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Uniformly More Powerful Tests for Hypotheses
Conceming Linear Inequalities and Normal Means

ROGER L. BERGER*

This article considers some hypothesis-testing problems regarding normal means. In these problems, the hypotheses are
defined by linear inequalities on the means. We show that in certain problems the likelihood ratio test (LRT) is not very
powerful. We describe a test that has the same size, a, as the LRT and is uniformly more powerful. The test is easily implemented,
since its critical values are standard normal percentiles. The increase in power with the new test can be substantial. For example,
the new test’s power is 1/2a times bigger (10 times bigger for @ = .05) than the LRT’s power for some parameter points in a
simple example.

Specifically, let X = (X, . . . , X,)' (p = 2) be a multivariate normal random vector with unknown mean p = (&, . . . ,
4p)" and known, nonsingular covariance matrix 3. We consider testing the null hypothesis Hy: b/ < 0 forsome i = 1, ...,
k versus the alternative hypothesis H;: b/jp > 0 foralli = 1,..., k. Here b, . . ., b, (k = 2) are specified p-dimensional
vectors that define the hypotheses. Many types of relationships among the means may be described with the linear inequalities.
Two interesting types are those that specify the signs of the means and those that describe an order relationship. Some examples
of alternative hypotheses that can be specified in this way are these: Hf: u, > 0,i = 1, . . ., p (sign testing), HY: uy < p, <
o <y, (simple order), Hf: py < p, < pp, i = 2,...,p — 1 (simple loop), and HT: y; < y,, i = 2, .. ., p (simple tree).
If u, = v5, — vy, where v, is the average response of the ith patient subset to the jth treatment, then Hf states that Treatment
2 is better than Treatment 1 for all subsets. If the 4; are regression coefficients, then H7 states that the mean response increases
with each independent variable. In any case, these relationships would be the alternative hypothesis. Rejection of H, by a test
with small size would be taken as strong evidence confirming that the specified sign or order relationship is true.

Sasabuchi (1980) showed that the size-a LRT of H, versus H, is the test that rejects H, if Z, = b;X/(b/Zh)"? = z, for all i
=1,...,k, where z, is the upper 100« percentile of a standard normal distribution. This test is biased and has very low
power if all of the values b/w (i = 1, . . ., k) are only slightly bigger than 0. We define an integer J and constants c, . . . ,
¢, that are certain standard normal percentiles. We show that, in many cases, a size-a test that is uniformly more powerful
than the LRT is the test that rejects Hy if X € R, U - U R;, where R, = {x: ¢ =z, <¢_,i =1,...,k}and z; =
b/x/(b/Zb,)"? is the LRT statistic. The set R, is the rejection region of the LRT, so this test is obviously more powerful than
the LRT. But we show that if, for eachi = 1, . . ., k, there exists an m # i such that b/Zb,, < 0, then this test is also a size-
a test. It is easy to verify that this condition is satisfied, for example, for all of the aforementioned H,; hypotheses, except the
simple tree, if % is diagonal.

Tests that are even more powerful than those just described might exist. We discuss an example of such a test. But despite
this test’s superior power properties, it has some counterintuitive properties. Thus tests such as in this example may be primarily
of theoretical interest.

All of the previously mentioned results are derived in the 3-known case. Sasabuchi (1980) showed that, if 3 is unknown,
the LRT is very similar. The differences are that 3, is replaced by an estimate and z, is replaced by ¢,, a t-distribution percentile.
We show, in an example, that making the same modifications to this test does not give a size-a test. But in the example the
size of the test converges to « quickly as the degrees of freedom for the estimate of 3, becomes large. So even for moderate
degrees of freedom (=10), this test might be preferable to the LRT, since its size is approximately a and it is much more
powerful than the LRT.

A two-sided version of this problem is obtained if we test H3: w & (H, U —H,) versus H: p € (H, U —H,), where H, is
a one-sided alternative as defined above. Sasabuchi (1980) showed that the LRT rejects H3 if Z, = cforalli = 1,...,kor
Z =< —cforalli =1,...,k, Sasabuchi gave some conditions under which ¢ = z, gives a size-a test. We consider only the
special case in which H, is the sign-testing alternative and 3 = diag(c?, . . . , 0'2), a diagonal matrix. For constants c,, . . . ,
¢, similar to those above, we show that the test that rejects H3 if X € R, U --- U R, where R, = {x: ¢; = x,/0, < ¢, i =
1,...,p}, is a size-« test that is uniformly more powerful than the LRT. For the special case of p = 2, this provides a test
that is uniformly more powerful than a test proposed by Gail and Simon (1985) for testing for a qualitative interaction.

