VICTOR PAMBUCCIAN The Simplest Axiom System
for Plane Hyperbolic
Geometry”*

Abstract. We provide a quantifier-free axiom system for plane hyperbolic geometry
in a language containing only absolute geometrically meaningful ternary operations (in
the sense that they have the same interpretation in Euclidean geometry as well). Each
axtom contains at most 4 variables. It is known that there is no axiom system for plane
hyperbolic consisting of only prenex 3-variable axioms. Changing one of the axioms, one
obtains an axiom system for plane Euclidean geometry, expressed in the same language,
all of whose axioms are also at most 4-variable universal sentences. We also provide an
axiom system for plane hyperbolic geometry in Tarski’s language L= which might be the
simplest possible one in that language.

Keywords: Hyperbolic geometry, constructive axiomatization, Euclidean geometry, sim-
plicity.

1. Introduction

Elementary hyperbolic geometry was born in 1903 when Hilbert [11] pro-
vided, using the end-calculus to introduce coordinates, a first-order axioma-
tization for it by adding to the axioms for plane absolute geometry (groups
LILIIT) a hyperbolic parallel axiom stating that through any point P not
lying on a line ! there are two rays r; and rs, not belonging to the same
line, which do not intersect !, and such that every ray through P, which is
contained in the angle formed by r; and ro, does intersect {. The details of
the coordinatization were worked out later by J. C. H. Gerretsen [6]. [7],
P. Szész [33], [34] (cf. also [10, Ch. 7, §41-43]), and different coordinati-
zations were proposed by W. Szmielew [36] and Doraczyniska [3] (cf. also
[30, I1.2], and for a constructive axiomatization using operations for hyper-
bolic parallels [24]). In this paper we ask and answer the question regarding
the simplest axiomatization of elementary hyperbolic geometry. From the
many possible ways to look at simplicity (cf. [16]) we choose the syntac-
tic criterion which declares that axiom system to be simplest for which the
maximum number of variables which occur in any of its axioms, written in
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prenex form, is minimal. This maximal number of variables will of course
depend on the language in which one chooses to express the axiom system.
We shall first express the axiom system in Tarski’s one-sorted first-order
language L = Lp=, with individual variables to be interpreted as points, and
with two relation symbols, a ternary one, B, and a quaternary one =, with
B(abc) to be read as ‘point b lies between a and ¢ ’, and ab = cd to be read
as ‘segment ab is congruent to segment cd’. This axiom system consists of
at most 5-variable sentences, with a single exception, an axiom which is a
6-variable statement. One can show that hyperbolic geometry expressed in
L cannot be axiomatized by means of 4-variable prenex statements alone.
It remains open whether hyperbolic geometry can be axiomatized in L by
means of 5-variable prenex sentences alone.

Based on this L-axiom system we provide an axiom system in a one-
sorted first-order language, with individuals standing for points, without
any relation symbol, but containing several ternary operation symbols, all of
whose axioms, with one exception, a purely existential 2-variable axiom, are
universal at most 4-variable sentences. There is, by a theorem of D. Scott [31]
for axiom systems for Euclidean geometry which is valid in the hyperbolic
case as well, no axiom system with individuals to be interpreted as points, in
a language without individual constants in which the set of primitive notions
is invariant under isometries, for plane hyperbolic geometry, consisting of at
most 3-variable sentences, since all the at most 3-variable sentences which
hold in plane hyperbolic geometry hold in all higher-dimensional hyperbolic
spaces as well.

Changing one axiom in the axiom system for plane hyperbolic geometry,
we obtain an axiom system for plane Euclidean geometry over Euclidean or-
dered fields, which is also minimal as far as the number of variables occuring
in its axioms is concerned.

The axiom system consists of several axioms which were first proposed
as axioms for absolute geometry by Rigby [28], [29], who improved upon
axioms proposed by Forder [5] (see also [35]).

It is also worth noting that hyperbolic geometry can be axiomatized by
using the single binary operation of point reflection o, but cannot be axioma-
tized in a quantifier-free manner by means of only binary operations. In this
sense our axiomatization, which uses only at most ternary operations, is also
the simplest possible. For axiomatizations of various geometries by means
of universal axioms in languages without relation symbols, a programme
started in [15], see [25] and the bibliography therein. We have shown earlier
([19], [20], [22]) that plane Euclidean geometry over Euclidean ordered fields
can be axiomatized by an L-axiom system all of whose axioms are at most
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5-variable prenex sentences, and that this is best possible, as well as that it
can be axiomatized by universal at most 4-variable sentences and a purely
existential 3-variable sentence in a language containing only ternary oper-
ation symbols. One may conclude that from this point of view hyperbolic
geometry is no more complex than Euclidean geometry.

A somewhat related result was obtained in [23], where it was shown
that plane hyperbolic geometry and Euclidean geometry over Pythagorean
ordered fields can be axiomatized by quantifier-free axioms in a common
language containing only operation symbols. However, the aim of that pa-
per was different, as the axiom systems display no variable or arity of the
operations simplicity, and the goal was to provide an axiom system for plane
absolute ruler and segment transporter geometry, from which to move on to
either Euclidean or hyperbolic by adding a new operation and corresponding
axioms.

In the present paper, our axiom systems do not contain subsystems for
the plane absolute geometry of ruler and segment transporter.

2. The Lg--Axiom System

To improve the readability of the axioms, we shall use the defined notion
(which is to be read as an abbreviation) of collinearity, L, defined by

L(abc) :<> B(abc) V B(bca) V B(cab). (1)
We shall omit quantifiers in the case of universal sentences.
Al ab=cd — cd = ab,
A 2. ab=cd — ab = de,
A3 ab=aa—a=b,

A4 (i) ab=cd A cd = ce — ab = ce,
(ii) ab = cd A ¢d = ae — ab = ae,

A 5. B(abc) — B(cba),
A 6. B(abd) A B(bed) — B(abc),

A 7. a # bA ((Blabc) A B(abd)) V (B(abc) A B(dab)) V (B(bca) A B(bda)))
— L{acd),

A8 p#gqAhap=agNbp=bgAcp=cq— L(abe),
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A9 a#bANac=adAbc=bdA Blabe) — ec = ed,

A 10. B{abc) A (B(ade) V B(aed)) A ab = ad A ac = ae — Blade) A be = de,
A 11. B(abc) A B(dbe) A ba = bd A be = be — ac = de,

A 12. ab = ad A ((B(abc) A B(ade))V (B(cab) A B(ead)) Aac = ae — dc = be,
A 13. ¢ # a A B(cad) A ab= ad A (B(ced) V B(cde)) A cb = ce — B(ced),
A 14. (Vab)(3c) [B(acb) A ca = cb),

