,o0,q9) A L(abc) N\—L(aba") N = L(bab’)
A=L(ebd') A p(maba’a) A p(nbab’b) A p(pcbd ) A o(taa’zy) A o(ubb'yz)
No(ved zw) A p(qrwm(abe)o) A o(rr(abe)cog) — o(ox) = w A g = w(abe)

P 14 (Jabc) P(a,b,c) A —L(abc)

Finally, we need an axiom that lets us know that every rigid motion is a product of
point-reflections. We do not know whether every element of the subgroup generated
by point-reflections of the motion group G of a metric plane can be written as a
product of at most a certain fixed number of point-reflections (whereas we do know
that every element of G can be written as a product of at most three line-reflections).
Unless we establish that there is an upper bound on the number of point-reflections
needed (or that such an upper bound does not exist), we cannot determine the first-
order theory of the group generated by point-reflections (as it may be either (1) the
theory axiomatized by the axioms {B1 — B3,P1 — P14} in case there are, for every
natural number k, products of point-reflections that cannot be written as a product
of at most k point-reflections, or (2) the theory axiomatized by those axioms and
an axiom stating that every rigid motion is a product of at most k point-reflections,
should & be the least number with this property).! What we can do is to determine
the Ly, ,-theory of point-reflections, i. e. to state that every rigid motion is a product
of an unspecified number of point-reflections as an infinite disjunction of first-order
formulas. The axiom thus is

1t was shown in [11] that, under additional assumptions, it is possible to write every product of
point-reflections as a product of at most 4 point-reflections, but no such reduction is known in the
general non-Euclidean metric case.



P 15 (Va) V. 21(3p1...pn) P(p1,...,pn) Na=pio(...opy)...)

Let IT = {B1 — B3,P1 — P15}. Given that we can define F' in terms of ¢, given
that P2 and P3 ensure the existence and uniqueness of the value of F'(abc) for ¢ not
on ab, that C1-C7, C14 follow from our definitions of L, F' and o, and that the axioms
C8-C19 follow from their translations P4-P14 into our language, we deduce that in
every model of II the individual variables x for which P(z) holds can be interpreted
as points, the defined notions F' and 7 have the desired geometric interpretation, and
thus, that the resulting structure is a non-elliptic metric plane with non-Euclidean
metric (the metric cannot be Euclidean, given that, by P14 there are three non-
collinear points a, b, ¢, and by P2, P3, there is precisely one point d on the line ab for
which a point e with ¢(eabed) exists; had the metric been Euclidean, then all points
would have been “collinear” and for every point d on ab there would have been a
point e with ¢(eabed)).

Let 9t be a model of II. We now associate to every element a € 99 a mapping
of the set S of points, i. e. of those members x of the universe of 9 for which P(x)
holds, into itself, which we denote by @ and define by a(z) := a oz oa™'. Note
that aob = d - Z~), where by - we have denoted the operation of composition of maps.
If a € S, then a(x) = o(ax), so the set {a : P(a)} generates a group & inside
Sym(S), which is precisely the group generated by the point-reflections of a non-
elliptic metric plane with non-Euclidean metric (given that we know that o has the
desired interpretation). Given P15, the map ~defines an isomorphism of 9t onto &.
We have shown that

Theorem 2 II is an L, -aziom system for the group generated by the point-reflections
of non-elliptic metric planes with non-FEuclidean metric.

We now turn to metric planes whose metric is Fuclidean, also called ‘metric-
Euclidean planes’.

4 Point-reflections in metric-Euclidean planes
If axiom R (“There exists a rectangle” (see [1, §6,7])) holds in a metric plane, i. e.
(Jabed)a #bAc#dAaleAaldAbleAbld,

is added to B, then the group generated by point-reflections can be described very
simply by means of B1-B3 and

E 1 (Jab) P(a,b) Na #b
E 2 P(a,b) Naob=boa—a=1b
E 3 (Vx)(3ab) P(a,b) N(x =aVx=aob)

E 4 P(a,b,c) — P(ao (boc))



Let 9 be a model of B1-B3, E1-E4, let M be its universe, and let P = {m €
M : P(m)} be the set of points in M. We define on P x P an equivalence relation
~ by (a,b) ~ (¢,d) if and only if a o ¢ = b o d, and denote by [a, ] the equivalence
class of (a,b). Let G := P x P/ ~. We define on G an addition operation + by
[a,b] + [c,d] := [a,b o cod], which turns G into an Abelian group, as can be easily
checked. We fix a point o in P, and consider all elements in G written as [0, z] (notice
that [a,b] = [o,bo(ac0)]). Writing x for [0, ], we check that o(ab) = 2a—Db (i. e. that
[0, (ab)]+[0,b] = [0, a]+[o,a]). By E2 we know that G must satisfy 2z =0 — = = 0.

Any metric-Euclidean plane can be embedded in a Gaussian plane associated with
the pair of fields (K, L), where K C L, [L : K] = 2 (a generalization of the Gauss
plane over (C,R), see [7]), the points being elements of L, and thus the algebraic
representation of point-reflections X is given by x(y) = 2x —y and (X -y)(z) =
2(x —y) + z. Given that the only operations involved in the description of point-
reflections and their composition is + and —, every first-order sentence that is true
in all metric-Euclidean planes must hold over arbitrary Abelian groups which satisfy
22 =0 — z =0 as well. Thus

Theorem 3 {Bl — B3, E1 — EA} is an aziom system for the group generated by the
point-reflections of metric- Euclidean planes.

Related results have been proved in [10].
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