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SUMMARY

The mean residual life function of a population gives an intuitive and interesting perspective on the
aging process. Here we present new nonparametric methods for comparing mean residual life functions
based on two independent samples. These methods have the flexibility to handle crossings of the
functions and result in a new type of confidence set. We also discuss similar methods for comparison
of median residual life functions.

1. Introduction

The mean residual life of an animal at age ¢ is the average remaining life among those
population members who have survived until time ¢. If lifelengths of the population are
described by a random variable X with distribution function F(x), then the mean residual
life function is defined by

er(t)=EX —t|X>1)= f F(u) du/E(),

where F(t) = 1 — F(¢) is the survival function.

The mean residual life function gives a different picture of survival or aging than is seen
through the more commonly studied survival function F(z) or hazard (or failure) rate
function f{(¢)/F(t). A researcher should find all three measures interesting and complemen-
tary. To illustrate a different perspective, consider a male cancer patient undergoing
chemotherapy. He would be very interested in knowing how long he should expect to live
given that his chemotherapy began 1 = 6 months ago. His expected remaining life is er(6).
The proportion of patients like him who survive the first 6 months is F(6) and his
instantaneous probability of dying tomorrow is f(6)/F(6).

The variable of interest X need not be a “lifetime” and ¢ = 0 need not correspond to
“birth.” As in the above example, ¢ = 0 will often denote the beginning of a treatment, and
ex(t) is the expected remaining life of a subject who has survived the treatment for time ¢.
Indeed, X need not measure time. If X is the medical cost of a patient, then ex(¢) is the

Key words: Intersection—union principle; Mean residual life function; Median residual life function;
Nonparametric confidence sets; Nonparametric test.
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expected additional cost given that an amount ¢ has already been charged. A variety of
other applications is provided in the recent review paper of Guess and Proschan (1988).
Further discussion of the mean residual life function in biological contexts may be found
in Deevey (1947), Chiang (1960), Bryson and Siddiqui (1969), and Chen, Hollander, and
Langberg (1983).

In this paper we introduce a new nonparametric test and confidence procedures for
comparing the mean residual life functions from two populations or treatment groups. For
a specified age interval [T, T>], the testing problem is

Hy: ep(t) < eg(t) for some t € [T, T3]
versus (1.1)
H,: ep(t) > es(t) for all t € [T, T3],

where F and G are the two population distribution functions. If, for example, H, were
rejected when comparing two human populations over the age interval [60 years, 70 years],
then an annuity company might make lower monthly payments to people from the first
population (distribution F) because the expected number of monthly payments is greater
for these people. This would be true for any person starting payments between the ages of
60 and 70.

An important feature of the hypotheses (1.1) is that the test may be inverted to obtain
confidence statements of the form “er(t) > e(t) for all ¢ € I,” where I is an interval of
values determined by the data. This is a new approach to the problem of constructing
confidence statements for comparing two functions. In the above example, our procedures
would allow the calculation of an interval, with center fixed at ¢ = 65 years, for which the
statement could be made that e(t) > es(¢) for all ¢ in the interval.

Figure 1 shows the empirical mean residual life functions calculated from samples from
two populations of guinea pigs. The two populations correspond to injections with different
concentrations of tubercle bacilli. For small values of ¢, it is reasonable to hypothesize that
the mean residual life at time ¢ is larger for group 1 (guinea pigs receiving the smaller
concentration). On the other hand, for a large value of ¢, a guinea pig from group 2 that
has survived to this time ¢ might be a particularly hardy animal and might have a longer
expected remaining life than a survivor to this time from group 1. The empirical graphs in
Figure 1 also suggest that the group 1 mean residual life function may be larger than the
group 2 mean residual life function for small values of ¢. Using our procedures, we can test,
for example,

Hy: e(t) < e)(2) for some ¢ € [0, 80]
versus
H,: e(t) > ext) for all ¢ € [0, 80].

Alternatively, we could construct an interval of the form I= [0, é), where 4 is calculated
from the data, and make the confidence statement that e,(z) > e(¢) for all ¢ € [0, ).
Further analysis of this data is given in Sections 3 and 4.

