Point-reflections in metric planes

Victor Pambuccian

Department of Integrative Studies, Arizona State University West
Phoenix, AZ 85069-7100, U.S.A. e-mail: pamb@math.west.asu.edu

Abstract

We axiomatize the class of groups generated by the point-reflections of a metric plane with a non-Euclidean metric, the structure of which turns out to be very rich compared to the Euclidean metric case, and state an open problem.

Mathematics Subject Classification: 51M05, 51M10, 51F15, 03B30.

1 Introduction

There is a very large literature on characterizations of groups of motions in terms of line-reflections or hyperplane-reflections (see [1]), but relatively little about groups generated by point-reflections. This subject has received some attention much later, in [4], [5], [6] (and, in a different setting, with an added differential structure, in e. g. [2] or [3]).

The purpose of this paper is to determine the theories of point-reflections that one obtains from the groups of isometries of Bachmann's metric planes.

If the metric plane is elliptic, i. e. if there are three line-reflections whose product is the identity, then the point-reflections coincide with the line-reflections, so that the axiom system of the group generated by point-reflections is identical to the one expressed in terms of line-reflections. The interesting case is thus that of non-elliptic metric planes.

2 Non-elliptic metric planes

2.1 Axiom system in terms of line-reflections

We shall first present non-elliptic metric planes as they appear in [1]. Our language will be a one-sorted one, with variables to be interpreted as 'rigid motions', containing a unary predicate symbol G, with $G(x)$ to be interpreted as ' x is a line-reflection', a constant symbol 1 , to be interpreted as 'the identity', and a binary operation \circ, with $\circ(a, b)$, which we shall write as $a \circ b$, to be interpreted as 'the composition of a with b.

To improve the readability of the axioms, we introduce the following abbreviations:

$$
\begin{aligned}
a^{2} & : \Leftrightarrow a \circ a, \\
\iota(g) & : \Leftrightarrow g \neq 1 \wedge g^{2}=1, \\
a \mid b & : \Leftrightarrow G(a) \wedge G(b) \wedge \iota(a \circ b), \\
J(a b c) & : \Leftrightarrow \iota((a \circ b) \circ c), \\
p q \mid a & : \Leftrightarrow p \mid q \wedge G(a) \wedge J(p q a) .
\end{aligned}
$$

The axioms are (we omit universal quantifiers whenever the axioms are universal sentences):

B1 $(a \circ b) \circ c=a \circ(b \circ c)$
B $2(\forall a)(\exists b) b \circ a=1$
B $31 \circ a=a$
B4 $4(a) \rightarrow \iota(a)$
B $5 G(a) \wedge G(b) \rightarrow G(a \circ(b \circ a))$
B6 $(\forall a b c d)(\exists g) a|b \wedge c| d \rightarrow G(g) \wedge J(a b g) \wedge J(c d g)$
B $7 a b|g \wedge c d| g \wedge a b|h \wedge c d| h \rightarrow(g=h \vee a \circ b=c \circ d)$
B $8 \bigwedge_{i=1}^{3} p q \mid a_{i} \rightarrow G\left(a_{1} \circ\left(a_{2} \circ a_{3}\right)\right)$
B $9 \bigwedge_{i=1}^{3} g \mid a_{i} \rightarrow G\left(a_{1} \circ\left(a_{2} \circ a_{3}\right)\right)$
B $10(\exists g h j) g|h \wedge G(j) \wedge \neg j| g \wedge \neg j \mid h \wedge \neg J(j g h)$
B $11(\forall x)(\exists g h j) G(g) \wedge G(h) \wedge G(j) \wedge(x=g \circ h \vee x=g \circ(h \circ j))$
B $12 G(a) \wedge G(b) \wedge G(c) \rightarrow a \circ(b \circ c) \neq 1$
Since $a \circ b$ with $a \mid b$ represents a point-reflection, we may think of an unordered pair (a, b) with $a \mid b$ as a point, an element a with $G(a)$ as a line, two lines a and b for which $a \mid b$ as a pair of perpendicular lines, and say that a point (p, q) is incident with the line a if $p q \mid a$. With these figures of speech in mind, the above axioms make the following statements: B1, B2, and B3 are the group axioms for the operation o; B4 states that line-reflections are involutions; B5 states the invariance of the set of line-reflections, B6 states that any two points can be joined by a line, which is unique according to B 7 (we shall denote the line joining the points (a, b) and (c, d) by $\langle(a, b),(c, d)\rangle) ; \mathrm{B} 8$ and B9 state that the composition of three reflections in lines that have a common point or a common perpendicular is a line-reflection; B10 states that there are three lines g, h, j such that g are h are perpendicular, but j is perpendicular to neither g nor h, nor does it go through the intersection point of g and h; B11 states that every motion is the composition of two or three line-reflections, and B12 states that the composition of three line-reflections is never the identity. The function of the last axiom, B12, is to exclude elliptic geometries, and thus to ensure that the perpendicular from a point not on a line to that line is unique. The theory of nonelliptic metric planes, axiomatized by $\{B 1-B 12\}$ will be denoted by \mathcal{B}.