A 15. (Vabc)(3d)[B(cad) A ab = ad),

A 16. (Vabc)(3d) [-L(abc) — (B(ade) V B(bdc)) A da = db],

A 17. (i) (Vabed)(3e) [B(bad) A ab = ad A B(bed) — ae = ad A be = be],
(ii) (Vabc)(3d) [B(abe) — ac = ad A ad = bd),

A 18. (Vabe)(3d)(Vz) [B(abe) Ab # a Ab# c— ((B(abx) A ba = bx)
— da = dz) A ((B(adz) A da = dz) — ca = cx)),

A 19. (Yabc)(dde) [-L(abc) — (B(acd) vV Badc)) Ade = ab A ad = ae
Abd = be],

A 20. -L(zyz) A B(zay) A ax = ay A B(ybz) A by = bz A B(zcx) Acz = cx
— ~L(abc),

A 21. (3abd) [a # b),

A 22, (Vabed)(Je) [a = bVb = c¢Ve = dVd = aV(B(abe) Aba = beA—ca = ce)
V(B(bce) A cb = ce A ~db = de) V (B(cde) Ade = de A —ac = ae)
V(B(dae) A ad = ae A —bd = be)].

AR is an upper-dimension axiom, stating that, if three points are equidis-
tant from two fixed points, then they lie on the same line; A9 states that if
two congruent trilaterals share a common side, then the segments joining the
corresponding third vertices with a point on the extension of the common
side are congruent as well; A10 is a special variant of Euclid’s Common No-
tion 3, “If equals are subtracted from equals, then the remainders are equal”,
and A1l of Euclid’s Common Notion 2, “If equals are added to equals, then
the wholes are equal”; A12 is a form of the side-angle-side congruence axiom
for two triangles which share an angle, or whose congruent angles are ver-
tical angles; A13 is an axiom stating the triangle inequality; A14 states the
existence of the midpoint of a segment; A15 is a segment transport axiom;
A16 states that the perpendicular bisector of a side of a triangle intersects
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Figure 1. Axioms A8, A9, A10, A11, A12, A13, A16, A17, and A19

one of the remaining sides as well; A17(i) states that two circles, the radius
of one being precisely the distance between the two centres, and the radius
of the other being less than or equal to twice the distance between the two
centres, intersect; A17(ii) that two circles with equal radii, greater than or
equal to the distance between the centres of the two circles, intersect; A18
states the existence of a right triangle with a given hypotenuse and with
given footpoint of the altitude to the hypotenuse; A19 is a sharpened ver-
sion of Aristotle’s axiom, which states that, given an angle, one can find on
one of its sides a point for which the segment formed by itself and its reflec-
tion in the other side of the angle is congruent to a given segment; A20, an
axiom first considered by Hjelmslev [12, p. 474], states that the midpoints
of the sides of a triangle cannot be collinear, and A22 states that the metric
is non-Euclidean by stating that there exists no rectangle.

The importance of Aristotle’s axiom in the foundations of hyperbolic
geometry has been pointed out in [8].

Let ¥ := {Al — A22}. We shall designate the midpoint ¢ of ab given by
A14 by M(ab). Axiom A14 only states the existence of a midpoint, not its
uniqueness. Its uniqueness can be proved (see (9) below).
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3. ¥ is an axiom system for plane hyperbolic geometry

The proof that follows consists of several results, which, given their large
number, we have decided not to call lemmas, but to simply number them.
The bulk of the proof consists in proving the transitivity of the congruence
relation, (23), as well as proving all the other axioms of Sérensen’s [32] axiom
system for non-elliptic metric planes.
By A15, (3b')B(abb’) A bb = b/, thus b = b’ (by A3 and Al). We have
thus shown that
B(abb). (2)

By Al4 (3Im)B(amb) A ma = mb. Since, by (2), we also have B(maa)
and B(mbb), we conclude from A10 that

aa = bb. 3)

Suppose ab = cc. Given that we also have cc = aa (by (3)), we conclude,
using A4(ii), that ab = aa, and by using A3 that a = b. Thus

ab=cc—a=h. (4)

By A15 with ¢ = b, we get (3d) ab = ad, and by Al and A4(i), we deduce

ab = ab. (5)

From (5) and A2 we get
ab = ba. (6)
B(abc) Nab=ac —b=c. (7)

PROOF . Suppose the hypothesis (antecedent) of (7) holds. By (2) and (5)
we notice that the antecedent of A10 in which d = ¢ and e = ¢ holds, so the
consequent, bc = cc must hold as well, i. e. b= ¢ (by (4)).

We now turn to the proof of
B(aba) — a =b. (8)

By Al14 (3m) B(bma) A mb = ma; from B(aba) and B(bma) we get
B(abm) by A6, thus B(mba) by A5, so a =b (by (7)).

For any two points a, b with a # b, all points z for which L(abz) holds
are said to be on the line ab. We want to show that any line ab contains at
least 5 points. By Al4 (3z) B(axb) A za = zb, and x # a, x # b by A3 and
Al. By A15 (Jy) B(aby) Aba = by, (32) B(baz) Nab=az and y #a, z# b
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(by (8)), v # b, z # a (by A3). By A5 we have B(yba), B(bza), B(zab),
and we deduce from the first two that B(ybz) (by A6), so ¢ # y (by (8)).
From B(zab) and B(axb) we deduce that B(zax) (by A6), thus = # z (by
(8)). If y = 2, then from B(aby) and B(baz) (i. e. B(bay)) we deduce that
B(aba) (by A6), thus a = b (by (8)), a contradiction. So y # z as well, and
a,b, x,y,z are five different points on the line ab. W. Szmielew has proved
in [38, Th. 7.2.7] that, if there are at least 5 points on every ‘line’, then a
relation B that satisfies A5, A6, A7, and (8) satisfies all universal properties
of the order relation on a line (i. e. the universal properties of a linear order.)
We shall freely use the fact that our B has these properties in subsequent
proofs and refer to it by (*).

As in [28, 2.4] and [29, 3.3] we can now prove that the midpoint of a
segment ab, defined as a point on line ab which is equidistant from a and b,
which by (7) has to lie between a and b, is unique, i. e. that

a # bA L{abm) A ma = mb A L(abn) A na = nb — m = n. (9)
Using (*), A15, (7), A4(i), we can now prove that
(Yabe)(3™W) a # ¢ — (B(ab'c) v B(ach')) Aab = ab/, (10)

as well as that the d in A15 is unique whenever ¢ # a. For a # ¢ we will
designate the ¥’ in (10) by T'(abc) and the d in A15 by T"(abc).
We also have

B(abc) — (') B(ab'c) A cb = al. (11)

PROOF . By Al4, (3m) B(amc)Ama = me, and by A15 (3V') B(bmb')Amb =
mb'. By (*) we have B(abm) or B(amb), and in both cases, using (*), Al,
A2, and A12 or A10, we deduce cb = ab/, and, using A10 and (*), we get
B(abc).