Our test and confidence statements are quite different from those suggested by other
authors. The tests proposed by Cheng (1985) to compare failure rate functions and by Joe
and Proschan (1984) to compare percentile residual life functions, as well as many other
tests proposed to compare functions, test the null hypothesis that two functions are equal
for all ¢, versus the alternative that one function dominates the other for all . These models
do not account for the realistic possibility that the functions cross. A test designed only to
test the null hypothesis of equality may have a large probability of rejecting this null
hypothesis for two populations whose functions cross. Rejection of the null hypothesis by
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Figure 1. Mean residual life of guinea pigs injected with different amounts of tubercle bacilli.
From Bjerkedal (1960).

such a test can be interpreted as evidence that one function dominates the other only if the
possibility of crossing functions can be eliminated a priori. The distinctive feature of our
formulation is that our H, and H, include all possibilities, including the possibility that the
functions ex(¢) and es(¢) cross. In any given problem, either Hy or H, is true. It is our
consideration of H, and H,, including crossing functions, that results in the confidence
statements we have mentioned. Such confidence statements do not arise from tests of an
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equality null hypothesis. Because these confidence statements specify a range of values for
which one function dominates the other, they are easily interpretable and meaningful in
many contexts.

In Section 2, the test and confidence statements are described. These procedures are
applied to several examples in Section 3. Some possible modifications are presented in
Section 4 to cover cases in which censoring occurs or robustness considerations are
necessary. The theory justifying our procedure is presented in Section 5 followed by an
Appendix with theorem proofs.

2. Hypothesis Test and Confidence Procedures

The goal is to test (1.1) based on independent random samples X;, ..., X,, and
Yi, ..., Y, from F and G and to give confidence procedures of the type mentioned in the
Introduction. Our approach is to use the intersection—union principle discussed by Gleser
(1973) and Berger and Sinclair (1984). We define an asymptotic level « test for each simple
problem

Ho: er(t) < es(t),
H,: er(t) > es(t),

and then reject Hy of (1.1) if and only if Hy, is rejected at level « for each ¢ € [T, T3]. In
Section 5 we show that the proposed test is asymptotically a size « test of (1.1).
The obvious test statistic for (2.1) is

2 2 172
mn(z)—[epa) &6(0)] / [S"‘“) S"“’} ,

@2.1)

(0 n@)

where ér(¢t) + t is the average of the X;s greater than ¢, m(t) is the number of X;s
greater than 7, and S$2,(¢) is the sample variance of the X;’s greater than ¢ with denomi-
nator m(t) — 1. The analogous quantities for the Y;s are és(z), S%(¢), and n(¢).
Define S%(t) = 0 when m(t) < 1, S%(¢) = 0 when n(t) < 1, and Z,.,(t) = 0 when
min{m(t), n(¢)} < 1. Chiang (1960, pp. 226-227) discusses a discrete version of Z,,,(¢) for
life-table analysis and Elandt-Johnson and Johnson (1980, §8.3) discuss related statistics.

Let z, be the (1 — a)th percentile of a standard normal distribution. Then the test that
rejects Hy, if and only if Z,,.(t) > z, is asymptotically a size « test of (2.1). Thus, the
asymptotically size « test we propose for (1.1) rejects Hy if and only if

Zun(t) > z, for every t € [Ty, T>] 2.2)
or, equivalently, if and only if

inf  Z,.(t) > z..
t€[T}, T3]

The statistic Z,,.,(t), as a function of ¢, is a step function that has jumps only at ¢ values
that are X; or Y; observations. Thus, to perform the test it is necessary only to compute
Zun(t) for t = T, and those ¢ values between T and 7> that are observed lifelengths in at
least one of the samples, and compare these values of Z,,,(¢) with z,. If m(¢) or n(¢) is
small, we recommend replacing z, by the appropriate ¢ distribution percentile obtained by
using Welch’s unequal variances approximation (e.g., see Best and Rayner, 1987). In this
case Z..(t) would be compared to a different critical value for each value of ¢ at which
Znn(t) is computed.

