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More Powerful Tests From Confidence Interval p Values

Roger L. BERGER

In this article the problem of comparing two independent
binomial populations is considered. It is shown that the test
based on the confidence interval p value of Berger and Boos
often is uniformly more powerful than the standard uncon-
ditional test. This test also requires less computational time.

KEY WORDS: Binomial; Confidence interval, Contin-
gency table; Homogeneity test; Independence; p value, 2 x 2
table.

1. INTRODUCTION

The problem of comparing two binomial proportions has
been considered for many years. The most commonly used
test is Fisher’s Exact Test (Fisher 1935), a conditional test.
Barnard (1945, 1947) proposed an unconditional test for
this problem. Although unconditional tests are usually more
powerful than conditional tests, they are computationally
much more complex. But recent advances in computing
have made unconditional tests practical, and they are be-
ginning to appear in statistical software packages such as
StatXact 3 for Windows. In this article it is shown that un-
conditional tests based on the confidence interval p value of
Berger and Boos (1994) are often uniformly more powerful
than the standard unconditional tests.

Let X and Y be independent binomial random variables.
The sample size for X is m and the success probability is
p1. The sample size for Y is n and the success probability
is po. The binomial probability mass function of X will be
denoted by

m!

b(z;m,p1) = 'p:f(l—p1)m_’“', z=0,...,m.

zl(m —x)
Similarly, b(y;n,p2) will denote the binomial probability
mass function of Y. The sample space of (X,Y") will be
denoted by X = {0,...,m} x {0,...,n}. X contains (m +
1)(n -+ 1) points.

This kind of data is often displayed in a 2 x 2 contingency
table as follows:

yes no
Population 1 X m—X m
Population 2 Y n—Y n

R=X+Y t—R t=m-+n

In this table uppercase letters denote random variables and
lowercase letters denote known constants fixed by the sam-
pling scheme. Hence ¢ is the total sample size and R is
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the observed number of successes. Conditional inference is
based on the conditional distribution of X and Y, given the
observed marginal R =r = x + y.

Consider the problem of testing

versus Hy: p1 < pa. (1)

Ho: p1=p2
Exact tests for this problem will be considered. The sizes
of the tests are computed using the exact binomial dis-
tributions, not normal or chi-squared approximations. The
standard Neyman—Pearson paradigm of restricting consid-
eration to level-« tests and then comparing the powers of
these tests will be followed. For a specified error probabil-
ity « all tests considered are level-a tests. Tests that are
liberal, that sometimes have type-1 error probabilities that
are greater than «, are not considered. However, the tests do
not have sizes exactly equal to the specified «. Because of
the discrete nature of these data, equality can (usually) be
achieved only with a randomized test. Because randomized
tests are not of any practical interest, this paper considers
only nonrandomized tests.

The analysis in this article is unconditional. That is, the
size and power comparisons are based on the binomial dis-
tributions of the model. There is continuing debate as to
whether conditional or unconditional calculations are more
relevant for these problems. Little (1989) and Greenland
(1991) provided good recent summaries of the issues in
this debate. The purpose of this paper is not to continue
this debate. Rather, suffice it to say that this paper is rele-
vant to those situations in which the unconditional analysis
is appropriate.

2. USUAL UNCONDITIONAL TEST

Barnard (1945, 1947) first proposed an unconditional test
for this problem. Because of the computational difficulty
of unconditional tests, they were not widely used until re-
cently. Now, computing technology makes the use of un-
conditional tests feasible.

A commonly used unconditional test is the Z test pro-
posed by Suissa and Shuster (1985) and Haber (1986). De-
fine the Z-pooled statistic (score statistic) as

P2 — P
Vo0 —5) (& +3)
where p1 = x/m,ps = y/n, and p = (x +y)/(m + n), the

pooled estimate of p; = p, = p under Hy. Then the p value
for testing (1), using the test statistic Z, is

Z(may) =

)

pz(w,y) = sup Pp(Z(X,Y) > Z(z,y))
0<p<1
= sup b(a;m, p)b(b;n, p), (2)
0<p<1

(a‘»b)ERZ (Sﬂ,y)
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where Rz(z,y) = {(a,b):(a,b) € X and Z(a,b) >
Z(z,y)}. The p value is the maximum probability under
Hj of observing a value of the test statistic equal to or
more extreme than the value observed in the data. This is a
standard definition of a p value, such as is found in Bickel
and Doksum (1977, Sec. 5.2.B). Rejection of Hj if and only
if pz < o defines a level-« test of (1). The calculation of
the supremum in (2) must be done numerically. Typically
there is no simple formula for this value. This numeric max-
imization has been the cause of the computational difficulty
of unconditional tests.