A consequence of (11), (10) and A5 is
B(abc) A (B(cb'a) V B(cab')) A ab = cb' — B(cVa). (12)

We now define the notion of segment inequality for segments sharing a
common endpoint by

ab > ac ¢ (3) Blac'b) A ac = ac'. (13)
Any two segments sharing a common endpoint are comparable, i. e.

ab > acV ac > ab. (14)
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If a = ¢, then (14) can be seen by setting ¢ = a in (13). Suppose a # c.
Let b := T(abc). If B(ab'c), then ac > ab, as seen by choosing ¢ = ¥ in
(13). If B(ach'), then we must have a # b, since ab = ab/ and ¥/ # a (by (8),
A3), so, by A10, we have B(aT (acb)b), so ab > ac, by (13) with ¢ = T'(ach),
establishing (14).

A useful expected property of the segment-inequality relation is

ab > ac — (3¥') B{ach') A ab = ab'. (15)

To establish it, notice that, if a = ¢ we may choose ' = b and we are done.

If a # c, then, since, with ¥’ = T'(abc), we have (B(acb’) Vv B(ab'c)) Aab = ab/

and, by (13) (3¢) B(acd'b) A ac = ad/, we get, by Al and A10, that B(ach').
From (10), A10, (8), A3, Al we deduce

(Vabed )(3Y') ac = ac’ A B(abe) — B(ab'd)Aab=ab Nbe=b.  (16)
We now prove that the > relation is transitive, i. e. that
bc > ba A ab > ac — cb > ca. (17)

Proor . By (13) (3p) B(bpc) A ba = bp and (3q) B(agb) A ac = aq. By (16)
and A5 (3¢') B(bg'p) A bg = bg' A qa = ¢'p, so, by Al, A2, A4(i), ac = pq'.
By (*) B(epq'). By (11) (3r) B(er¢') A¢'p = cr. From ac = pq’ and ¢'p = cr
we get, using Al, A2, A4(ii), ca = cr. By (*) we have B(crb) as well, so
cb > ca, by (13) with ¢ =r.

Using (13), (10), A10, A4(i), and (*), we get
ab> acAac> ad — ab > ad. (18)

We shall now prove that in every trilateral there is a side which is greater
or equal than the other two, i. e. that

(ab>acAba>bc)V (be > baAcb> ca)V (ca > chbAac> ab). (19)

PROOF . By (14) ab > ac or ac > ab. Suppose ab > ac. By (14) ba > be
or bc > ba. If ba > bc then we are done, as the first disjunct of (19) holds.
If be > ba then, by (17), we have ¢b > ca, and we are done, as the second
disjunct of (19) holds. Analogously for ac > ab.

We can also prove that “if equals are added to equals, the wholes are
equal” (Euclid’s Common Notion 2), in the following sense:

B(abc) A B(ab'd)ANab=ab Nbc=¥c — ac=ac. (20)
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ProOOF . By (10) (3¢") (B(ab'd") vV B(ad'V)) A ac = acd’. By A10 we have
B(ab'c") and be = b'¢”. By A2, A4(ii), (*) and (7) we get ¢’ = .

Another variant of the same Common Notion 2 we can prove is
B(d'ab) A B(abb') A aa’ = bb' — ba’ = ab'. (21)

Proor . With m = M (ba) we have ma’ = mb’ (by (20), bearing in mind
that B(maa') and B(mbb') by (*)), so All gives ba’ = ab'.

We can also prove that the subtraction of “equals” is valid also in the
following case

B(abc) A B(ab'd) Nac=ad ANbe=bc — ab=al'. (22)

PrOOF . By (10) (3") (B(ab’d) v B(adb")) A ab = ab”. By A10 we have
B(ab’d) and bc = b, By A4(ii), A1, and A2 we have b = b". By (¥)
and (7) we get V' =¥'.

From now on, we shall refer to a use of Al, A2, and A4(i) as a use of
(1), and when using the first two axioms we shall write “by (**)”. We now
turn to the proof of a key result, the transitivity of the congruence relation,
which is a 6-variable statement, namely

ab=cdNcd =ef — ab = ef. (23)

PRrROOF . By (19) one of

(i) ae > ac and ea > ec, (ii) ac > ae and ca > ce, (iii) ce > ca and ec > ea
must hold. We need to deal only with cases (i) and (ii), since (iii) can be
reduced to (ii) by noticing that (23) can be rewritten using (**) as

ef =cdNcd=ab— ef = ab, (24)

and (iii) for (23) corresponds to (ii) for (24).

We now distinguish two cases: (@) ab > ae and (3) ae > ab (by (14) one
of the two has to hold).

Suppose (a) holds. Then, by (15), (3z) B(aex) A ab = azx. By A17(ii)
(3p) ax = ap A ap = ep. By A4(i) ab = ap, and since ab = cd as well, we
get, by (1), cd = ap and cd = ep. From this and cd = ef we get, by Al and
A4(ii), ep = ef. From this and ab = ep we get, by A4(i), ab = ef, proving
(23).

We can now prove yet another variant of Common Notion 2, which reads

B(fae) A B(ach) Aaf = ac A ea = bc— ab = ef. (25)
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Figure 2. Proof of (23) in case ab > ae.

PROOF . Let d = T'(aec). Then B(cad) and ad = ¢b (by (f)). By (21) we
get ab = cd, and, by A1l and (**), cd = ef. Since, by (13), ab > ac and, by
(11) and (**), ab > ae, we are in case («), so we may conclude ab = ef.

So we need to prove (23) only in case (8) holds.

Suppose (i) holds, and a, c, e are three different points (else there is noth-
ing to prove, as (23) follows from A4(i) and Al). By (15) (3h) B(ach)Aae =
ah. By A17(ii) (dp)ah = ap A ap = cp. By A4(i) we get ae = ap. By Al5
(3d") B(ped') A ed = ¢d’ and (Fb') B(pab') A ab = ab'.

We now turn to the proof of

dp>de. (26)

By A15 (3z) B(d'cx) A ce = cz. Since ea > ec, (3y) B(eya) A ec = ey (by
(13)). By (10) (3z) (B(azp)V B(apz)) Aay = az. Since we also have ae = ap
and B(aye) (by Ab), we have B(azp) and ye = zp (by A10). By (}) we get
ec = pz. By (10) (Fu) (B(puc) V B(pcu)) A pz = pu, thus B(puc) (by Al0),
and ec = pu (by A4(i)). Since we also have ce = cz, we get, by (1), cx = pu.
Since B(puc), we must have B(czp) by (12) and (*). By Al13 d'z > d'e.
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r

Figure 3. Proof of (23) in case ae is the longest side of trilateral ace, and ae > ab.