KEY WORDS: Likelihood ratio test; Majorization; Polyhedral cone; Qualitative interaction.

1. TESTING PROBLEM AND LIKELIHOOD
RATIO TEST

Let X' = (X, ..., X,) be a p-variate (p = 2) normal
random vector with unknown mean g and nonsingular
covariance matrix %. We will use the notation X ~ N,(p.,
2,). Throughout the article, except in Section 5, 3, will be
assumed known. The results in this article can be consid-
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ered approximately true if % is unknown but a large sample
is available for estimating 3. In many applications, 2 will
be a diagonal matrix; that is, the p populations with means
U1, - - ., up Will be independent populations and X; will
be the sample mean of a random sample from the ith
population. But we will consider the more general setting.

Let by, ..., b, be k (k = 2) specified p-dimensional
vectors. We consider testing

the null hypothesis

Hyb/p=0 forsomei=1,...,k
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versus the alternative hypothesis

Hi:bp>0 foralli=1,...,k. (1.1

For this to be meaningful, H; must be nonempty. (We use
the symbol H, to denote the set of p vectors specified by
the hypothesis, as well as the statement of the hypothesis. )
This would not be the case, for example, if b, = —b,. We
assume that there are no redundant vectors in {b,, . . .,
by}. That is, there is no b; such that {p: bjp > 0, i = 1,
oo, kb ={p:bjp>0,i=1,...,k,i#j} This
requirement only simplifies notation and proofs and in no
way restricts the testing problems we are considering. Sas-
abuchi (1980) discussed conditions that are equivalent to
the requirement that H; is nonempty and by, . . ., b}
has no redundant vectors.

Sasabuchi (1980) showed that the size-a likelihood ratio
test (LRT) of H, versus H, is the test that rejects H, if

Z; = b)X/(b;Zb)"> =z, foralli=1,...,k, (1.2)

where z, is the upper 100« percentile of the standard
normal distribution. Berger (1982) and Cohen, Gatsonis,
and Marden (1983a) discussed some applications of this
test.

Actually, Sasabuchi (1980) considered a slightly differ-
ent testing problem. The null hypothesis considered by
Sasabuchi was

Hy:b/p=0 foralli=1,..., k,

with equality for at least one i. Sasabuchi’s alternative
hypothesis was the same as ours. In some cases our for-
mulation may be more appropriate because the hypotheses
do not artificially restrict the natural parameter space of
p. It is easy to modify Sasabuchi’s argument to see that,
in either case, the LRT has a rejection region of the fol-
lowing form: Reject Hyif Z;, = cforalli =1, ..., k.
To show that (1.2) is the size-a LRT for (1.1), it remains
to show that ¢ = z, yields a size-a test. Our null hypothesis
is a much larger set than Sasabuchi’s. So when we take
the supremum over H, of the rejection probability, we
could get a larger size. But, in fact, the suprema over both
sets are the same (see Sec. 3) and (1.2) does define the
size-a LRT in our problem.

The LRT has two optimality properties. Lehmann
(1952) and Cohen et al. (1983b) proved that the LRT is
uniformly most powerful among all monotone, level-a
tests. The more powerful tests we describe are not mon-
otone. Cohen et al. (1983b) also showed that, in a bivariate
problem, the LRT is admissible in that no other test has
a uniformly smaller power function on H, and a uniformly
bigger power function on H,;. Nomakuchi and Sakata
(1987) generalized this result. The more powerful tests we
describe dominate the LRT in that they have the same
size, a, and uniformly bigger power on H,. But they do
not dominate the LRT in this decision-theoretic sense.

