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Testing Hypotheses Concerning Unions of

ROGER L. BERGER and DENNIS F. SINCLAIR*

Linear Subspaces

The likelihood ratio test (LRT) for hypotheses concerning
unions of linear subspaces is derived for the normal the-
ory linear model. A more powerful test, an intersection-
union test, is proposed for the case in which the subspaces
are not all of the same dimension. A theorem is proved
that may be used to identify hypotheses that concern un-
ions of linear subspaces. Some hypotheses about the
spacings between normal means are shown to concern
unions of linear subspaces and therefore can be tested
using the LRT. Finally, the computation of the LRT sta-
tistic is discussed. ‘

KEY WORDS: Linear model; Likelihood ratio test; In-
tersection-union test; Ordered means; Spacings between
means. :

1. INTRODUCTION

Let X, ..., Xk denote independent normal random
variables with means &;, . . . , £x and common variance
o?. We assume that € = (¢, . . . , £€x)’ lies in w, a sub-
space of R ¥ of dimension J < K. For example, X4, . . .,
Xk may be comprised of independent samples from J
populations (J < K). We discuss testing hypotheses about
&€ concerning unions of subspaces of . (Throughout this
article, subspace refers to a linear subspace.) We derive
the likelihood ratio test (LRT) of

Hy: & € wo (1.1)

where wo = UL, w; and each w; is a g;-dimensional sub-
space of w. We show that the critical value for the LRT
is a multiple of a percentile from an F distribution, even
though w, is not necessarily a subspace of w.

We also consider an intersection-union test (IUT) of
H, versus H,. We show that the IUT is more powerful
than the LRT if at least two of the w; have different di-
mensions. Throughout we assume that (1.1) has been ex-
pressed in such a way that the w; are all distinct; that is,
there do not exist i and j, 1 = i, j = m, i # j, such that
w; C w;.

versus H;: £ € 0 — wo,
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An example of a hypothesis concerning a union of sub-
spaces that falls into the framework of (1.1) is the follow-
ing. Let wy, . . ., psy denote the means of J normal pop-
ulations. Let p1* = -+ = p;* denote the ordered values
of the means. The hypothesis
H,'

. * * — * *
SN RS U A A KWr—i"s

j=1...,1lU - D],

where [s] denotes greatest integer less than or equal to
s, states that the symmetric spacings between the means
are equal. Although it is perhaps not obvious, H,' con-
cerns a union of subspaces and may be tested using the
LRT and IUT we discuss in this article.

In (1.1), the null hypothesis Hj is expressed in terms
of a union. The IUT of H, (Gleser 1973; Berger 1982) is
constructed in the following way. Test each of the hy-
potheses Hy;: § € w; individually and reject H, if and
only if each of the individual tests rejects Ho,. This sit-
uation, in which H, concerns a union, is the opposite of
the situation addressed by Roy’s (1953) union-intersec-
tion method of test construction. The null hypothesis for
a union-intersection test concerns an intersection, say
N?-1 m:. A union-intersection test tests each of the hy-
potheses Hy;: € € m; individually and rejects H, if and
only if at least one of the individual hypotheses Hy; is
rejected.

A convenient feature of some IUT’s is that if the in-
dividual tests are exact size-a tests then the IUT is an
exact size-a test, which is the case for the tests in this
article. The critical values for the LRT and IUT we dis-
cuss are percentiles (or multiples of percentiles) from
standard F distributions. No new tables are required to
implement these tests.