Since B(czp), B(d'cx), B(pcd'), by (*) we get B(d'zp), so d'p > d'z. By
(18) we have (26).

By (26), (15), A4(i), and A17(ii) (3¢)d'p = d'qAd'q = eq. Since pa = pc
(by (**)), ab/ = cd' (by (1)), B(pab') and B(pcd'), we get pb/ = pd' (by
(20)). Let ¢ = T'(eqa). Repeated use of (}) gives pb' = eq and pb/ = eq’. Let
go = T'(ab'e). Given that ap = ae as well (by Al), we have pb' = eqy (by
A11), so by (*), A15, and (7), go = ¢/, so ab/ = aq’ and B(eaq'), thus ab = aq’
(by A4(i)). Let € be the reflection of e in a (i. e. B(ea€’) A ae = a¢’ (which
exists by A15)). Then B(ag'e’), given that ab = aq’, B(eaq’), ae > ab (by
(3)), by (13) and A10. Given that, as we have just established, the conditions
of (i. e. the antecendent of) A17(i) are satisfied, (3r) ae = ar Aeq’ = er, thus
eq = er as well (by A4(i)). By (16) (Im) B(d'mq) Ad'c = dm A cp = mq and
(3n) B(gne) Agm = gqn Amd' = ne. By (10) (3n')(B(rn'e)V B(ren')) Arn’ =
ra. By A15 (30") B(rab”)Aab’ = ab”. Since ae = ap, ae = ar, we get ap = ar
(by (1)). By All, and (**) we get ¥’p = b"r. Given that ab = ab/, c¢d = cd
and ab = cd, pb/ = pd', we get, by (1), pd = rb”. Since pd' = d'q, we get
d'q=rb" (by (1)). But d'q = eq, thus, by () rb” = eq. Given that eq = er,



396 V. Pambuccian

J

q

Figure 4. Proof of (23) in case ac is the longest side of trilateral ace, and ae > ab.

we get re = rb” (by (1)). Since B(rn'e) (by A10) and rn’ = gn (by (1),
using gn = gm (by Al), gm = cp (by (**)), cp = pa (by (**)), pa = ar (by
(**)), ar = rn’ (by (**))). Since B(qne) eq = er, nqg = n'r and B(rn'e), we
must have en = en’ (by (22)). Since, by Al, rb"” = re , ra = rn/, and also
B(rab”), B(rn'e), we have, by Al0, ab” = n’e. Given that ab = ab” and
ef =en', and also ab” = en’ (by A2), we get ef = ab” and then ab = ef by
applying (1).

Suppose (ii). Since ac > ae, by Al17(ii), (15), and A4(i), (Ip)ac =
ap A ap = ep. By Al5 (3f') B(pef') Aef = ef’ and (V') B(pab') A ab =
al/. A proof identical to that of (26) shows that pf’ > c¢f’, and thus, by
(15), A4(i), and A17(ii), (3q) f'p = fla A f'lq = ¢g. By (10) and A10,
(Fe)B(f'eq)Anfle= fle hep=€'q, (3d') B(qgd'c)Age' = qd' Ae'f' = d'c. By
(1) we get ef = d'c. Since cd = ef as well, we get cd = cd’ (by A4(ii), (**)).
Repeated applications of (1) give ac = qd'. Let t = T"(ed'a) and u = T'(abc).
Given that ¢t = au (by (1)), B(act), B(cau), we also have at = cu (by (21))
and cq = at (by (25)), thus cg = cu (by A4(ii)). Since ac > ae and ae > ab
(by (8)), we have ac > ab (by (18)), so B(auc) (by (13) and A10, bearing
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in mind that au = ab (by (}) and A4(ii)) and ac’ = ac), where ¢’ denotes the
reflection of ¢ in a. By A17(i) (3r) ac = ar Acu = cr, thus, by A4(i), cq = cr,
as well. By (10) and A10 (3d") B(cd"r) Aed = cd’ ANd'q = d'r. By Alb
(F") B(rab”) A ab = ab”. Using (}) we get ar = ap, ab” = ab/, so, by All,
rb" = pt/. By (f) we get d'q = ac, thus d'q = ar, and, by A4(ii) and (**),
ar = d"r. Since we also have cd = c¢d” (by A4(i), Al) and cd = ab (by Al),
ab = ab”’, we get, by A4(i) and A1, ¢d” = ab”. From d"c = ab” (by (**)),
rd” = ra (by (**)), and B(rd"c), B(rab"), we get, by (20), rc = rb”. Since
cq = cr, cqg = qf' (by (**)), ¢f = f'p (by (**)) as well, we get b"r = f'p (by
(1)) and, bearing in mind that rb"” = pb’, we obtain f'p = pb’ (by A4(ii) and
(**)). Since pe = pa (by (**)) as well, and bearing in mind that B(pef’) and
B(pab') we get ef’ = ab’ (by (**) and A10). Since ab=ab’ and ef = ef’ as
well, we get ab=ef (by (1)).

From now on, we shall use Al, A2, A4, (4), (8), (6), (23) without men-
tioning them, or by mentioning use of (). Given two points o and a we
denote the unique point a’ for which B(aoa’) and oa = od’ by o,(a).

We can show that somewhat more than A21 holds, namely that

(Jabc) ~L(abc). (27)

PROOF . Let a # b, as given by A21. By A17(ii) (3¢)ab = ac A ac = b, so
we cannot have L(abc), for else ¢ would have to be the midpoint of ab, thus
B(acb), which together with ac = ab implies ¢ = b (by (7)), which in turn
implies a = b (by (4)).

We now prove that reflections in points are isometries, i. e. that

ab = o,(a)o,(b). (28)

PROOF . If 0 = a or 0 = b then o,(a) = 0 or 0,(b) = o, and (28) is part of
the definition of o. Suppose a # 0 and b # o. Let @’ = g,(a), b’ := o,(b),
a" := T'(oab) and V' := T’'(oba). By (*), we have (B(oa"t') vV B(ob'a"))
and (B(oad't") v B(ob"a’)). Since ob/ = ob’ and od' = o0a”, we have, by
A10, B(oa"b') A B(oa't") or B{ob'a") A B(ob"a’). By Al12 ab = o"V’ and
b =a"t’, thus ab = d'V.