The test in (2.2) can be inverted to yield three different types of confidence statements.
Each produces a confidence statement of the form “ex(t) > es(¢) for all ¢t € I” where
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I C [0, ») is a random interval computed from the data. We show in Section 5 that the
asymptotic confidence level for each procedureis 1 — a.

The three procedures differ in the form of the interval 7, but each requires that a value
T = 0 be specified in advance of sampling. If Z,,..(T) < z,, then no confidence statement
is made. If Z,,,(T) > z., then the three procedures assert that ex(f) > ec(¢) for all ¢ € I,
where the [ for each procedure is defined as follows:

Procedure 1: [ = [T, 6,) where 6; = inf{t = T: Z,.(1) < z.}.
Procedure 2: I = (6,, T] where 6, = supit < T: Zum(t) < z.}.
Procedure 3: I = (max(0, T — 6), T+ 5) where

6 = sup{d = 0: inf Zyn(t) > z,}.

t€[max(0,7—d), T+d]
As mentioned earlier, we replace z, by ¢ distribution percentiles whenever m2(t) and #(¢)
are small.

In the first type of interval, 7 might be chosen to be 0. Then 6, is the smallest value of ¢
for which Z,.,(t) < z,. Figure 2 illustrates the use of all three types of intervals with
simulated data from F lognormal such that log X is N(log 2, ) and G is exponential with
mean 1.8. The sample sizes were m = n = 200. The statistic Z,,,,(¢) < z.;0 = 1.282 for the
first time at 6, = .479. Thus, the first confidence procedure asserts with confidence 90%
that ex(t) > eg(t) for all ¢ € [0, .479).

To illustrate the second type of interval, suppose 7 = 2 were chosen as the upper
limit of our interest. Reverse the roles of F and G in Figure 2. The largest t < 7' = 2
for which Z,..(¢) < 1.282 is 6, = .999. Actually Z,,.(t) = —1.282 in Figure 2. So the
second confidence procedure asserts with confidence 90% that eq(t) > ex(¢t) for all
t € (.999, 2.000].

To illustrate the third type of interval, choose 7" = 2 as the center of the interval of
interest. The value of ¢ closest to T = 2 at which Z,,(t) = —1.282 is ¢t = 2.425. Thus,
6 = 425 and the third confidence procedure asserts, with confidence 90%, that
eq(t) > ep(t) for all t € (1.575, 2.425).

As mentioned before, the function Z,..(f) changes values only at observed lifelengths.
Thus, the endpoints, 6; and 6,, for procedures 1 and 2 and one of the endpoints for
procedure 3 will be observed lifelengths.

3. Examples

We illustrate the use of the hypothesis test and confidence procedures on data from two
different experiments.” The first experiment studied the lifelengths of guinea pigs after
injection with different concentrations of tubercle bacilli. This experiment was introduced
in Section 1.

Guinea pigs are known to have a high susceptibility to human tuberculosis, which is one
reason for choosing this species. Bjerkedal (1960) studies the acquisition of resistance in
these animals and provides the data that we use here. His study labeled A is for animals
in a single cage under the same regimen. The regimen number is the common logarithm
of the number of bacillary units in .5 ml of the challenge solution. For example,
regimen 4.3 corresponds to 2.2 X 10* bacillary units per .5 ml, log;o(2.2 X 10%) = 4.342.
Here we compare regimen 4.3 to that of regimen 5.5. It is reasonable a priori to
hypothesize H, of (1.1) with T, = 0, er(t) = e43(t), and eg(t) = ess(t). Some natural 7,
values to consider are 7> = 30, 60, or 90 days. Figure 1 shows the estimates &,3(¢) and
&55(2) labeled Group 1 and Group 2, respectively. The corresponding Z,..(¢) function is
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Figure 2. Mean residual life functions from simulated lognormal and exponential distributions.

around 2.0 for the first 60 days and then slowly decreases to 1.365 at ¢t = 81 and to 1.277
at ¢t = 82. Thus, at the approximate level a« = .10 we reject Hy in favor of H, for T, = 30
and T, = 60 since Z,,,(¢) > 1.282 for 0 < ¢ < 60. For T, = 90 we do not reject H, since
Z,.»(82) < 1.282.