In Section 2 we derive the LRT and IUT for hypotheses
concerning unions of subspaces. In Section 3 we prove
a theorem that may be used to identify hypotheses with
this property. We use the theorem to show that four hy-
potheses about ordered means, including H,', concern
unions of subspaces and thus may be tested with the LRT
of Section 2. Finally, in Section 4 we discuss how the
test statistic may be computed.
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2. LIKELIHOOD RATIO AND INTERSECTION-UNION
TESTS

For the model described in Section 1, let the density
of X = (Xi,...,Xxk) be denoted by

. ,
p(x; & o) = (21102)*K’2exp<— > i - Ei)2/202> .
i=1

2.1

Let ©; = {(§, 0): £ € w;, 0> 0}, B9 = {(§, 0): € € wo,
o>0=UR;0;,and 6 = {(§, 0): £ € w, 0 > 0}. The
LRT statistic for testing H, is defined as

sup p(x; &, o)

X(X) — Oo

- 2.2
sup p(x; &, o) @2)

If we let € denote the projection of X on o and £; denote
the projection of X on w;, then A(x) is

max sup p(x; §, o)

1=si=m ©O;

sup p(x; €, o)

AX) =

sup p(x; &, 0)

max —————
1=i=m Sgp px; &, o)

n |2 K2
X —
ma [ 12~ EF
2 LIx = &
. $ K72
=[ Ix — &P ]
min |[x - &|*]
1=i=m

where || y |* = y'y. The third equality in (2.3) is a standard
result from linear model theory. The last expression in
(2.3) reflects the fact that the maximum likelihood esti-
mate of § under Hj is the projection of X on the nearest
subspace w;. Since

Ix - &P =lx - &P + & &P,

rejecting Ho if AM(x) < c is equivalent to rejecting Hy if
A*¥(x) > c*, where

(2.3)

min & - &P
A P T

Il x
The value of c*, which produces an exact size-a test,
is given in Theorem 1. The value of c¢* is a multiple of a
percentile of an F distribution Let F, , , denote the upper
100a percentile of a central F distribution with a and b
degrees of freedom (df). Lemmas 1 and 2 (proved in the
Appendix) are used in the proof of Theorem 1.

2.4)

Lemma 1. For any values of a and ¢, the quantity (s/
t)F. s, is an increasing function of s.

Lemma 2. Let Y5 have a noncentral F distribution with
noncentrality parameter 8 and df s and ¢ (arbitrary but
fixed). For any y < o, P(Ys > y) — 1 as § — .
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Theorem 1. Let g* = min=;=» q:. Let co.* = (J —
q*)F o,y g+ k—7/(K — J). The test that rejects Ho if A*(X)
> ¢,* is an exact size-o test; that is, the test satisfies

sgp Py (MN(X) > ¢o*) = a. 2.5)
(V]

Proof. By Lemma 1, c,* = maxisi=m (J — qi)
Foj-gi.xk-s/(K — J). For any € € w;and o > 0,

Peoc(N*(X) > co™)
=Peo (1€ - &1P/Ix — EP > c®)
= Peo(l1& - &P/ x — &
> — g)Fas-g.x-s/(K = J))
= a.

The last equality is true since a standard result from linear
model theory states that for any £ € w; and o > 0,

(K = DT~ adlll €~ &I x— &P
has an F distribution with J — g; and K — J df. Thus
sgp P (N (X) > ¢co*) = a. (2.6)

To prove the reverse inequality, let j be such that g;
= g*. We have assumed that w; is not a subset of w; for
any i #j. Soforeveryi =1,...,m,i#j, 0; N wjis
a subspace of dimension at most g; — 1. The set,

Y {(l)i N (")j},
i=1
i#=j

cannot contain the g-dimensional set w; since each set

in the union is at most (g; — 1)-dimensional. Thus there

exists £*, such that £€* € w; and £* ¢ o, forany i = 1,

...,m,i# j. Let & denote the projection of £€* on w;.

Then || €* — &*|| = Oand | €* — &*| > O0fori = 1,
L,my i F# ]

Fori=1,...,m,let

Ri={x:I1& - &P/ x - &P > ca*).

At (&%, o) [(K = DT — gl 1§ — & [P/ x — &P has
a noncentral F distribution with J — g; and K — J df and

noncentrality parameter 3,; =|| £€* — £€* |*/o2. Fori =
I,...,m,i#j,8;;,— ©asoc— 0. By Lemma 2, for i
=1,...,mi#],

Pgo(R;)—> 1laso— 0.
On the other hand
(K= DIJ - gl & - &IP/x— &

has a central F distribution with J — g;and K — J df at
(¢*, o). Furthermore,

= - qj)Fa,J—q_,'.K—J/(K - J).