2.2 Axiom system in terms of ternary geometric operations

The same class of models can also be axiomatized in the following manner: the language \mathcal{L} contains only one sort of individual variables, to be interpreted as 'points', three individual constants a_{0}, a_{1}, a_{2}, to be interpreted as three non-collinear points, and two operation symbols, F and $\pi . F(a b c)$ is the foot of the perpendicular from c to the line $a b$, if $a \neq b$, and a itself if $a=b$, and $\pi(a b c)$ is the fourth reflection point whenever a, b, c are collinear points with $a \neq b$ and $b \neq c$, and arbitrary otherwise. By 'fourth reflection point' we mean the following: if we designate by σ_{x} the mapping defined by $\sigma_{x}(y)=\sigma(x y)$, i. e. the reflection of y in the point x, then, if a, b, c are three collinear points, by $[1, \S 3,9$, Satz 24 b$]$, the composition (product) $\sigma_{c} \sigma_{b} \sigma_{a}$, is the reflection in a point, which lies on the same line as a, b, c. That point is designated by $\pi(a b c)$.

In order to formulate the axioms in a more readable way, we shall use the following abbreviations:

$$
\begin{gather*}
\sigma(a b):=\pi(a b a), \tag{1}\\
R(a b c):=\sigma(F(a b c) c), \tag{2}\\
L(a b c): \leftrightarrow F(a b c)=c \vee a=b, \tag{3}
\end{gather*}
$$

where σ has the same meaning as above, $R(a b c)$ stands for the reflection of c in $a b$ (a line if $a \neq b$, the point a if $a=b$), and $L(a b c)$ stands for 'the points a, b, c are collinear (but not necessarily distinct)'.

The axiom system consists of the following axioms
C $1 F(a a b)=a$
C $2 \sigma(a a)=a$
C $3 \sigma(a \sigma(a b))=b$
C $4 L(a b a)$
C $5 L(a b c) \rightarrow L(c b a) \wedge L(b a c)$
C $6 L(a b \sigma(a b))$
C $7 L(a b F(a b c))$
C $8 \sigma(a x)=\sigma(b x) \rightarrow a=b$
C $9 a \neq b \wedge F(a b x)=F(a b y) \rightarrow L(x y F(a b x))$
C $10 a \neq b \wedge c \neq d \wedge F(a b c)=c \wedge F(a b d)=d \rightarrow F(a b x)=F(c d x)$
C $11 \neg L(a b x) \wedge F(x F(a b x) y)=y \rightarrow F(a b x)=F(a b y)$
C $12 a \neq b \wedge a \neq c \wedge F(a b c)=a \rightarrow F(a c b)=a$
C $13 a \neq x \wedge x \neq y \wedge F(a x y)=x \rightarrow F(a \sigma(a x) \sigma(a y))=\sigma(a x)$