Despite these good properties the LRT has some defi-
ciencies. It is a biased test. The power is less than « for
some . € H;. In fact, the bias can be quite extreme. Fot
example, suppose X = diag (0%, . . ., ¢2) is a diagonal
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matrix and consider the sign-testing problem
H§:py;=0 forsomei=1,...,p
versus
Hf:p;>0 foralli=1,...,p. (1.3)

The LRT rejects Hj if Z; = X,/0;, = z, foralli=1, .. .,
p-ltp=0,Z,...,Z,areindependent N,(0, 1) random
variables. So the power at p = 0is Py(Z, = z,,, . . . , Z,
= z,) = o, which is much less than a. Of course p. = 0
€ H,, but the power function is continuous. So for p €
H, that are close to 0, the power will be approximately
a?. To some extent this bias is unavoidable. Lehmann
(1952) showed that in some problems of this type, no
unbiased, nonrandomized test exists. Nomakuchi and Sak-
ata (1987) also discussed this. But tests do exist that have
the same size as the LRT and are uniformly more pow-
erful. Tests with this property are described in Sections 3
and 4. For the aforementioned problem, the test in Section
3 has power equal to a?~!/2 at p = 0. Thus this test’s
power is (a?!/2)/aP = 1/2a times as big as the LRT’s
at some parameter points. This is a tenfold increase if
= .05 and a fiftyfold increase if @ = .01.

Tests that are uniformly more powerful than the LRT
are not unknown. Gutmann (1987) demonstrated the ex-
istence of a test that was uniformly more powerful than
the uniformly most powerful monotone test in the sign-
testing problem (1.3) when X}, . . . , X, are independent.
Gutmann considered a general location model. In the
normal problem, our tests in Sections 3 and 4 are uniformly
more powerful than Gutmann’s test and hence provide an
affirmation of the conjecture made by Gutmann in his
example (Gutmann 1987, p. 283). Warrack and Robertson
(1984) and Berger and Sinclair (1984) described other
problems in which the LRT can be dominated.

Robertson and Wegman (1978) found the LRT for the
testing problem in which H, is the null hypothesis arid H,
is the alternative hypothesis. That is, the null hypothesis
states that w is in a cone and the alternative hypothesis
states that w is not in the cone. The test statistic is quite
different, involving isotonic regression estimates of m., and
the critical values are percentiles for weighted sums of chi-
squared or beta distributions.

The type of inference one wishes to make and the error
one wishes to guard against determine whether the Rob-
ertson and Wegman formulation or the formulation in
(1.1) is appropriate. For example, suppose 4y, . . . , 4,
are regression coefficients and the sign-testing hypothesis
H7 from (1.3) is suggested by a theory. If the experimenter
only wished to abandon the theory if the data strongly
suggest that it was false, then HY should be the null hy-
potheses. This is a goodness-of-fit—type situation. But if
the experimenter wanted to know if the data provided
strong evidence confirming the theory, then H{ should be
the alternative, as in (1.3). Rejection of H§ by a test with
small « would be strong evidence that all of the inequalities
in H{ are true. Sometimes one formulation is appropriate
and sometimes the other is. But failure to reject the null
hypothesis Hf, in the Robertson and Wegman formula-
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tion, cannot be taken as strong confirmation that all of
the inequalities in HY are true.

For many computations, it is more convenient to con-
sider this transformed version of the original problem that
was used by Sasabuchi (1980). Let T be a p X p nonsin-
gular matrix such that TXT' = I,, the p X p identity
matrix. Thus T~!(T~!)’ = X. Make the transformation Y
= TX. Then Y ~ N,(0, L), where 6 = Tp. Define a,,
. ..,a,bya] = b/T-1. Thenb;pn = a/0. Thus our original
testing problem is equivalent to observing Y and testing

Hy20=<0 forsomei=1,...,k
versus

H:a0>0 foralli=1,...,k.
The LRT rejects H, if Z; = ajY/(aja)'? = z,for alli =
1, ..., k. We will consistently use the notation X, m,

and b, for quantities in the original problem and Y, 0, and
a; for quantities in the transformed problem.