2.7)

Thus

Py o(Rj) = o for every o > 0. (2.8)
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Using (2.7) and (2.8) we obtain
lim Pge o(N*(X) > co*)
o—0

= lim Pg*,o- (ﬂ R,)
o—0 i=1
= lim

im | 1 - Py, £
i [ 1= e (5, )

1 — lim 2 Pe o(R)

0—0 ;=1

v

=l—(1—a)—hm2P§*U(R )
it

= — 0 =
Since (£*, o) € O, C O, for every o,
sup P o(ZN*(X) > c.*)
©o0

Z lim P o(AN¥(X) > co*) = . (2.9)
o—0

Combining (2.6) and (2.9) yields (2.5).

We believe that in most applications all of the w;, i =
1,. .., m,will have the same dimension g, in which case
= (J = @)F o -gqx-s/(K — J). This is the case for

all the examples we discuss in Section 3. But if the di-
mensions of some of the w; differ, there is an IUT that is
also an exact size-a test and has higher power than the
LRT. This test is described in Theorem 2. The IUT and
LRT are the same if all the w; have the same dimension.

Theorem 2. Let F; = [(K — N)/(J — q)1 || & — & |
Ix — &I, i =1, ..., m The test \** that rejects Ho
if and only if F; > Fa,,_q,.,K_, foreveryi=1,...,m
is an exact size-a test. The test A** has a power that is
greater than or equal to the power of the LRT for every
(&, 0) € 0.

Proof. The proof that \** is an exact size-a test is al-
most identical to the proof given in Theorem 1 that \* is
an exact size-a test. In this case any w;, i = 1, ..., m,
can play the special role played by w; in the second half
of the proof of Theorem 1.

The set {x: N*(x) > co*} C {x: F; > Foj—gq.x-7,1 =
1, . .., m}. That is, the rejection region for the LRT is
a subset of the rejection region for \**, Thus the power
of A** is greater than or equal to the power of the LRT.

Unless all of the quantities (J — q;)Fo,7—g,x-7/(K —
J),i=1,...,m,are equal, the rejection region for the
LRT is a proper subset of the rejection region for \**,
and the power for the LRT is strictly smaller than the
power of \** for every parameter in H,. This provides
an example, like that of Stein (Bickel and Doksum 1977,
p. 239), of an LRT whose power is everywhere dominated
by the power of another test.

Joumnal of the American Statistical Association, March 1984

3. HYPOTHESES ABOUT ORDERED MEANS

In the remaining sections, we discuss some specific
problems that fall into the general framework described
in Section 2. These problems involve hypotheses about
ordered normal means.

We will consider the following special case of the model
presented in Section 2. Let X, i = 1, Lj=1,

LJik=1,...,K;denote K = > ;K;;independent
normal observations. The mean of X;;, is u;; and all the

X.ix have a common variance of . Let p = (p11, - . .,

Wisi> B21s « .« 5 Ray)' and

€= (rulk,', ..

'
L) Ml.thul ’

! AY
|~L211K21 yee ey p‘lJIlKIJI) s

where 1, is a column vector of b ones. In the formulation

of Section 2 we would consider £ € w C RX. Since here

there is a one-to-one correspondence between w and &,

we may equivalently consider p € R/, where J =

>1_, J;. We now consider the subspaces w;, i = 1.
, m, as subspaces in R”.

We will be concerned with permutations of (wi, . . .,
wis) foreachi =1, ..., I Let p; = (M, ...,
wis),sothatp = (i, ..., p/) . Amapm: R/ —> R’
is called a subpermutation if nw(p) = (wi(p1)’, ...,
w(ps)') where w(p;) is a permutationof p,, i = 1,. . .,
I. There are [ [/~ J;! subpermutations. A vector v € R’
is called a subpermutation of a vector p if w(n) = v for
some subpermutation w. A set B is called a subpermu-
tation of a set A if B is the image of A under some sub-
permutation . It is easily verified that if A is a subspace
then any subpermutation of A is also a subspace. For any
p € R’ let p* denote the subpermutation of w such that
pa* =0 = pw,,l—l , L.