We now prove that segment transport is possible on any given ray, i.e.

that
(Vabed)(e) B(cde) A ab = de. (29)

PROOF . Let 0 := M(ad), ' = 0,(b). By (28) ab = db’. By A15 (Je) B(cde)A
db' = de, thus ab = de.
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As in (10), we can prove, using (*), (29), and A15, that

(Vabed)(F™1e) ¢ # d — (B(ced) V B(cde)) A ab = ce. (30)
We also have

B(abc) Aab = ab' Aac = ad Abe=bd — B(ab'd). (31)

PROOF . If a = V/, then B(ab'd) holds for all ¢. Suppose a # b'. Let
" := T(ach'). Since acd’ = ad, and ¥'" = V', B(ab'd") (by A10), we get
d'd" = d'd (by A9), implying ¢’ = ¢, so B(ab'd).

We can now prove a result that could be stated as “isometries preserve
the betweenness relation”, i. e.

B(abc) Nab=a'b Nbc=bcd Aac=d'd — B(d'b<). (32)

PROOF . Let 0 := M(aa'). By A15 (Fb") B(oab”)Aab = ab”, (3¢") B(oacd”) A
ac = ad’. By (*) and A10 B(ab"d’) and bc = ¥'¢’. By (28) ab’ =
d'o,(b"), ad’ = do,("), bV'd" = o,(b")o,(c"). By (*) and (31) we get
B(d'a,(b")oo(c")). By (1) we get d'oo,(b") = o'V, do,(") = o/, and
ao(b")oo(d") = b, and the desired conclusion follows from (31).

We now show that in A9, B(abe) can be replaced by L(abe). Note that
A9 remains true if B(abe) is replaced by B(bae) given the commutativity of
A (we write bc = bd A ac = ad instead of ac = ad A bc = bd). To prove that
it remains valid if B(abe) is replaced by B(aeb) as well, notice that, by A9,
op(a)c = op(a)d. By (*), B(op(a)be), so we can apply A9 to get ec = ed. We
have thus shown that

a#bAac=adAbc=bdA L(abe) — ec = ed. (33)
Using (33) and the definiteness of = we get

a#bA L{abe) Nac=ad Nbc=bd —c={. (34)
We can extend Al0 to

Bfabe) A (B(a'b'd) v B(d'db)) Aab=a't' Aac=d'd (35)
— B(@'Vd)nbe=1b{.
PROOF . Let o := M(ad'), V' := o,(b), ¢’ = 0,(c). By (28) and (32),

B(a't'd"), ab = o'V, ac = /", be = b'¢”’. The desired conclusion now
follows from A10 and ().
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We also have

(Vabea't')(371) (a # b A L(abe) A ab = d'V) (36)
— (L(d'VYNac=d'd Nbe=bC).

PROOF . Suppose B(abc) V B(bca). By (30) (3¢) (B(d'b/) v B(d'dV)) A
ac = a/c. The desired conclusion now follows from (35) and (34). Suppose
B(cab). By (29) () B(t'a'd) Nac = d'd, so (*) and (34) imply the desired

conclusion.

We first define what we mean by perpendicularity, i. e. what we mean
when we write ‘line ab is perpendicular to line bc’.

ab L bc:— a#bAb# cAac=aoy(c). (37)
Notice that, by (33) and A7, we have
ab L bc A L{abx) Az # b — xb L be. (38)

Perpendicularity, as defined by (37), is, according to (38), a relation between
the line ba, with b as a distinguished point on it, and the segment bc. We
show next that it is the line bc, with b as a distinguished point on it, rather
than the segment be, which is the relevant notion involved in perpendicular-
ity.

ab L be AN L(bed) Nd#b— ab L bd. (39)

PROOF . Let a’ := T'(bca), d’ := T(bda). By (38) we have a’b L bc. By A12
a'd = dc A dop(d) = dop(c) or doy(d) = d'e Ad'd = dop(c). By (38) we
have d'c = d'op(c). Thus a'd = a’op(d), and since a’ # b and b # d, we have
a'b L bd. Since L{a'ba) and a # b, we have ab L bd (by (38).

It follows from (28) that L is symmetric, i. e. that

ab L bc — ¢b L ba. (40)

We can show, using A17(ii), that to every line ab there is a perpendicular
to that line. Suppose a # b. According to A17(ii) (3c) ab = ac A ac = be.
If we denote by o the midpoint of ab, then co L oa (by (37)). We can now
prove exactly as in [28, §4] that there is a unique perpendicular through
any point to any line, and that the reflection in every line exists (and the
reflected point is unique) and is an isometry. Notice that this is possible
since the only plane separation axiom used in all the proofs we need from
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[28, §4] is All. For a # b, we shall denote by F(abc) the footpoint of the
perpendicular from c to ab.
We now turn to the proof of

~L(abz) A L(abc) A L(A'b'dYANab=ad' ANbe=bd ANac=d'd (41)
Nz =d'r' ANbx=bx — xze=12'd.

PROOF . Let o be the midpoint of aa’ and reflect o', V', ¢, 2’ in 0. Given that
reflections in points are isometries, it turns out that it is enough to prove
(41) with @’ = a. So, assume the hypothesis in (41) with o’ = a holds, and
that b # b (else we must have ¢ = ¢, and so © = ' or else, if z # 2/, then
(41) is (33)) and let m be the midpoint of bb'. The reflection of ¥/, c,z’ in
am (a line if a # m, the point a if @ = m) maps ¥’ and ¢ into b and ¢
(¢ is mapped into ¢ since reflections in lines or points are isometries, and
also (34)) and z’ into 2", and az” = az’, thus az” = az, V2’ = ba”, thus

bxr = bz, dx’' = cz”. By (33) we have cx = cz”, thus also cx = 7.

We have now reached an important step in the proof, as we have proved
that all of Sorensen’s [32] (cf. also [25, p. 385-386]) axioms for non-elliptic
metric planes — i. e. L(aba) (by (1) and (2)), L(abc) — L(cba) A L(bac)
(by (1) and A5), a@ # b A L(abc) A L(abd) — L(acd) (by (1), A7 and A6),
(3), (4), (6), A1, (23), (36), (41), existence and uniqueness of the reflection
in a line, existence and uniqueness of the reflection in a point, existence of
the footpoint of a perpendicular to a line from a point outside it, reflections
are isometries, A20, “If x,y, z are three different collinear points, and the
segments zy and yz have midpoints, then there is a point which is equidistant
from z and 2” (a trivial consequence of A14), and (27) — hold in (X \ {A18,
A19, A22}) U {(1)}, so all models of ¥ are nonelliptic metric planes (cf. [1])
with free mobility (by Al4, A15) and non-Euclidean metric (by A22).