The confidence procedures provide more insight into the testing results. If we specify
T = 0 in the first confidence procedure, then we can assert with 90% confidence
that e, 3(¢) > ess(¢) for all ¢ € [0, 82). Note that ¢ = 82 is the first time that Z,,,(¢) crosses
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z.10 = 1.282, the 90th percentile of the standard normal distribution. If our main interest
were in the region near T = 60, then the second confidence procedure would give the
interval (0, 60] and the third would give (38, 82).

Note in Figure 1 that the empirical mean residual life functions cross each other. One
explanation is that the shock of tubercle bacilli is more severe under regimen 5.5 initially,
and thus e, 5(¢) > es.5(¢) for the first interval. The later reversal suggests that a more vigorous
subgroup has been screened after surviving the initial disease state under regimen 5.5. Thus,
e43(t) < ess(t) is reasonable for the later period. This example illustrates the flexibility of
the techniques under natural crossings.

In the second example the empirical mean residual life functions do not cross. The
context involves the influence of different diets on the aging process in rats where research
indicates that diet restriction promotes longevity. Yu et al. (1982) study the effects of a
restricted diet on rats versus an ad libitum diet, i.e., free eating (cf. also Witten, 1985).
Table 1 contains the data. The numbers in each group are slightly different than reported
by Yu et al. (1982) because the treatments began after an initial weaning period during
which several rats died.

Table 1
Rat lifelength data in days
Restricted diet
105 605 811 931 1011 1073 1133 1190 1244
193 630 833 940 1012 1076 1136 1203 1258
211 716 868 957 1014 1085 1138 1206 1268
236 718 871 958 1017 1090 1144 1209 1294
302 727 875 961 1032 1094 1149 1218 1316
363 731 893 962 1039 1099 1160 1220 1327
389 749 897 974 1045 1107 1166 1221 1328
390 769 901 979 1046 1119 1170 1228 1369
391 770 906 982 1047 1120 1173 1230 1393

403 789 907 1001 1057 1128 1181 1231 1435
530 804 919 1008 1063 1129 1183 1233
604 810 923 1010 1070 1131 1188 1239

Ad libitum diet

89 536 630 668 695 717 739 770 801
104 545 635 670 697 720 741 773 806
387 547 639 675 698 721 743 777 807
465 548 648 677 702 730 746 779 815
479 582 652 678 704 731 749 780 836
494 606 653 678 710 732 751 788 838
496 609 654 681 711 733 753 791 850
514 619 660 684 712 735 764 794 859
532 620 665 688 715 736 765 796 894
533 621 667 694 716 738 768 799 963

Let er correspond to the mean residual life function under the restricted diet and es
under ad libitum. If is of interest to test (1.1) for 7, = 0 and T, = 730 days or, equivalently,
2 years. The test overwhelmingly rejects Hy in favor of H, at level « = .01. In fact,
Za(t) 2 9.2 for all 0 < ¢t < 730. Although a subjective graphical analysis would lead to
similar conclusions, a distinct advantage of our procedures is the objective quantitative
assessment of the data.

For a confidence statement let T = 0. Then we can assert with 99% confidence that
er(t) > eq(t) for t € [0, 894) days.
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4. Censoring and Robustness

Whenever the data are censored in the right tail or one expects the right tail of the
distribution to be heavy, it makes sense to consider other residual life measures such as
the median residual life or trimmed mean residual life. The same basic approach as in
Section 2 can be carried out, but modifications in the test statistic Z,,,(¢) are of course
required. We will illustrate with the guinea pig example.
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Figure 3. Median residual life of guinea pigs injected with tubercle bacilli.
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The median residual life of a random variable X is just
med(¢) = median(X — ¢| X > 1),

i.e., replace “mean” by “median” in the definition of mean residual life. The sample median
residual life is méd(r) = median{Xy, — ¢, ..., Xomy — t}, where Xy is the first
ordered X value greater than ¢. Figure 3 shows méd(z). for the two groups of guinea pigs
discussed in Section 3. When any type of censoring in the right tail occurs, the median
residual life can still be calculated for all ¢ until a censored observation appears in the
first half of the remaining observations. For example, Figure 3 would not change at all
if the experiment had been stopped at the end of 1 year, i.e., censoring of all values
greater than ¢ = 365. If the experiment had been ended at day ¢t = 250, méd,(¢) would
be truncated at ¢ = 171.