The followmg theorem may be used to identify hy-
potheses that concern unions of subspaces. We shall use
this theorem to show that four hypotheses about ordered
means concern unions of subspaces and hence are test-
able using the LRT of Section 2.

Theorem 3. Let H denote a (J — g) X J matrix of rank

J — q.Let wg = {p € R7: Hp* = 0}. If H is such that
Hp = 0 implies Hp* = 0, then wo = UL w;, where m
= [I/~1J:'and w4, . . . , ®,, are the subpermutations of

the g-dimensional subspace N = {p € R7: Hp = 0}.
Thus w, is the union of subspaces, each of dimension g.

Proof. Let p € wo. Then p is a subpermutation of p*
and p* ENsop € w;forsome i,i = 1,..., m. Thus
wo C UL w;.

Now let p € UL w;. Then p = m(v) for some sub-
permutation w and some v € N. Since v € N, v* € N.
But v* = p*. Therefore, p* € N and p € wo. So
U,m=1 wW; C Wo.

Finally, since N is a g-dimensional subspace of R”,
each of the subpermutations of N, o1, . . . , w,,, is also
a g-dimensional subspace of R”.

The subspaces w1, . . . , w,, defined in Theorem 3 will
not be distinct. The number of distinct subspaces is at
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most m/2 and can be much smaller, in fact, as Example
1 shows. Recognizing this fact results in a saving of effort
in the computation of the test statistic A* for which the
minimum needs to be taken only over distinct subspaces.
Taking the minimum over all m subspaces in Theorem 3
will, of course, give the same value of \*. It would just
be inefficient if many of the subspaces are equal.

We now consider four hypotheses about the spacings
between normal means. Hypothesis H,! states that the
means are arranged in a symmetric fashion. Hypothesis
H* specifies the relative sizes of the spacings between
the means in the symmetric pattern. Hypothesis Hy®
states that the corresponding spacings in two groups are
equal, and the relative sizes of the spacings are specified
in H 04.

Example 1. (symmetric spacings). For this example, I
= 1, so we will denote the means of w1, . . ., usand the

ordered means by p* = - = ps*. By the symmetric
spacings hypothesis we mean

Holi

e Al Y A T T
j=1,...[(J - DR2]. (3.1

We shall use Theorem 3 to verify that H,' is the union
of subspaces. Let Hbe a [(J — 1)/2] X J matrix such that
Hp = 0 is equivalent to the conditions pj+1 — p; =
Brv1—j — py—jj = 1,...,[(J — 1)/2]. The hypotheses
Hy' can be written as Ho!: p € wo = {p € R7: Hp* =
0}. To show that w, is a union of subspaces, by Theorem
3 it suffices to show that Hp = 0 implies Hp* = 0. Let
p satisfy Hw = 0. Let i = (u; + wy)/2. Foranyj = 1,

L) [(J - 1)/2]7
j—1
b= b= = Bt X (s — )
i=1
j—1
=p = s+ D> (Brri—i— Pu=i) = b — Rrs1-j

i=1

So each pair w; and p; 1 —;is symmetrically placed about
p. (IfJisodd, [(J — DR2] + 1 =J — [(J — 1)/2], and
RO - D21+ 1= P - - 2 = i) If = p* and
ps = Wi+1* then pyr1—, = pyi1—* and pyi1-s =
ps—/* Thus pjer* — p®* = ps — p — (pr — ) = p —
Prs1—s — (B — prr1—r) = Byr1-;* — py—;* Therefore,
Hp* = 0. By Theorem 3, the w, for the symmetric spac-
ings hypothesis is the union of subspaces of dimension J
— [(J = 1)/2] and \* can be used to test Ho'.