In Section 2, we prove some preliminary results that will
be used to show that various tests are size-a tests. Readers
may only wish to read the theorems’ statemerts on first
reading. But Definitions 2.1 and 2.2 should be noted. In
Section 3 we describe a size-« test that is uniformly more
powerful than the LRT. We compare the powers of the
two tests for the sign-testing problem (1.3) when p = 2.
In Section 4 we discuss an even more powerful test for the
sign-testing problem (1.3). In Section 5, the sign-testing
problem (1.3) with p = 2 is considered with an unknown
variance. In Section 6, a two-sided version of the problem
is considered and a size-« test that is uniformly more pow-
erful than the LRT is described for a sign-testing problem.

2. PRELIMINARY THEOREMS

The following results will be used to prove that various
tests are size-a tests. For any vector g, define |g| = (g’

g)1/2.

Lemma 2.1. Let g and h be noncolinear vectors (|g'h|
< llgll lIhfl) satisfying g'h < 0. Let
b~ ()
gg

<o (3]

be the unique (up to sign) vector of length 1 in the space
spanned by g and h that is orthogonal to g (d'g = 0) and
let

r = [(lel Il — g"h)/(lgl Il + g'h)}*.

If y is a vector and c is a scalar such that g'y = c||g|| and
h'y = c|h|, then d'y = cr. If y and c satisfy g'y < c||g|| and
h'y = |h||, then d'y = cr.

Proof. We prove the first result. Replace y with —y
to prove the second result. The conditions on g and h
imply that g # 0 and h # 0; hence all ratios are well
defined. Let J and y denote the coefficients on h and g,
respectively, in d. Note that 6 > 0 and y = 0. Hence d'y
= d(h'y) + y(g'y) = d(c|hl)) + y(cligll)- Substituting the
expressions for y and J and simplifying the expressions
yields the result.

Journal of the American Statistical Association, March 1989

The constants ¢y, . . . , ¢;;, used to define the rejection
regions for our tests, are defined as follows.

Definition 2.1. For 0 < a < .5, define the integer J by
the inequality J — 1 < 1/2a = J. Define the constaits c,,

., ¢y as follows: ¢ = o, ¢; = 2, (j=1,...,J —
1),¢=0,and¢;= —cpy_; =T+ 1,...,2]).

Notice that ¢, > ¢; > =+ > ¢,;. If 1/2a is an integer (as
it is for @ = .10, .05, and .01), then c;, ¢, . . . , €35
are the N,(0, 1) percetiles, 24, Z245 - - - » Z@s-1)a FOI any
a, if Z ~ Ny(0, 1), then Pr(c; = Z < ;) = aforj =1,
.., J—landj=J+2,...,2).Pr(g=Z=¢y)
= Pr(c;41 = Z = ¢;) =< awith equality if 1/2a is an integer.

Lemma 2.2. Let g and h satisfy the conditions in
Lemma 2.1. Define the sets S§, . . ., S3; by

h’
S’f" = {y; ¢ = Tgl—g])i' =6, G = "_hﬁ = j—l}' (21)

Let Y ~ N,(0, L). If g0 = 0, then Py(Y € U, §})

= a.
Proof. Let d and r be as in Lemma 2.1. Define the
sets St, . .., Si; by

’

St = {y: ¢ = ‘lg@)'l’ s¢g,gr=dy= Ci~1r}'

Lemma 2.1 implies that S} C ;. Also,
St N St Coy: g'y/ligl = ¢,

a set with probability 0, and Sj* N S = ¢ if |j — i| > 1.
Thus

j=1 j=1

2J 2J
P, (Y eu S;“) =P, <Y e U S,-*)

2]

= 2 Py(Y € S}). (2.2)

The random variables g'Y/||g|l and d'Y are independent
normal random variables, since d'l,g = d'g = 0. And
g'Y/|\g|l has a standard normal distribution if g'8 = 0. Thus

2J
> P(Y € §})
j=1

2J 2%
= z Po (C] = ‘gii'éﬂ‘ = Ci-1, G =dY= Cj_1r>
i=1

2J le
= z Po (C, = m = cj—l) Po(cjr = d,Y = Cj__lr)
j=1

(independence)
2]

< z aPy(cr =d'Y < c¢;_yr)
j=1
(property of ¢y, . . . , €3y)
= a.

This with (2.2) yields the desired result.