The modification of Z,,,(¢) for median residual life that we suggest is taken from Fligner
and Rust (1982). Let

nl/Z[Tmn(Z) — %]
a(?) ’

where T,,,(?) is a two-sample median test statistic and a(¢) is an estimate of its standard
deviation. Both T,,,(t) and a(¢) are based only on those observations greater than ¢. We
chose this median test because it is an approximate size o test of Hy: med(F) < med(G),
not of Hy: F = G. In Figure 3 we display Z,..(¢) (x 100 for scaling) up through ¢ = 102,
but not for 1 > 102 because it interferes with the méd(¢) graphs. Since Z,,,(¢) first dips
below 1.282 at ¢t = 102, we are 90% confident that med,(¢) > med,(z) on [0, 102). The
calculation of ¢(¢) requires a few more observations than does méd(¢), but still no changes
in Z,.,(¢) through ¢ = 147 would have been caused by terminating the experiment at ¢ =
250.

Finally, if random censoring occurs throughout the data rather than only in the right
tail, then further adjustments to our estimators and test statistics are required.

Zn(t) =

5. Size, Power, and Confidence Levels

In this section we state theorems giving conditions under which the test we propose has the
prescribed asymptotic size « and under which the related confidence procedures have
asymptotic confidence level 1 — o. We also give conditions under which the test is consistent
for all pairs of distributions (¥, G) in H,, but for no others. As mentioned in Section 1,
this feature is distinctive for our test. It means that rejection of H, provides valid statistical
evidence that H, is true and that the mean residual life functions do not cross in the region
of interest.

In all these theorems, X, ..., X,, and Y, ..., Y, are independent samples with
distribution functions F(x) = Pr(X; < x) and G(y) = Pr(Y, < y), respectively. We assume
that EX? < o and EY? < . Let o%(t) = var(X; | X, > t) and ¢%(t) = var(Y; | Y; > t) with
the convention that ox(¢) = ex(¢) = 0 if F(t) = 0 and o5(t) = es(t) = 0 if G(t) = 0. Also we
break Z,..(t) into two parts,

m'2{[ex(t) — er(t)] — [és(t) — es)l} | m'*[er(t) — e(t)]
Dmn(t) Dmn(t)

= Ap(t) + Bmn(2),

where D7,,.(t) = [S7.(t)/m(t) + SH(t)/n(t)lm.
The first theorem deals with the behavior of the statistic Z,,,(¢) at a single value of ¢.

Zun(t) =
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Theorem 1. Let ¢t = 0 be a value such that min(F(¢z), G(¢)) > 0. Then, as min(m, n) — o,

(i) S%4(t) = o%(t) and S%(t) — o%(t) with probability 1,
(ii) Ama(t) = N(O, 1) in distribution, where N(0, 1) is a standard normal random
variable,

and thus }
0 if ep(t) < eg(t)
(iii) Pr(Z,.(t) > z.) — {a if ep(t) = ec(t) .
1 if ex(t) > es(t)

Part (iii) tells us that the test of Hy, versus H, which rejects Hp if and only if
Zmn(t) > z, 1s asymptotically level « and consistent. But this result about a single value
of t also implies that our overall test of H, versus H, is asymptotically level a. To see
this note that for any (F, G) in Hp, there is a t, € [T, T;] with er(to) < ec(fp). By (iii)
in Theorem 1,

lim Prl inf Z,.() > z,,) < lim Pr(Zu.(h) > z.) < a. 5.1
min(m,n)—oo t€[T, T} min(m,n)—

Since {infie(r,,r,;; Zmn(t) > z.} is the rejection region for the proposed test, (5.1) says that

the test is asymptotically level «. Theorem 1 can also be used to show that the confidence

procedures have asymptotic confidence level 1 — a. We need the additional assumption

that F(x) is continuous to obtain this result for procedures 2 and 3.