This example gives a good illustration of the fact that
the m subspaces defined in Theorem 3 are not distinct.
Let J = 4. In this example, m = 4! = 24 but actually
H,' consists of only 3 distinct subspaces. These are the
subspaces defined by (1, —1, —1, 1)p = 0 (this is N in
Theorem 3), (1, —1,1, —Dp =0,and (1, 1, —1, —Dp
= 0. For example, the subpermutation of N defined by
w(w) = (p1, p3, B2, pg)' is just N itself. But the sub-
permutation of N defined by w(p) = (w1, p2, 4, p3) is
the different subspace defined by (1, —1, 1, — D = 0.
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Example 2 (symmetric spacings with specified ratios).
Again I = 1 so the notation of Example 1 is used. Now
the hypothesis of interest is a subhypothesis of H,!,
namely,

Cj(lbz* - mi*),
ji=2,..

Ho*: pj* — pi* =
,J -1, (3.2

where ¢z, . . ., c;— are specified positive constants with
Cc; = C_]_j,j = 2, ... ,J - 2, andcj_l = 1. The re-
strictions on the c; imply that the symmetric spacings are
equal as in Ho'. The hypothesis Ho* can be used to test
whether the means are spaced like the expected values
of order statistics from some symmetric distribution. For
example, if ¢; = 1,j = 2, ... ,J — 1, the distribution
is the uniform. If J = 5, ¢, = ¢3 = 74111 and ¢4 = 1,
the distribution is the normal. Let Hbe a (J — 2) X J
matrix such that Hp = 0 is equivalent to the conditions
Wiet = By = W2 — m1)yj =2, ...,J — 1. The
hypothesis Ho? can be written as Hy?: p € wo = {p €
R7: Hp* = 0}. By Theorem 3, wo is a union of subspaces
if Hp = 0 implies Hpn* = 0. Let p satisfy Hun = 0. If
pi1 = po, then py =S pp = - = pysincec; > 0,5 = 1,
...,J — 1. Thus, p = p* so Hp* = 0. If p; = pa,
thenw; = po= - = py. Foranyj=2,...,J ,

LV

Wiet®* = W5 = ooy = mrsi = —cr—ipe — pa)
= cr—j(pr-1 — W) = ci(pr-1-py) = ci(p2* — pi®).

The second, third, and fourth equalities are true since Hp
=0,c;-1 = l,and ¢; = ¢;—j. Thus Hpn* = 0. By Theo-
rem 3, wo is the union of two-dimensional subspaces and
A* can be used to test Ho?.

Example 3 (equal spacings in two sets of means). In
this example there are two sets of means of interest, I =
2,and J, = J, = J' = J/2. We are interested in testing
the hypothesis that the spacings in the first set, w11, . . .,
K1y, are equal to the spacings in the second set, p.2, . . .,
p2s. That is, we wish to test

Hy: }Ll,j+1* - Mlj*
= po 1 — w2, j=1,...,J - 1.

Let Hbe a (J' — 1) X J matrix such that Hp = 0 is
equivalent to the conditions p1, ;41 — w1 = p2,j+1 —
p2;,J = 1,...,J" — 1. Then H¢® can be written as Hy>:
R E wo = {p: Hp* = 0}. To verify the assumptions of
Theorem 3, let p satisfy Hw = 0. Foranyj =1, ...,
T2y = 202 (Rape1 — p2) + par = 2928 (Wipen
- |.L1r) + W21 = Wiy + (}Lz] - }1.11). Thus the set of
means, i, . . . , b2J, is @ translation of the set of means,
Mits - . . , p1J7, the amount of translation being (., —
p11). Thus the spacings among w1, . . ., w2y, are all
equal to the spacings among w11, . .. , wiy. That is,
Baj+r® = pr = oy — e j=1..0,0 - 1,
and Hp* = 0. By Theorem 3, wy is the union of subspaces
of dimensionJ — J' + 1 = J/2 + 1 and \* can be used
to test Hy>.