C $14 \sigma(\sigma(x a) \sigma(x b))=\sigma(x \sigma(a b))$
C $15 u \neq v \wedge a \neq b \wedge F(a b c)=a \rightarrow F(R(u v a) R(u v b) R(u v c))=R(u v a)$

$$
\begin{array}{rl}
\text { C } 16 & \neg L(o a b) \wedge \neg L(o b c) \rightarrow \sigma(F(x R(o c R(o b R(o a x))) o) x)=R(o c R(o b R(o a x))) \\
\text { C } 17 & \neg L(o a b) \wedge \neg L(o b c) \wedge \sigma(m x)=R(o c R(o b R(o a x))) \\
& \wedge \sigma(n y)=R(o c R(o b R(o a y))) \rightarrow L(o m n) \\
\text { C } 18 & a \neq b \wedge b \neq c \wedge F(a b c)=c \wedge a \neq a^{\prime} \wedge b \neq b^{\prime} \wedge c \neq c^{\prime} \wedge F\left(a b a^{\prime}\right)=a \wedge F\left(b a b^{\prime}\right) \\
& =b \wedge F\left(c b c^{\prime}\right)=c \rightarrow \sigma\left(F\left(x R\left(c c^{\prime} R\left(b b^{\prime} R\left(a a^{\prime} x\right)\right)\right) \pi(a b c)\right) x\right) \\
& =R\left(c c^{\prime} R\left(b b^{\prime} R\left(a a^{\prime} x\right)\right)\right) \wedge F\left(\pi(a b c) c F\left(x R\left(c c^{\prime} R\left(b b^{\prime} R\left(a a^{\prime} x\right)\right)\right) \pi(a b c)\right)\right)=\pi(a b c)
\end{array}
$$

C $19 \neg L\left(a_{0} a_{1} a_{2}\right)$
The axioms make the following statements: C 1 defines the value of $F(a b c)$ when $a=b-$ it is an axiom with no geometric function (we could have opted to leave it undefined, but that would have lengthened the statements of the axioms C16 and $\mathrm{C} 18)$; $\mathrm{C} 2:$ the point a is a fixed point of the reflection σ_{a}, C3: reflections in points are involutory transformations (or the identity); C8: reflections of a point in two different points do not coincide; C4: a lies on the line determined by a and b; C 5 : collinearity of three points is a symmetric relation; C6: the reflection of b in a is collinear with a and b; C7: for $a \neq b$, the foot of the perpendicular from c to the line $a b$ lies on that line; C9 states the uniqueness of the perpendicular to the line $a b$ in the point $F(a b x)$; C10: the foot of the perpendicular from x to the line $a b$ does not depend on the particular choice of points a and b that determine the line $a b$; C11: if x is a point outside of the line $a b$, and y is a point on the perpendicular from x to $a b$, then the feet of the perpendiculars of x and y to the line $a b$ coincide; C12 states that perpendicularity is a symmetric relation (if $c a$ is perpendicular to $a b$, then $b a$ is perpendicular to $a c$); C 13 : if $y x$ is perpendicular to $x a$, the so are $\sigma_{a}(y) \sigma_{a}(x)$ and $\sigma_{a}(x) a$; C14: reflections in points preserve midpoints; C15: reflections in lines preserve the orthogonality relation; C16 and C17 together state the three reflections theorem for lines having a point in common; C18 is the three reflections theorem for lines having a common perpendicular; C19: a_{0}, a_{1}, a_{2} are three non-collinear points. With $\Sigma=\{$ C1-C19\}, we proved in [8] the following

Theorem 1Σ is an axiom system for non-elliptic metric planes. In every model of Σ, the operations F and π have the intended interpretations.

3 Axiom system for metric planes with non-Euclidean metric in terms of point-reflections

We now turn to yet another axiomatization of non-elliptic metric planes with nonEuclidean metric (i.e. in which there exists no rectangle), in terms of motions which are products of point-reflections, the individual constant 1, and the binary operation \circ, with $a \circ b$ standing for the composition of the motions a and b. In case a is a point-reflection, we will refer to a as a 'point' as well.