By Bachmann’s Haupt-Theorem (cf. [2]) the point- and line-sets of every
model 9 of ¥ are subsets of the point- and line-sets of a projective-metric
plane B(K, k) over a Pythagorean field K, such that the point-set Pyy of I
consists entirely of points (a,b, 1)K, and contains the point (0,0,1)K, and
the line-set Loy of 9 contains every line of (K, k) which passes through a
point in Pyy.

A projective-metric plane P(K, k) consists of points, (a,b, c)K, with at
least one of a,b,c nonzero, lines [u,v,w|K, with at least one of u,v,w
nonzero, an incidence relation between points and lines, such that point
(a,b,c)K is incident with line [u, v, w]|K if and only if au + bv + cw = 0, an
orthogonality and a congruence relation defined by

[u,v,w]K L [u,v,w'|K & uu' 4+ vv' + kww' =0,



Simplest Axiom System for Hyperbolic Geometry 401

and, for a, b, ¢, d with Q(a) # 0, Q(b) £ 0, Q(c) £ 0, Q(d) £ 0,
F(a,b)? _ F(c, d)?
Q(2)Q(b)  Q(c)Q(d)’
where by u we have denoted (zy, yu, 1)K, F(u,v) = k(yzy + yuyv) + 1 and
Q(x) = F(x,x).

We shall write from now on (a, b) for all points (a,b, 1)K in Pyy.

From A19 we conclude, just like in [23, p. 134-135], that —k € K2, and
thus that it may be normalized to k = —1.

We now want to prove that the inner form of Pasch’s axiom holds in
Y. It was shown by H. N. Gupta [9] that the full Pasch axiom follows from
the inner form of the Pasch axiom together with the other axioms of plane

absolute geometry, all of which have been shown to be consequences of ..
We first show that

ab=cd &

(42)

(a,0) € Ppp = 1 —a% ¢ K2 (43)

PROOF . Since (0,0) and (a,0) have a midpoint (z,0), we get, using (42),
1—a?=(1-az)

Also,
There exists a € K such that (a2,0) € Py. (44)

PROOF . Let o := (0,0), p := (b,0), for some b # 0 (such a point must
exist by A21) and let m be the footpoint of the perpendicular from p to the
line y = %bz (i. e. the line [—1,2b,0] K, which belongs to Lgy since it passes
through o, a point in Pyy). Let o’ := oy, (0). Since po = po’, we find, using
(42), that the coordinates of o' are (2b(b+ (2b)71)72, (b + (2b)"1)72). The
footpoint f of the perpendicular from o’ to the y-axis (the line [1,0,0]K) is
(0, (b + (2b)71)~2) and T(ofp) is ((b+ (2b)71)72,0).

We now show that
x = (r,0) € Pp=>z € K>V —2 € K2 (45)

PROOF . We show that, with o = (0,0), a = (a2,0), a’ = (—a?,0), as in (44),
an arbitrary point x = (z,0) is such that B(aox) if and only if —z € K?,
and is such that B(a'ox) if and only if x € K2. By A18, if B(aox), then
there exists a point y = (0,y) such that the lines xy (= [y, z, —zy]K) and
ay (= [y, a?, —a?y]K) are perpendicular, i. e. such that y? +a2z —a?zy? = 0,
soz = —y%(a®(1 —y?))7L, i. e. by (43), —z € K2. In case B(a'ox), we get
= y%(a®(1 - 9?))7%, i. e. € K? (by (43)). The desired conclusion now
follows from the fact that for every x = (x,0) we must have one of B(aox)
or B(a'ox).
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Given (45), we can now define an order relation on the coordinates of
points in M by letting a < b if and only if b — a € K2\ {0}.

Ifo= (Oa 0)7 a= (070)7 b= (07 b)7 (46)
then B(oab) & (0<a<bVb<a<0)

PROOF . By A18 there is y = (a,y) such that oy is orthogonal to yb, i. e.
such that 42 = (b — a)a.

With F(abx) denoting, for a,b,xz with —L({abz), the footpoint of the
perpendicular from x to the line ab, we also have

—L(abd) A B(abc) — B(aF(adb)F(adc)). (47)

PROOF . Since we have free mobility and isometries preserve the betweenness
relation, we may take a = (0,0), ad to be the z-axis, b = (z, Ax), ¢ = (y, Ay).
There is nothing to prove if a,b,c are not different. Let b’ = (a,0) and
¢’ = (b,0) be two points on ad such that ab = ab’, ac = ac/, bc = b/c’.
The first two give a? = 22(\? + 1) and b? = y2(A\2 + 1), and from the third
we get, using the equations just obtained, ab = zy(1 + A2?). Since B(oa'b’),
we must have, by (46), ab € K? and 0 < a < b or b < a < 0, thus we must
have either 0 < z < y or y < z < 0, thus, with x = (2,0) and y = (y,0),
B(axy) (by (46)).

We can now prove the inner form of the Pasch axiom, i. e.

(Vabede)(3f) ~L(acd) A B(abe) A B(ade) — (B(bfe) A B(cfd)).  (48)

PrOOF . Notice that, by A18, 9 is metrically convex, i. e. if a, b € Pyy, then
Pyy also contains all points x on the line ab for which there exists a point
d = (m,n,1)K in PB(K, —1) such that dx L xa and ad L db. In particular,
if x = (o, ) is on ab and both « and 3 are between (in the sense of the
order relation < we have introduced earlier) the z- and y- coordinates of a
and b, then B(axb). It is now a matter of routine computation to find the
intersection point of the lines c¢d and be , where we may choose a = (0,0)
and ad to be the z- axis, and to prove that its coordinates lie between those
of the endpoints of the segments. Given (47), this establishes (48).

We now know that 91 has to be an absolute plane, so we may use Pejas’s
[27] classification of absolute planes and conclude as in [23, p. 134-135] that
M must be isomorphic to the Klein space over K, a Euclidean ordered field.

We have thus proved that

THEOREM 3.1. 3 is an axiom system for plane hyperbolic geometry over
Euclidean ordered fields, i. e. every model of % is isomorphic to the 2-
dimensional Klein model over a Fuclidean ordered field.
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4. The constructive axiom system

We shall now provide a constructive axiom system for plane hyperbolic ge-
ometry, expressed in the language Lo, :=L(T", C1,Cy, K1, Ko, P, A’, Hy, Hs),
which contains only ternary operation symbols having the following intended
interpretations: T”(abc) is the point d on the ray opposite to ray ac with
ad = ab, provided that a # ¢ or a = b, and arbitrary otherwise; C;(abc), for
i = 1,2, stand for the two points d for which da = db and da = ac, provided
that a # b and B(abc), arbitrary points otherwise; K;(abc), for i = 1,2,
stand for the two points d for which ad = ab and bd = be, provided that ¢ is
strictly between b and o,(b), two arbitrary points, otherwise; P(abc) stands
for the point d for which da = db and B(adc) vV B(bdc), provided that a,b, ¢
are three non-collinear points, an arbitrary point, otherwise; A’(abc) stands
for the point d on the ray ac for which dd’ = ab, where d’ is the reflection of
d in the line ab, provided that a, b, ¢ are three noncollinear points, arbitrary,
otherwise; H;(abc), for i = 1,2, stand for the two points d for which db L ba
and ad L dc, provided that a, b, ¢ are three different points with B(abc), an
arbitrary point, otherwise.