This argument can be easily extended to the situation
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in which one wishes to test for equal spacings in I (I >
2) sets of means. In this case Hisan (I — 1)(J' — 1) x
J matrix and the subspaces are of dimension J — (I —
NDJ'-D=I+J —-1=1=1+JI-1.

Example 4 (equal spacings in two sets of means with
specified ratios). For this example, the notation is the
same as in Example 3. We combine the ideas in Examples
2 and 3 to consider testing

lh,j+1* - P«lj* = }Lz,j+1* - P~2j*y
j=1...,J -1,

H04:
Prj+1* — p* = ci(p® — pn®),

j=2,...,J' -1, 3.4

where the ¢; satisfy the same conditions as in Example
2. If we let , denote the subspaces in Example 2 (now
considered as subspaces of R’ with p;, . . ., w2y un-
restricted) and let m,; denote the subspaces in Example 3,
we see that for Ho*, oo = (U,0,) N (Uym;,) = U, (o,
N m). But for every r and s, w, N 7, is a linear subspace
of Dimension 3. (The subspace w, involves J' — 2 re-
strictions, and m, involves an additional J' — 1 restric-
tions. This results in o, N m, having Dimension 3.) Thus
A* can be used to test Hy*.

The hypotheses Ho', Ho?>, Ho®, and H,* might be of
interest in the study of the ecological theory of character
displacement (see, e.g., Grant 1972). In this context the
ni;’s would be means of some characteristic of different
species. The spacings between the means could reflect
the adaptation to competition among the species for
scarce resources. Sinclair, Mosimann, and Meeter (1982)
discuss this application of these hypotheses.

4. COMPUTATION OF THE TEST STATISTIC

As in standard linear model theory, the LRT statistic
A* can be expressed in terms of products of matrices.
This will simplify the computation of A\*. Furthermore, if
all the sample sizes within each group are equal and the
hypothesis wg satisfies the conditions of Theorem 3, only
two, not m + 1, sums of squares are needed to compute
M. These points will now be discussed.

Let the J-dimensional subspace w be defined as w =
{€: & = WB, B € R}, where Wis a known K X J design
matrix of rank J. Let the subspaces w; be defined by w;
= {§: £ = WB, H;p = 0}, where H; is a known (J — q,)
X J matrix of rank J — g;, i = 1,...,m. Let § =
(W'W)~'W'X. Then analogous to standard linear model
theory we can write

SSH,
* 3
M(X) = T @.1)
where ‘
SSHo = min f'H/(HW'W)™'H/)"'Hf, (4.2)
1=si=m
and

SSR = (X — WB)' (X — Wf). (4.3)
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Expression (4.2) is true since the numerator of A* in (2.4)
is the minimum of the sums of squares associated with
each of the hypotheses Hy;: £ € w;. By standard linear
model theory these sums of squares are the expressions
given in (4.2).

For the remainder of Section 4, assume the model de-
fined in Section 3, assume w, is a hypothesis about or-
dered means that satisfies the condition of Theorem 3,
and assume all the sample sizes within each group are
equal; thatis, Ky = -+ = Ky, (= Ki,say)i=1,...,
I. Under these assumptions, the m sums of squares in
(4.2) do not need to be computed. It is possible to de-
termine which sum of squares will be the minimum by
examining the order of the sample means, as shown in
Theorem 4. Thus only one sum of squares needs to be
computed to calculate SSH,, for these models. )

For this model B = X = X/, ..., X,')’, where X;
= (X,'], « ey X,'_],-)', and X,'j = E/Ifél Xijk/Ki. We Wlll
call a vector v € R correctly ordered if vy = -+ =
Visn i =1, ..., 1 As in Section 3, p* is the correctly
ordered subpermutation of w and X* is the correctly or-
dered subpermutation of X. For any v € R’ let II* be a
J x J subpermutation matrix such that II* v = v*. (If
all the coordinates of v are distinct, IT” is unique. But IT*
may not be unique if some of the coordinates of v are
equal.) The LRT statistic for hypotheses satisfying the
conditions of Theorem 3 is given in Theorem 4.