Theorem 2. Under the model,

lim  Pr(Procedure 1 makes an incorrect statement) < c.
min(n,m)—c

If in addition F(x) is a continuous function, then

. (hm) Pr(Procedure i makes an incorrect statement) < o for i = 2, 3.

It is also easy to show using Theorem 1 that lim Pr(no statement is made) =
lim Pr(Z,..(T) < z,) = 0 if ex(T) > eg(T). However, Pr(no statement is made) can be
large when m and n are moderate and ex(T') exceeds eg(7") by only a small amount.

If the inequality in (5.1) were strict for every (F, G) in Hjp, then the test would be too
conservative and would rarely or never reject Hy. But under some additional assumptions,
it can be shown that the test is asymptotically size «. That is, there are (F, G) in H, for
which lim Pr(reject Hy) = o. Thus, the test is not too conservative. Also, we would
want the test to be consistent. That is, for any (F, G) in H,, a reasonable test should
satisfy lim Pr(reject Hy) = 1. Conditions under which these properties hold are given
in Theorem 3.

Theorem 3. Suppose F(x) and G(y) are continuous distribution functions. Suppose
min(m, n) — o such that m/(m + n) — A, 0 < \ < 1. In addition assume that

E|X||"<o,E|Y;|"<o forsomer>2
and
F(T,) > 0, G(T») > 0.
If (F, G) is in H,, that is, if
er(t) > es(t) for all t € [T, T, 5.2)
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then
(i) Pr(infier,, 1) Zmn(t) > za) — 1.
If (F, G) is an element of H, such that
er(to) = eg(ty) for some t, € [T, T>]
and
er(t) > eg(t) for all t € {[Ty, T>] — to},
then

(ll) Pr(inf,em,m Zmn(t) > Za) - a.
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RESUME

La fonction d’espérance de vie moyenne d’une population donne des informations intuitives et
intéressantes sur la processus de vieillissement. Nous présentons ici de nouvelles méthodes non-
paramétriques pour comparer, a partir de deux échantillons indépendants, des fonctions d’espérance
de vie moyenne. Ces méthodes sont assez souples pour permettre de tenir compte des relations entre
fonctions et conduisent 4 un nouveau type d’intervalle de confiance. Nous discutons aussi de méthodes
similaires pour comparer des espérances de vie moyenne.
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APPENDIX
Proof of Theorem 1. (i) Let X< --- < X(m) be the ordered X values. Then S2,(¢) can be written
as a continuous function of m™' x7 I(X;> )X 2, m™' 37, I(X; > 1)X;, F.(t) = m™' 37, I(X; > 1), and
I(Xm > t), each of which converges with probability 1 to the appropriate quantity. A similar result
holds for S3(¢). (i) The central limit theorem applied to the sums 37, I(X; > t)[X; — t — ex(t)] and
i, I(Y; > DIY; — t — es(t)] along with Slutsky’s theorem and (i) yield the result. Note that if

n/(m + n) 5 A, 0 < X < 1, then a subsequence argument may be used. (iii) follows from (ii) since
B,..(t) converges in probablhty to —oo if ex(f) < es(t) and B,.(t) converges in probability to +oo
if eF(t) > 3(;([)

Proof of Theorem 2. Let F and G be fixed distributions. All limits are as min(m, n) — . For
each of the three procedures if e-(T') < es(T), then by Theorem 1

lim Pr(Procedure i makes an incorrect statement) = lim Pr(Z,..(T) > z.) < a.

Now assume ex(T) > eg(T). For Procedure 1 define 6, = inf{t = T: er(t) < es(t)}. If 6, = o then
Pr(Procedure 1 makes an incorrect statement) = 0. For the case 6, < « note that mean residual life
functions are right-continuous. Thus, er(f) — eq(t) is also right-continuous and ex(8,) < ec(f)).
Procedure 1 will make an incorrect statement only if 6, > 6,. Thus, by Theorem 1,

lim Pr(Procedure 1 makes an incorrect statement) < lim Pr(d, > 6,) < lim Px(Z,..(6,) > z;) < a
For procedures 2 and 3, define
0, = supft < T er(t) < eq(t)}
and
6= sup{d =0: inf [er(t) — es(?)] > 0}.
t€[max(0, T—d), T+d]

The proof of the validity of these procedures follows as for procedure 1 except that the continuity of
F is used to ensure that ex(6,) < es(6,) or ex(T — §) < eq(T — 5) if

lim [eq(t) — es(?)] < O
"nr-s

The continuity of F ensures the continuity of er. Also e, like any mean residual life function, is
upper semicontinuous so we have

lirn3 ler(t) — ea(1)] = er(t*) — es(t™).