3. CONFIDENCE INTERVAL p VALUE

Berger and Boos (1994) proposed a new method of com-
puting a p value. In the problem of comparing two bino-
mial proportions, if Hp is true, p = p; = py is a nuisance
parameter. Let Cs(z,y) denote a 100(1 — 8)% confidence
interval for p calculated from the data (z,y) and assuming
p1 = p2 = p. The confidence interval used in this paper is
the Clopper and Pearson (1934) interval based on X + Y,
a binomial(m + n, p) random variable if p; = p, = p. This
interval is easily computed from the formula

a
a+(b—a+1)Fap—at1),24,6/2

<p< (a+1)Fa(aq1),2(6—0),8/2 B
b—a+(a+ 1)F2(a+1),2(b—a),,8/2
where ¢ = z +y,b = m +n, and F, , 3,5 is the upper
100(3/2) percentile of an F distribution with v and 7 de-
grees of freedom.

The confidence interval p value, based on the statistic Z,
is defined by

po(z,y) = sup P(Z(X,Y)>Z(z,y)) + 8
p€Cs(z,y)
=| sup b(a;m, p)b(b;n,p) | + 6,

PECE(@.Y) (4 b)e Rz (x,y)

where Rz(z,y) is the same as in the definition of pz. pc
differs from p in that the supremum is taken over the con-
fidence interval Cs(x,y) rather than over the whole range
0 < p < 1, and the error probability 8 is added to the
supremum. If 8 = 0,pc is the same as pz. Berger and
Boos (1994) showed that this modification of the usual def-
inition of a p value yields a valid p value. That is, the test
that rejects Hy if and only if po(X,Y) < « is an uncondi-
tional level-« test. The error probability is specified by the
experimenter. Different values of 3 yield different p values
and tests. In this paper 8 = .001 is used (as suggested by
Berger and Boos).

Berger and Boos proposed the confidence-interval-based
p value for two reasons. The first is computational. In both
pz and pe the function to be maximized is the same. The
maximization over the smaller set, Cjs, can be much sim-
pler. The second is statistical. Having observed the data we
should be able to estimate p, and should not need to con-

sider values of p that are completely unsupported by the
data. In pc only those “plausible” values that are in the
confidence interval are considered.

This article points out that the confidence interval p
value can have a third advantage. It can produce tests with
higher power than the usual p value. And, remember, this
is achieved with less computational effort.

4. EXAMPLE

To see the improvement that can be obtained by using
pe rather than pz consider constructing a level-a test with
a = .10 for sample sizes m = 33 and n = 17.

An enumeration of pz(x,y) for all the sample points in X
shows that the point (z,y) = (23,15) has the largest value
of pz(z,y) that is less than or equal to o = .10. Z(23,15) =
1.454 and pz(23,15) = .0823. The sample point with the
next smaller value of Z is (z,y) = (0,1) with Z(0,1) =
1.407 and pz(0,1) = .1548. So (0, 1), or any other sample
point with a smaller value of Z, is not in the level a = .10
rejection region based on pyz.

Let the p value function for a sample point (z,y) be de-
fined by

o (pyz,y) = b(a;m, p)b(bsn,p).  (4)

2

(a,0)€Rz(z,y)

The p value function is the function that is maximized
in calculating pz and pc. In Figure 1 oZ(p;23,15)
(solid line) and a?(p;0,1) (long dashed line) are shown.
a?(p;23,15) < .10 = « for all values of p. Its maximum
value is pz(23,15) = .0823, which occurs at p = .524.
Because pz(23,15) is the largest p value not exceeding
a = .10,.0823 is also the actual size of the level o = .10
test constructed using pz. The addition of the single sam-
ple point (0, 1) to the rejection region causes a large spike
to appear in o (p;0,1). The maximum of oZ(p;0,1) is
pz(0,1) = .1548, which occurs at p = .026. It is not unusual
for the addition of a single sample point with = + y close
to 0 or m + n to create a spike like this.