Figure 1: The definition of perpendicularity in terms of σ

To improve the readability of the axioms we introduce the following abbreviations:

$$
\begin{aligned}
& P(a): \Leftrightarrow a \neq 1 \wedge a \circ a=1 \\
& P\left(a_{1}, \ldots, a_{n}\right): \Leftrightarrow \bigwedge_{i=1}^{n} P\left(a_{i}\right) \\
& L(a b c): \Leftrightarrow(a \circ b) \circ c=(c \circ b) \circ a \\
& \sigma(a b):=(a \circ b) \circ a \\
& \varphi(e a b c d)::(\neg L(a b c) \wedge L(a b d) \wedge L(c d e) \wedge \sigma(e \sigma(b c))=\sigma(\sigma(d b) c)) \\
& \vee(a \neq b \wedge L(a b c) \wedge d=c) \vee(a=b \wedge d=a) \\
& \pi(a b c):=c \circ(b \circ a) \\
& \varrho(e a b c d): \Leftrightarrow \varphi(e a b c u) \wedge d=\sigma(u c) .
\end{aligned}
$$

Here $P(a)$ stands for ' a is a point-reflection', given that, in the group generated by point-reflections the only involutory elements are the point-reflections themselves. The subsequent abbreviations will be used only when all the variables that appear in them are point-reflections. $L(a b c)$ stands for ' a, b, c are collinear'; $\sigma(a b)$ is the point obtained by reflecting b in a; $\varphi(e a b c d)$ holds, in case $a \neq b$, if d is the foot of the perpendicular from c to $a b$ (as shown, for a, b, c not collinear in [9, Prop. 1] (e is a point needed in this construction, see Fig. 1)) and, in case $a=b$, if $d=a$; and $\varrho(e a b c d)$ stands for ' d is the reflection of c in the line $a b$ if $a \neq b$ or in point a if $a=b$.

The axioms for this axiom system are: B1, B2, B3, axiom P1, which ensures that, whenever a, b, c are collinear points, $\pi(a b c)$ is a point as well, the axioms P2 and P3 stating the existence and uniqueness of the foot of the perpendicular from point c to line $a b$, whenever c does not lie on the line $a b$, as well as $\mathrm{P} 4-\mathrm{P} 14$, which are slightly changed variants of C8-C19.

P $1 P(a, b, c) \rightarrow a \circ b \neq c$
P2 $(\forall a b c)(\exists d e) P(a, b, c) \wedge \neg L(a b c) \rightarrow P(e, d) \wedge \varphi(e a b c d)$

$$
\text { P } 3 P\left(a, b, c, d, e, d^{\prime}, e^{\prime}\right) \wedge \neg L(a b c) \wedge \varphi(e a b c d) \wedge \varphi\left(e^{\prime} a b c d^{\prime}\right) \rightarrow d=d^{\prime}
$$

$$
\mathbf{P} 4 P(a, b, x) \wedge \sigma(a x)=\sigma(b x) \rightarrow a=b
$$

$$
\text { P } 5 P(a, b, d, e, f, x, y) \wedge a \neq b \wedge \varphi(e a b x d) \wedge \varphi(f a b y d) \rightarrow L(x y d)
$$

$$
\mathbf{P} 6 P(a, b, c, d, e, f, u, v, x) \wedge a \neq b \wedge c \neq d \wedge L(a b c) \wedge L(a b d)
$$

$$
\wedge \varphi(e a b x u) \wedge \varphi(f c d x v) \rightarrow u=v
$$

$$
\text { P } 7 P(a, b, d, e, f, u, v, x) \wedge \neg L(a b x) \wedge \varphi(e a b x u) \wedge L(x y u) \wedge \varphi(f a b y v) \rightarrow u=v
$$