We could have chosen to assign a conventional value to these operations
whenever they are left “arbitrary”, but we felt that there was no good reason
to do so, as each such convention adds an axiom to our system without
carrying any geometric meaning.

To shorten and improve the readability of the axioms, we introduce the
following abbreviations:

o(ab) := T'(abb),

T (abc) := T'(abo(ac)), 50)
a(ab) := C1(c(ab)bb), 51)

(49)
(
(
M(ab) := P(a(ab)o(ac(ab))a(ba)), (52
(
(

p——

B(abc) == o(T' (acb)a(T" (ach)a)), 53)
n(abc) := P(a(T'(acb)a)B(abc)c), 54)
11(abc) := T'(w(abc)ca(T’ (ach)a)), (55)
To(abc) := T"(w(abc)cB(abe)), (56)
p(abe) :== M (11 (abc)2(abc)), (57)
R(abc) := o(u(abe)e), (58)

(59)

ba Lac:ea#bAbF#cAc#aAT(co(ab)b) =b, 59
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B(abe) & T'(bac) = aV b=c, (60)
Z(abc) = a #bAb#c AT (bac) = a, (61)
ab=cd: & (a=bAc=d)V(a#bA((a#c (62)

AT (ac(M(ac)d)b) = b) V (a = ¢ A T(adb) = b))),

o being defined for all values of the arguments, a and M being defined
whenever a # b, T' whenever a # ¢, and the remaining operations whenever
a, b, ¢ are such that —~L{abc).

The intuitive meaning of some of these abbreviations are: T'(abc) is the

point d on the ray ac for which ad = ab, provided that a # ¢, an arbitrary
point, otherwise; M (ab) stands for the midpoint of ab, provided that a #
b; R(abc) stands for the reflection of ¢ in ab, provided that a,b,c are not
collinear, an arbitrary point, otherwise; L, B, = have the same meaning as
in the previous section, as does L, which is defined as in (1); Z(abc) stands
for b lies between a and ¢, being different from a and different from c.

The axioms are A7, A21, and

C 1. T'(aab) = a,

C2. b#£aAc#a— T (abT'(ach)) =b,

C3. a#cAha#bAT(aoc(M(ac)d)b) =b — T(co(M(ca)b)d) = d,

C 4. a#c— o(M(ac)c) = a,

C 5. a#b— M(ab) = M(ba),

C6. a#dAT(abd) =dAT(acd) =d — T(abc) = c,

C 7. T'(baa) =a — a=0b,

C8 b#dAc#dANT (bad) =a AT'(cbd) =b— T'(bac) =aVb=c,
C9 a#bAb#cAc#aNc#dANT(adc) =cAT(bdc) = ¢ — d = R(abc),
C 10. —L(abd) A —L(acd) A R(abd) = R(acd) — L(abc),

C11. L{@bc)ha#bAa# cAb# cAT(ade) =cANT(bdc)=c—d=c,
C 12. =L(abc) A B(abd) — T(dR(abc)c) = c,

C 13. a # ¢ A B(abe) A T'(adc) = ¢ — B(aT(abd)d) A be = T (abd)d,

C 14. a # b A B(abe) A T(bda) = a — ac = dI"(bed),
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C 15. a # b A B(abe) A T(adb) = b — de = bT(acd),
C 16. a # b A B(bac) A T(adb) = b — dc = bT"(acd),
C 17. a # b — B(aM(ab)b) A M(ab)a = M(ab)b,

C 18. ¢ # a — B(cT'(cbI"(abc))T’ (abc)),

C 19. ¢# a — T(aT"(abc)b) = b,

C20. c#£aNnT (abc)=a— a=0b,

C 21. =L(abc) — P(abc) # a AT(P(abc)ba) = a
A(B(aP(abc)c) vV B(bP(abc)c)),

C 22. =L(abc) — —L(M (ab)M (bc)M(ca)),

C 23. (i) Z(bco(ab)) — T'(aK;(abc)b) = b A T(bKj(abc)c) = c,
(i) B(abc) Aa #b— T(Cj(abec)ba) = a AT (aCj(abc)c) =

C 24. (i) Z(beo(ab)) — R(abKi(abc)) = Ks(abe),
(ii) B(abc) A a # b — R(abC1(abc)) = Ca(abc),

C 25. Z(abc) — ab L bHj(abc) A aHj(abe) L Hj(abc)c,
C 26. Z(abc) — o(bH1(abc)) = Ha(abe),

C 27. =L(abc) — A'(abc) # a A (B(aA'(abc)e) V B(acA(abc)))
Nab = A'(abc) R(abA’ (abc)),

C28. —=abLbecVv-bcLcedV-ed L daV-—da L ab.

To see that II = {A7, A21, C1-C28} represents an axiom system for
plane hyperbolic geometry, notice that all the axioms of X can be deduced
from ITU{(49) — (62)}. The deductions are routine, so we shall only mention
the axioms in II needed in the proofs (the abbreviations involved, which will

also be used in the proofs, will not be mentioned).
By C2 and C1 we have T'(add) = d, so C6 implies

a # dAT(abd) = d — T(adb) = b. (63)

Al follows from (63), C3, C4; A2 from C3 and C5; A3 (in fact (4)) from
C1 and (2) (an immediate consequence of (60)); A4 from C6, C5, Al, and
(4); A5 from C1 and C2; A6 from C7 and C8; A8 from C9, C10, and C11;
A9 from C12; A10 from C13 (if @ = ¢ in A10, then b,d, e must be equal to
a as well, so the consequent is B(aaa) A aa = aa); All from C14; A12 from
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C15, C16, A13 from C18, Al4 from C17 (when a = b, ¢ = a will do); Al15
from C19 and C20; A16 from C21; A17 from C23; A18 from C25; A19 from
C27; A20 from C22; A22 from C28.

It follows that every model of ITU {(49 — (62)} is isomorphic to the Klein
model over some Euclidean ordered field, the relations = and B having the
desired interpretation. From C19 and C2, C21, C23, C24, C25, C26, and C27
we deduce that 77, P, K;, C;, H;, and A’ have the desired interpretations
as well.

The operations C, K and H have been introduced in pairs, as well as
axioms C24, C26 added to the axiom system for the sole reason of having a
set of primitives which is invariant under (hyperbolic) motions.