Proof of Theorem 3. First we give two lemmas whose proofs are given in unpublished work by
Berger, Boos, and Guess (Institute of Statistics Mimeo Series #1673, North Carolina State University,
1985). Let D[T,, T,] be the space of functions on [T, T>] that are right-continuous and have left-
hand limits (see Billingsley, 1968, Chap. 3). We often write inf, and sup, as shorthand notation for
infimum and supremum over ¢ € [T}, T>].

Lemma Al. Under the assumptions of Theorem 3,
Amn(t) = A(t) weakly in D[T,, T;]

with respect to the Skorohod topology, where A(t) is a mean zero Gaussian process with continuous
sample paths.
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Lemma A2. Under the conditions of Theorem 3 with A < 1, we have

sup [D,..(t) — D(¢)| converges almost surely to O
]

€[T,,T,
where D(t) = o3(t)/F (@) + [N(1 — N]o&(@)/G(2).

Proof of Theorem 3(i). Without loss of generality we assume A < 1, otherwise we redefine
D,,..(t) with n~'/2 factored out. Then

Pr(inf; Z,un(t) < z.) = Pr(infi{A,. () + Bp(t)} < z.)
< Pr(inf, 4,..(t) + inf,B,.,(¢t) < z.)
< Pr(inf, A,..(¢) < z, — n'*) + Pr(inf, B,..(f) < n'/%).

Now, infy(-) is a continuous functional in D[T,, T,] with respect to the Skorohod topology and thus
Lemma Al gives

inf; A,..(¢) converges in distribution to inf, A(z).

We can show that inf, A(¢) is finite-valued with probability 1 and thus Pr(inf, 4,,.,(¢) < z, — n"*) —
0. Using Lemma A2 and (5.2), we can show that m~'/*[inf, B,.,(¢)] stays strictly above 0 and thus
Pr(inf, B,..(t) < n'/*) — 0 and the result 3(i) follows.

Proof of Theorem 3(ii). From the proofs of Lemmas Al and A2 we can assert that A4,..(¢) and
D,...(t) converge jointly to A(¢) and D(¢) in D[T\, T,] X D[T,, T:] and use Skorohod’s theorem to
get representations with the same exact distribution and such that almost surely

sup | Ama(t) — A(@)| + sup | Domn(t) — D()| — 0. ey
t t
Let Q, be the subset of the underlying probability space on which the above convergence holds. We
will show that for each w € Qo

172 [er(t) — es(?)]

inf Z,,(t, @) = inf {Am(z, W)+ m'? s } — Alto, ), )

where A(t, ) is the sample path of A(¢) corresponding to w. If (2) holds, then certainly inf, Z,..(t)
converges in distribution to A (%) and A (%) is a standard normal random variable so that

Pr(inf Zn(t) > za) — Pr(d(%) > z.) = a.

To show (2), note first that since B,n.(f) = 0,

inf Zmn(ty w) = Zmn(tO: 0)) = Amn(tO’ O)) (3)
t
and thus
lim inf Z(t, ©) < im Apm(lo, ) = A(to, ®) )

by (1). Since Z,..(¢) is a step function with a finite number of jumps, inf; Z,..(¢, ») is attained for
some t,,, € [T;, T,]. We can show t,,, — 1, by a contradiction argument. We then have

m l/z[ep(tm,,) - eG(tmn )]

inf Zmn(t, 0)) = Amn(tmn’ w) +
t

Dyun(tmns @)
= Apn(tn, )
since the second term is nonnegative. Thus,
lim inf Z,.(¢, @) = Him At 0) = Ao, w) 5)

m,n—o m,n—o

using (1) and the convergence t,., — fo. Putting (4) and (5) together yields (2).