$$
\text { P } 8 P(a, b, c, x, y, u) \wedge \neg L(a b c) \wedge \varphi(x a b c a) \wedge \varphi(y a c b u) \rightarrow u=a
$$

$$
\mathbf{P} 9 P(a, e, f, u, x, y) \wedge \neg L(a x y) \wedge \varphi(e a x y x) \wedge \varphi(f a \sigma(a x) \sigma(a y) u) \rightarrow u=\sigma(a x)
$$

$$
\mathbf{P} 10 P\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, e, m, n, p, q, u, v, x\right) \wedge \neg L(a b c) \wedge \varphi(e a b c a) \wedge u \neq v
$$

$$
\wedge \varrho\left(n u v a a^{\prime}\right) \wedge \varrho\left(p u v b b^{\prime}\right) \wedge \varrho\left(q u v c c^{\prime}\right) \wedge \varphi\left(m a^{\prime} b^{\prime} c^{\prime} x\right) \rightarrow x=a^{\prime}
$$

$$
\mathbf{P} 11 P(o, a, b, c, m, n, p, q, x, y, z, u, v) \wedge \neg L(o a b) \wedge \neg L(o b c) \wedge \varrho(\operatorname{moaxy}) \wedge \varrho(n o b y z)
$$

$$
\wedge \varrho(p o c z u) \wedge \varphi(q x u o v) \rightarrow \sigma(v x)=u
$$

$$
\mathbf{P} 12 P\left(o, a, b, c, m, n, p, m^{\prime}, n^{\prime}, p^{\prime}, x, y, z, u, x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, t, t^{\prime}\right) \wedge \neg L(o a b) \wedge \neg L(o b c)
$$

$$
\wedge \varrho(\operatorname{moax} y) \wedge \varrho(n o b y z) \wedge \varrho(p o c z u) \wedge \varrho\left(m^{\prime} o a x^{\prime} y^{\prime}\right) \wedge \varrho\left(n^{\prime} o b y^{\prime} z^{\prime}\right) \wedge \varrho\left(p^{\prime} o c z^{\prime} u^{\prime}\right)
$$

$$
\wedge \sigma(t x)=u \wedge \sigma\left(t^{\prime} x^{\prime}\right)=u^{\prime} \rightarrow L\left(o t t^{\prime}\right)
$$

$\mathbf{P} 13 P\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, m, n, p, t, u, v, w, x, y, z, w, o, g\right) \wedge L(a b c) \wedge \neg L\left(a b a^{\prime}\right) \wedge \neg L\left(b a b^{\prime}\right)$
$\wedge \neg L\left(c b c^{\prime}\right) \wedge \varphi\left(m a b a^{\prime} a\right) \wedge \varphi\left(n b a b^{\prime} b\right) \wedge \varphi\left(p c b c^{\prime} c\right) \wedge \varrho\left(t a a^{\prime} x y\right) \wedge \varrho\left(u b b^{\prime} y z\right)$
$\wedge \varrho\left(v c c^{\prime} z w\right) \wedge \varphi(q x w \pi(a b c) o) \wedge \varphi(r \pi(a b c) \operatorname{cog}) \rightarrow \sigma(o x)=w \wedge g=\pi(a b c)$
P $14(\exists a b c) P(a, b, c) \wedge \neg L(a b c)$
Finally, we need an axiom that lets us know that every rigid motion is a product of point-reflections. We do not know whether every element of the subgroup generated by point-reflections of the motion group G of a metric plane can be written as a product of at most a certain fixed number of point-reflections (whereas we do know that every element of G can be written as a product of at most three line-reflections). Unless we establish that there is an upper bound on the number of point-reflections needed (or that such an upper bound does not exist), we cannot determine the firstorder theory of the group generated by point-reflections (as it may be either (1) the theory axiomatized by the axioms $\{\mathrm{B} 1-\mathrm{B} 3, \mathrm{P} 1-\mathrm{P} 14\}$ in case there are, for every natural number k, products of point-reflections that cannot be written as a product of at most k point-reflections, or (2) the theory axiomatized by those axioms and an axiom stating that every rigid motion is a product of at most k point-reflections, should k be the least number with this property). ${ }^{1}$ What we can do is to determine the $L_{\omega_{1} \omega}$-theory of point-reflections, i. e. to state that every rigid motion is a product of an unspecified number of point-reflections as an infinite disjunction of first-order formulas. The axiom thus is