In Figure 2 the sample points in X’ with pz(z,y) < .10 are
marked by O ’s. These are the elements of the level o = .10
rejection region defined by pz. Because the actual size

P(reject) for Three Tests

0.1

P(reject)

0.0

0.0 0.5 1.0
p=pl=p2

Figure 1. P(reject) for Three Rejection Regions Defined by {Z >
Z(23, 15)} (Solid Line), {Z > Z(0, 1)} (Long Dashes), and {pc < .10}
(Short Dashes).
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Figure 2. (s are Sample Points in Level a = .10 Test Defined by
pz, +'s and x's are Sample Points that Might be Added, and x's are
Three Points Added by Test Defined by p¢.

of this test is only .0823, not too close to o = .10, it
seems possible that some more points, some of the points
marked by x’s and +’s, for example, might be added to this
rejection region, and the resulting test could still be level
o = .10. The points marked by +’s and x’s are the points
that satisfy the “convexity” property of Barnard (1947). It
would take a great deal of computation to try each point
individually, then try pairs or triples of points, to determine
points that could be added. But the use of the confidence
interval p value easily identifies some points that can be
added.

Consider (z,y) = (21,14) with Z(21,14) = 1.368.
There are four sample points with Z(21,14) < Z(z,y)
< Z(23,15), namely, Z(0,1) = 1.407, Z(26,16) = 1.401,
Z(9,8) = 1.399, and Z(3,4) = 1.394. The p value func-
tion a?(p;21,14) is shown in Figure 3. The maximum of
this function, .1549, is greater than .10 because Z(0,1) >
Z(21,14). But pc(21,14) is calculated by maximizing over
the 99.9% confidence interval for p, calculated from the
data (z,y) = (21,14). Using (3) this confidence interval
is [.459, .881]. These confidence limits are shown in Fig-
ure 3. The maximum of o?(p;21,14) over this interval is
.0946, and this maximum occurs at p = .830. Therefore,
pc(21,14) = .0946 + 8 = .0946 + .0010 = .0956. Because
pe(21,14) < .10,(21,14) is in the level & = .10 rejec-
tion region defined by pc. In addition, two other points
are in the level o« = .10 rejection region defined by pc.
These are (26, 16) with ps(26,16) = .0949 and (9, 8) with

Confidence Interval P Value

0.1

P(Z > Z(21,14))

T
i
|
|
i
1
1
|
|
1
|
!

0.0

0.0 0.5 1.0

p=pl=p2
Figure 3. Confidence Interval p Value pc(21, 14) = .0956 is the
Maximum of o (p; 21, 14) + .001 Over the 99.9% Confidence Interval
[459, .881]; o (p; 21, 14) is the Function Shown, and the Confidence
Interval is Marked by Vertical Lines.
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pc(9,8) = .0906. These three added points are the points
marked with x’s in Figure 2.

The probability of the level a = .10 rejection region de-
fined by pc, that is, the rejection region consisting of all
the O’s and x’s in Figure 2, as a function of p = p; = po
is graphed in Figure 1 with a short dashed line. This prob-
ability is less than .10 for all values of p because this is a
level « = .10 test. But this probability is much closer to .10
than the probability of the rejection region for the Suissa
and Shuster test defined by pz. The actual size of the pc
test is .0946, the maximum of this function.

Because the rejection region of the level oo = .10 test
defined by p is a proper subset of the rejection region of
the level o = .10 test defined by p¢ the test defined by p¢ is
uniformly more powerful. The maximum absolute increase
in power occurs near p; = .785 and p, = .935. Here the
power of the pz test is .492 and the power of the pc test
is .557. This is a 13% increase in power. The maximum
relative increase in power occurs near the boundary of Hy
and H,, near p; = .835 and p, = .836. Here the power of
the pz test is .073 and the power of the p¢ test is .095. This
is a 30% increase in power.

5. CONSISTENCY OF IMPROVEMENT

In the previous section it was shown that, for a =
10 and (m,n) = (33,17), the confidence interval p
value defines a uniformly more powerful level-a test
than the usual unconditional p value. The question
arises as to the generality of this phenomenon. To in-
vestigate this we enumerated the level-a rejection re-
gions defined by pz and pc for @« = .10,.05, and
.01 for each of nine different sample sizes, (m,n) =
(10,10), (13,7), (16,4), (25,25), (33,17), (40, 10), (50,50),
(65,35), and (80,20). These sample sizes were chosen to
represent small to moderately large total sample sizes and
balanced to 4:1 unbalanced designs.