Theorem 4. Assume K;; = -+ = K;y,,i = 1,...,L
Let H denote a (J — g) X J matrix of rank J — g. Let
wo = {p € R’: Hp* = 0}. If H is such that Hp. = 0
implies Hpn* = 0, then the LRT statistic for testing Hy:
P € wo is N*(X) = SSH,/SSR. The SSR is given by (4.3)
and

SSH, = X'H*'(H*(W'W) ™ 'H*') " 'H*X,
where H* = HITX

Theorem 4 will be proved using Lemmas 3 and 4
(proved in the Appendix).

4.4

Lemma 3. Assume H, H*, and w, are as defined in
Theorem 4. (a) N = {p € R’: Hpn = 0} contains all the
values of p € wo which are correctly ordered. (b) oX =
{n € R7: H*p = 0} is a subset of wo and w* contains
all the values of p € wo such that IT*p = p*.

Lemma 4. For any p € R/,

1 Ji 1 Ji
> > KXy - “ij)? =3 > K Xy —viy)? @4.5)

i=1j=1 i=1j=1
where v is a subpermutation of p such that IT*y = v*.

Proof of Theorem 4. By Theorem 3, if p € wo, every
subpermutation of p is in wo. Thus by Lemma 4, g(X,
w) = 2 2L K( X — piy)? is minimized, for p €
wo, by a p such that IT¥p, = w*. By Lemma 3b, all such
p are in X C wo. Thus,

SSH, inf g(X, p) =

REwWO

X'H* (H*(W'W)~'H*')"'H*X,

ué“f’" gX, p)
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the last equality being the standard linear model theory
result.

APPENDIX: PROOFS OF LEMMAS

Proof of Lemma 1. Let U, V, and W be independent
with x-12, x12, and x,* distributions, respectively.
Then

P(UW> (s — D/I)Fos5-1,:= a
= P((U + V)/IW > (s/t) Fa,s,t)
> P(U/W > (s/t)Fa,s.t).

Therefore ((s — 1)/t)F o 5—1, < (s/t)Fqs.:.

Proof of Lemma 2. Let U, V, and Z be independent
with xs-12, X%, and N(0, 1) distributions, respectively.
Then

P(Ys>y) = P(U + (Z + VBRIV > sylt)
> P((Z + VIV > sylt).

But for every (z, v) € {(z, v): —® <z <®,v> 0}, aset
with probability one, (z + V/3)*/v — » as § — «. Thus,
by the dominated convergence theorem, P((Z + V3)*/V
> sy/t)— 1 as 8 — ». Hence, P(Ys > y) — 1 as § — .

Proof of Lemma 3. (a) Let p € wo, such that p is
correctly ordered. By Theorem 3, there exists a subper-
mutation v of p, such that v € N. By hypothesis v* €
N. But p = v* since p is correctly ordered. Therefore
B EN. () oX = {p: HII*p = 0} = (IIX)~!'N. So 0¥
is one of the w; C wo from Theorem 3. Suppose p € wo
is such that IT*p = p*. By Theorem 3, IIXp € w, and,
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by Part (a), [T1*n € N. From above we have p = (IT¥)~!
*p € oX.

Proof of Lemma 4. Since II*X and IT*v are both cor-
rectly ordered, X and v are in the same order. Let g(X;,
) = — 27 KiXij — pi)® = GXi — ). Itis easily
shown (Marshall and Olkin 1979, p. 57) that G is Schur
concave. It follows by Lemma 2.2 of Hollander, Pro-
schan, and Sethuraman (1977) that g is decreasing in
transposition and, hence,

Ji Ji

-3 KXy —vi)? 2 =3 KXy — wiy)*

j=1 j=1

Inequality (4.5) follows since the above inequality holds
foreachi=1,...,L

[Received November 1982. Revised June 1983.]
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