[^0]P15 $\left.(\forall a) \bigvee_{n=1}^{\infty}\left(\exists p_{1} \ldots p_{n}\right) P\left(p_{1}, \ldots, p_{n}\right) \wedge a=p_{1} \circ\left(\ldots \circ p_{n}\right) \ldots\right)$
Let $\Pi=\{\mathrm{B} 1-\mathrm{B} 3, \mathrm{P} 1-\mathrm{P} 15\}$. Given that we can define F in terms of φ, given that P2 and P3 ensure the existence and uniqueness of the value of $F(a b c)$ for c not on $a b$, that C1-C7, C14 follow from our definitions of L, F and σ, and that the axioms C8-C19 follow from their translations $\mathrm{P} 4-\mathrm{P} 14$ into our language, we deduce that in every model of Π the individual variables x for which $P(x)$ holds can be interpreted as points, the defined notions F and π have the desired geometric interpretation, and thus, that the resulting structure is a non-elliptic metric plane with non-Euclidean metric (the metric cannot be Euclidean, given that, by P14 there are three noncollinear points a, b, c, and by $\mathrm{P} 2, \mathrm{P} 3$, there is precisely one point d on the line $a b$ for which a point e with $\varphi(e a b c d)$ exists; had the metric been Euclidean, then all points would have been "collinear" and for every point d on $a b$ there would have been a point e with $\varphi(e a b c d))$.

Let \mathfrak{M} be a model of Π. We now associate to every element $a \in \mathfrak{M}$ a mapping of the set S of points, i. e. of those members x of the universe of \mathfrak{M} for which $P(x)$ holds, into itself, which we denote by \tilde{a} and define by $\tilde{a}(x):=a \circ x \circ a^{-1}$. Note that $\widetilde{a \circ b}=\tilde{a} \cdot \tilde{b}$, where by \cdot we have denoted the operation of composition of maps. If $a \in S$, then $\tilde{a}(x)=\sigma(a x)$, so the set $\{\tilde{a}: P(a)\}$ generates a group \mathfrak{G} inside $\operatorname{Sym}(S)$, which is precisely the group generated by the point-reflections of a nonelliptic metric plane with non-Euclidean metric (given that we know that σ has the desired interpretation). Given P15, the map ${ }^{\sim}$ defines an isomorphism of \mathfrak{M} onto \mathfrak{G}. We have shown that

Theorem 2Π is an $L_{\omega_{1} \omega}$-axiom system for the group generated by the point-reflections of non-elliptic metric planes with non-Euclidean metric.

We now turn to metric planes whose metric is Euclidean, also called 'metricEuclidean planes'.

4 Point-reflections in metric-Euclidean planes

If axiom R ("There exists a rectangle" (see $[1, \S 6,7])$) holds in a metric plane, i. e.

$$
(\exists a b c d) a \neq b \wedge c \neq d \wedge a|c \wedge a| d \wedge b|c \wedge b| d
$$

is added to \mathcal{B}, then the group generated by point-reflections can be described very simply by means of B1-B3 and

E $1(\exists a b) P(a, b) \wedge a \neq b$
E $2 P(a, b) \wedge a \circ b=b \circ a \rightarrow a=b$

E $3(\forall x)(\exists a b) P(a, b) \wedge(x=a \vee x=a \circ b)$
E $4 P(a, b, c) \rightarrow P(a \circ(b \circ c))$