In 15 out of the 27 cases the rejection region defined by
pz is a proper subset of the rejection region defined by pc.
So the confidence interval p value defines a uniformly more
powerful level-« test. In another 9 out of the 27 cases the
rejection regions defined by the two p values are exactly the
same. In one case, & = .01 and (m,n) = (50,50), neither
rejection region contained the other and the power functions
of the two tests crossed. In the remaining two cases, o =
.01 and (m,n) = (13,7) and (25, 25), the rejection region
defined by pc is a proper subset of the rejection region
defined by pz, and pz defines a uniformly more powerful
test. The power functions for the nine tests with o = .10
are described more fully by Berger (1994).

Thus in most cases the confidence interval p value defines
a test that is the same or uniformly more powerful than
the test defined by the usual unconditional p value. Only
infrequently will the test defined by pc be inferior to the test
defined by pz. And in all cases the computation required
for pc is less than that required for pyz.

The reason that the rejection region defined by p¢ usually
contains the rejection region defined by pz is the following
fact. If there is no sample point in & such that o — 8 <



pz(x,y) < a, then every sample point with pz(z,y) < «
also satisfies pc(z,y) < a. That is, every sample point in
the level-a rejection region defined by pz is also in the
level-a rejection region defined by pe. This fact is true
because, if pz(z,y) < «, then pz(z,y) < a — 8, and hence

sup  Fp(Z(X,Y) =2 Z(z,y)) + 8
peCp(z,y)

sup P,(Z(X,Y) > Z(z,y))+ 3
0<p<1

= pZ(xay)_i_ﬁ
< (@-P+B=a

pC(x’y> =

IN

When § is small compared to «, as with the o = .001
recommended by Berger and Boos (1994) that is used in
this paper, it often happens that there is no sample point
with a — 8 < pz(x,y) < o. In such cases the test de-
fined by pc will be at least as powerful as the test defined
by pz. Note that this property applies in general to confi-
dence interval p values, not just this problem and this test
statistic Z.

6. OTHER TEST STATISTICS

Other statistics besides Z(z, y), such as the likelihood ra-
tio test statistic and p, — p1, can be used to test (1). Santner
and Duffy (1989, Exercises 5.11 and 5.12), Haber (1987),
and Martin and Silva (1994) list several possible statistics.
The experience with Z suggests that if another statistic is
used, the confidence interval p value might provide im-
proved power over the usual unconditional p value.

The power comparisons of Haber (1987) and Martin and
Silva (1994) suggest that the two statistics Z(z,y) and

(o))
(.4))

produce tests with the highest power. The statistic B(z,y)
was first proposed by Boschloo (1970) and McDonald,
Davis, and Milliken (1977). B(z,y) is the conditional p
value of Fisher’s Exact Test (Fisher 1935). Here B(z,y)
is not used as a p value, but rather as a statistic to order
the sample points. Small values of B(z,y) give evidence
for H, so the unconditional p value based on B(z,y) is

min(n,z+y)

>

a=y

B(.’E,y) =

pe(z,y) = sup Pp(B(X,Y) < B(z,y))
0<p<1
= sup b(a;m,p)b(b;n, p),
0<p<1

(a,b)€RB(z,y)

where Rp(z,y) = {(a,b): (a,b) € X and B(a,b) <
B(z,y)}. The confidence interval p value based on B is
defined as in (4), namely,

bcB (QJ, y)

=| sup b(a;m, p)b(b;n,p) | + 5.

PECE(2Y) (4 b)eRp (2,y)

Berger (1994) found that the p value function o® (p; z,y)
tends to be flatter than o?(p;x,y), especially for unequal
sample sizes. This agrees with Martin and Silva’s (1994)
finding that the unconditional test based on B usually has
higher power than the test based on Z, especially when m =
n. So there is less room for improvement of Boschloo’s
test. But Berger (1994) found that, as with pz and pc, the
confidence interval p value, pcp, usually defined a test that
was the same or uniformly more powerful than the test
defined by pp.

In comparing the tests based on the two confidence inter-
val p values, Berger (1994) did not find a clear preference.
Usually the power functions of these two tests crossed, with
one test having higher power for some parameter values and
the other having higher power for other parameter values.
Usually the power function defined by pop was higher on
a majority of the parameter space.