We have proved that

THEOREM 4.1. Il is an axiom system for plane hyperbolic geometry. Its mod-
els are isomorphic to 2-dimensional Kleinian models of hyperbolic geometry
with Euclidean ordered fields, the operations of Leon having the desired in-
terpretation.

5. Axiom systems for Euclidean geometry

Let
C 29. a # b — Hi(o(ab)ab)o(ab) L o(ab)Ha(o(ab)ab)

be the constructive counterpart of —=A22, the axiom of the Euclidean met-
ric. It states somewhat more than —A22, which states the existence of a
rectangle, as it implies (with the help of a few universal axioms of absolute
geometry) the existence of a square.

THEOREM 5.1. (i). X' = {A1-A20,-A22} is an aziom system for plane
Fuclidean geometry over Euclidean ordered fields, i. e. all its models are
isomorphic to Cartesian planes coordinatized by Fuclidean ordered fields.

(if). (IT\ {C28, A21}) U {C29} is an axiom system for plane Euclidean
geometry over Euclidean ordered fields, the operations having the desired
interpretation.

PROOF . (i). We have shown that Sérensen’s axiom for non-elliptic metric
planes follow from X\ {A18, A19, A22}, so they are consequences of ¥’ as
well. Thus all models of ¥/ are metric-Euclidean planes with free mobility.
Using A19 we can show that the Euclidean parallel postulate holds in ¥'.
Let p be a point outside of line ab, with a # b, and let ¢ be a point different
from p and such that pq is perpendicular to pF(abp). Let = be a point which
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does not lie on pg. Then, by A19 (as well as A15 and universal properties of
congruence valid in metric-Euclidean planes), there exists a point y on ray
px, such that yF (pqy) = pF(abp). Since the metric of the plane is Euclidean,
y must lie in ab, so line px intersects line ab.

From here on the proof is identical to that presented in [37].

(it) follows from (i).

6. Simplicity

Both IT and (IT \ {C28, A21}) U {C29} are axiom systems that are simplest
possible from several points of view. Their language is the simplest, since
it contains only ternary operations, and it is impossible to axiomatize Eu-
clidean geometry by means of binary operations only, as shown in [4]. So, if
we want one language in which to axiomatize both Euclidean and hyperbolic
geometry, then we need to have at least one ternary operation. They are
also simplest in that all their axioms are prenex sentences with at most 4
variables. By a theorem of D. Scott [31], which, although stated for the Eu-
clidean case only is valid (with the same proof) in the hyperbolic case as well,
every axiom system in a language that does not contain individual constants
and whose set of primitive notions is invariant under isometries (in our case
they are for those values for which they are meaningfully defined, which is all
we need), for n-dimensional Euclidean or hyperbolic geometry, has to con-
tain an axiom which is a prenex statement containing n+ 2 variables. They
are also simplest in the sense of quantifier complexity, all axioms, with one
exception, which is purely existential, being universal axioms. Although one
can axiomatize hyperbolic geometry by means of a binary operation (namely
by means of point-reflection, as done in [26] using only V3 axioms), one can-
not axiomatize it constructively by means of any set of binary operations,
each of which are invariant under the group of hyperbolic motions or that
of direct hyperbolic motions (so we are only interested in binary operations
w, such that w(ab) = ¢ & ¢(a,b,c), where ¢ is an existential formula in
Lp= with a, b, ¢ as only free variables, and such that, for fixed a and b there
is only one (or at most two) c¢ satisfying ¢(a, b, ¢) in hyperbolic geometry.)
To see this, we introduce the notion of a local operation. Let (K, <) be an
non-Archimedean ordered Euclidean field, let P be the ideal of its infinitely
small elements, i. e. P = {z € K : (Vn € N)z < 1}, and let § designate the
set {(z,y) € K xK|1—12%2—y%>0and ¢ P}. An operation is called local
if it leaves § invariant, i. e. if its value is in § whenever its arguments are in
F. Notice that every binary geometric operation w is local, as can be seen
by induction on the number of existential quantifiers in the definiens ¢ of
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w. Thus we cannot ‘reach’ faraway points by means of any set of geometric
binary operations in the following precise sense: We cannot constructively
define A’, which is a non-local operation (in fact the only non-local operation
in our constructive language) by means of local operations, as a = (0,0),
b = (3,0), and ¢ = (3,p), with p € P\ {0}, belong to F, but A’(abc)
doesn’t. Since no succesive application of local operations will move the
set {a, b, c} out of §, no finite set of local operations can define the same
operation as A'.

As far as ¥ is concerned, we do not know if it is simplest possible among
all Lg= axiom systems for plane hyperbolic geometry, in the sense that we
do not know whether there is an axiom system consisting of prenex at most
5-variable statements for it.

We do know that ¥’ is not simplest in this sense, since there is an axiom
system consisting of prenex at most 5-variable sentences for it (cf. [17], [18],
(21]).

We also know that plane hyperbolic geometry cannot be axiomatized in
L= by means of prenex at most 4-variable statements. This can be seen
by means of Ehrenfeucht-Fraissé games (see [13] or [14]) as done in [21], by
using the same strategy as in [21] to prove that the Duplicator has a winning
strategy in the Ehrenfeucht-Fraissé game with 4 moves.

One of the models is &, the Kleinian model for plane hyperbolic geom-
etry over the reals, and the other model, IR, is one with a non-transitive
congruence relation, being the 2-dimensional Klein model over the field of
real numbers, with the usual order structure, but with a congruence relation
that is strictly included in the usual congruence relation of K.

Let A= (U, Bg, =r) be the Klein model over the real numbers, i. e. B and
D will have the usual interpretation of “Betweenness” and “Equidistance”,
and U stands for the unit disk in R2.

Let Lg(abc) stand for “a, b, c are three collinear points in £”.

Let M= (U, Bgr, =gn), where ajag =gpagay iff ajap =g agas and one of
the following is true
(i) aza; bisects aga; in & for some {4, j,k,l} = {1,2,3,4};

(i) Lr(asajag) for some 4,5,k with i # jAj # k Ak # i and 4,5,k €
{1,2,3,4};

(iii) a;a; =g aay for some 4,5,k with 4 # jAj # kA Kk # i and 4,5,k €
{1,2,3,4};

(iv) the measure of one of the angles between ajag and agay is % for some
n € N\ {0}.

Since all the prenex 4-variable sentences (in fact, more than just the
prenex 4-variable sentences, but all we need are prenex ones, see [14]) which
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are true in K are true in M as well, and 9 does not satisfy (23), we have
shown that an Lp= axiom system for hyperbolic geometry must contain a
prenex b-variable sentence.
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