Let \mathfrak{M} be a model of B1-B3, E1-E4, let M be its universe, and let $P=\{m \in$ $M: P(m)\}$ be the set of points in M. We define on $P \times P$ an equivalence relation \sim by $(a, b) \sim(c, d)$ if and only if $a \circ c=b \circ d$, and denote by $[a, b]$ the equivalence class of (a, b). Let $G:=P \times P / \sim$. We define on G an addition operation + by $[a, b]+[c, d]:=[a, b \circ c \circ d]$, which turns G into an Abelian group, as can be easily checked. We fix a point o in P, and consider all elements in G written as $[o, x]$ (notice that $[a, b]=[o, b \circ(a \circ o)])$. Writing \mathbf{x} for $[o, x]$, we check that $\sigma(\mathbf{a b})=2 \mathbf{a}-\mathbf{b}$ (i. e. that $[o, \sigma(a b)]+[o, b]=[o, a]+[o, a])$. By E2 we know that G must satisfy $2 x=0 \rightarrow x=0$.

Any metric-Euclidean plane can be embedded in a Gaussian plane associated with the pair of fields (K, L), where $K \subset L,[L: K]=2$ (a generalization of the Gauss plane over (\mathbb{C}, \mathbb{R}), see $[7])$, the points being elements of L, and thus the algebraic representation of point-reflections $\tilde{\mathbf{x}}$ is given by $\tilde{\mathbf{x}}(\mathbf{y})=2 \mathbf{x}-\mathbf{y}$ and $(\tilde{\mathbf{x}} \cdot \tilde{\mathbf{y}})(\mathbf{z})=$ $2(\mathbf{x}-\mathbf{y})+\mathbf{z}$. Given that the only operations involved in the description of pointreflections and their composition is + and - , every first-order sentence that is true in all metric-Euclidean planes must hold over arbitrary Abelian groups which satisfy $2 x=0 \rightarrow x=0$ as well. Thus

Theorem $3\{B 1-B 3, E 1-E 4\}$ is an axiom system for the group generated by the point-reflections of metric-Euclidean planes.

Related results have been proved in [10].
Acknowledgement. This paper was written while enjoying the hospitality of the Institute of Mathematics of the University of Erlangen, as a guest of Prof. Dr. Karl Strambach.

References

[1] F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, 2. Auflage, SpringerVerlag, Berlin 1973.
[2] Á. Figula, 3-dimensional Bol loops as sections in non-solvable Lie groups, Forum Math. 17 (2005), 431-460.
[3] Á. Figula, K. Strambach, Affine extensions of loops, Abh. Math. Sem. Univ. Hamburg 74 (2004), 151-162
[4] E. Gabrieli, H. Karzel, Point reflection geometries, geometric K-loops and unitary geometries, Resultate Math. 32 (1997), 66-72.
[5] H. Karzel, A. Konrad, Reflection groups and K-loops, J. Geom. 52 (1995), 120-129.
[6] H. Karzel, H. Wefelscheid, A geometric construction of the K-loop of a hyperbolic space, Geom. Dedicata 58 (1995), 227-236.
[7] V. Pambuccian, Fragments of Euclidean and hyperbolic geometry, Sci. Math. Jpn. 53 (2001), 361-400.
[8] V. Pambuccian, Constructive axiomatization of non-elliptic metric planes, Bull. Polish Acad. Sci. Math. 51 (2003), 49-57.
[9] V. Pambuccian, Hyperbolic geometry in terms of point-reflections or of lineorthogonality, Math. Pannon. 15 (2004), 241-258.
[10] W. Schwabhäuser, Modellvollständigkeit der Mittelpunktsgeometrie und der Theorie der Vektorgruppen, Abh. Math. Sem. Univ. Hamburg 48 (1979), 213-224.
[11] C. Stroscher, Reduktion von Punktspiegelungsprodukten in der ebenen metrischen Geometrie, Arch. Math. 33 (1979), 183-192.

[^0]: ${ }^{1}$ It was shown in [11] that, under additional assumptions, it is possible to write every product of point-reflections as a product of at most 4 point-reflections, but no such reduction is known in the general non-Euclidean metric case.