In their power comparison of tests for (1) Martin and
Silva (1994) considered two computationally intensive tests
they called M and M’. M is the test proposed by Barnard
(1943, 1947), and M’ is a simplified version of M. Both
methods involve construction of a rejection region by
adding one sample point at a time, with a good deal of com-
putation required to determine which point is added next.
Martin and Silva report that M’ and M require about 10
and 85 times the computation time required by pz or pg,
respectively. But M and M’ do provide some improvement
in power. In this paper it has been shown that confidence
interval p values provide an improvement in power over pz
or pg, but with less computation. It remains to be deter-
mined if the improvement in power provided by pc or pop
is comparable to the improvement provided by M’ or M.

7. CONCLUSIONS

Confidence interval p values can improve the power of
standard unconditional tests for comparing two binomial
populations. They also require less computational effort.
Thus they offer a promising new method for the analysis of
2 x 2 tables.

Similar, but less extensive, comparisons have been made
for two-sided tests. The results are qualitatively the same.
The confidence interval p value often defines a more pow-
erful test than the standard p value.

XUN2X2 is a Fortran program that will compute the
standard and confidence interval p values discussed in
this paper. The program will also perform unconditional
tests for multinomial, rather than two independent bino-
mial, 2 x 2 tables. XUN2X2 may be obtained by send-
ing the one-line message “get exact from general” to
statlib@lib.stat.cmu.edu.

[Received July 1994. Revised December 1995.]

REFERENCES

Barnard, G. A. (1945), “A New Test for 2 x 2 Tables,” Nature, 156, 177.
(1947), “Significance Tests for 2 x 2 Tables,” Biometrika, 34, 123—

138.
Berger, R. L. (1994), “Power Comparison of Exact Unconditional Tests for
Comparing Two Binomial Proportions,” Technical Report 2266, North

The American Statistician, November 1996, Vol. 50, No. 4 317



Carolina State University, Statistics Department.

Berger, R. L., and Boos, D. D. (1994), “P Values Maximized Over a Con-
fidence Set for the Nuisance Parameter,” Journal of the American Sta-
tistical Association, 89, 1012-1016.

Bickel, P. J., and Doksum, K. A. (1977), Mathematical Statistics: Basic
Ideas and Selected Topics, San Francisco: Holden-Day.

Boschloo, R. D. (1970), “Raised Conditional Level of Significance for the
2 x 2-Table when Testing the Equality of Two Probabilities,” Statistica
Neerlandica, 24, 1-35.

Clopper, C. J., and Pearson, E. S. (1934), “The Use of Confidence or
Fiducial Limits Illustrated in the Case of the Binomial,” Biometrika, 26,
404-413.

Fisher, R. A. (1935), “The Logic of Inductive Inferences,” Journal of the
Royal Statistical Society, Ser. A, 98, 39-54.

Greenland, S. (1991), “On the Logical Justification of Conditional Tests
for Two-by-Two Contingency Tables,” The American Statistician, 45,
248-251.

Haber, M. (1986), “An Exact Unconditional Test for the 2 x 2 Comparative

318 The American Statistician, November 1996, Vol. 50, No. 4

Trial,” Psychological Bulletin, 99, 129-132.

(1987), “A Comparison of Some Conditional and Unconditional
Exact Tests for 2 x 2 Contingency Tables,” Communications in
Statistics—Simulation and Computation, 16, 999-1013.

Little, R. J. A. (1989), “Testing the Equality of Two Independent Binomial
Proportions,” The American Statistician, 43, 283-288.

Martin Andrés, A., and Silva Mato, A. (1994), “Choosing the Optimal Un-
conditioned Test for Comparing Two Independent Proportions,” Com-
putational Statistics and Data Analysis, 17, 555-574.

McDonald, L. L., Davis, B. M., and Milliken, G. A. (1977), “A Nonran-
domized Unconditional Test for Comparing Two Proportions in 2 x 2
Contingency Tables,” Technometrics, 19, 145-157.

Mehta, C., and Patel, N. (1995), StatXact 3 for Windows: User Guide,
Cambridge, MA: Cytel Software.

Santner, T. J., and Duffy, D. E. (1989), The Statistical Analysis of Discrete
Data, New York: Springer-Verlag.

Suissa, S., and Shuster, J. J. (1985), “Exact Unconditional Sample Sizes
for the 2 x 2 Binomial Trial,” Journal of the Royal Statistical Society,
Ser. A, 148, 317-327.