Berger: More Powerful Tests for Inequalities

The construction in the proof of Lemma 2.2 is illustrated
in Figure 1 for the case whenp = k =2, a = .2,g' =
(=1,2),and b’ = (1, 0). In this case 1/2a = 2.5,s0J =
3,ci = —¢cs = 84,¢, = —¢cy = .25, and ¢; = 0. The
diamond-shaped regions are the sets S7, ..., S&. The
rectangular regions with dashed borders are the sets S},

, 8¢ . Note that §* C S;*. All of the edges of ST, . . . ,
S¢ are perpendicular to either g or h. The angle between
g and h is at least 90°; that is, g'h = 0. The angle #—that
is, 180° minus the angle between g and h—is at most 90°.
Because = 90°, we can construct the rectangles to contain
the diamonds. The dashed lines with negative slope cor-
respond to the y’s for whichd'y = ¢r (j =1, ...,59).

The rejection regions for the tests we will consider are
formed from the following sets.

Definition 2.2. Let z; = z(x) = bjx/(b;Xb;)'2. For a,
J,andcy, . . ., c,;asin Definition 2.1, define the following
sets:

Rj={x:Cj—<~Z,'st_1,i=1,...,k},

i=1,...,2].

Under the transformation y = Tx described in Section 1,
the set R; is mapped onto the set
Cj_l,i = 1, c ey k}.

ajy ajy
S = s — = <
{y 9= @) ~ Ja

The following theorems will be used to show that various
tests are of size a. We state them in terms of the original
quantities X, p, and b;, as that is the context in which
they will be used.

Theorem 2.1. Let X ~ N,(p, Z). Suppose the set (b;,
, by) is such that H; in (1.1) is nonempty. Suppose

Yt

n-

Figure 1. Sets From Lemma 2.2. The conditions on g and h ensure
that the diamond-shaped sets, Si, ..., S;, can be enclosed in the
dashed rectangles.

195

further that for eachi = 1, ..., k there is an m € {1,
, k} (m will depend on i) such that b;%b,, < 0. Let 0
<a<.J.S,andletcy,...,cyand Ry, ..., Ry;be asin
Definitions 2.1 and 2.2. If » satlsfles b;p = 0 for some i
efl,. k},thenP(XEU )_a
Proof Usmg the transformatlon Y = TX, define 0 =
Tp. Note that 2] = b/T'Tp = 0. Let m be such that
b/2b,, = 0. Then aja,, = b/T"}(T"})'b,, = b/Zb,, < 0.
Since H, is nonempty, a; and a,, are noncolinear (a;a,,
cannot be less than —|aj| - |la,l, and aja, = —|a]| - ||a,l
implies that a,, = —fa; for some positive constant f; but
this would imply that H, is empty). Thus a; and a,, satisfy
the conditions on g and h in Lemmas 2.1 and 2.2. Notice
that with g = a, and h = a,,, §; from Definition 2.2 is a
subset of S;* from (2.1). Thus from Lemma 2.2 we have

2] 2J 2J
j=1 j=1 j=1

The second theorem is quite general and unrelated to
the special structure we have used up to now. But we have
not found it stated in the literature in this generality.

Theorem 2.2. Let X ~ N,(m, ). Let R be a set and
b be a vector such that b’x = 0 for every x € R. Let p
be a vector such that b'mw < 0. Then there exists a vector
p* such that b’'p* = 0 and P,.(X € R) = P,(X € R).

Proof. If b'p = 0 then p* = p satisfies the require-
ments. So assume that b’p < 0. Let T be the nonsingular
matrix defined in Section 1. Let a’ = b’T~1. Now let O
= (04, . . ., 0,)' be an orthogonal matrix with o; = a/
llall. Make the transformation U = OTX. Let P = OTR
= {u:u = OTx, x € R}. Then U ~ N,(v = OTp, L)) and
P,(U € P) = P,(X € R). For everyu € P, u; = b'x/|al|
= 0. Also, v; = b'p/|jal| < 0. Thus

P,(U € P)

Joy fomron ()

[ Jeor
) du, - du,

X exp — ( (u; — 02 + = E(u,—
= P,.(U € P),
where v*' = (0, v,, . . . , v,). Now making the two inverse
transformations we have p* = T~'0'v* and P,.(X € R)
= P,«(U € P) = P,(X € R). Furthermore, since v{ = 0
and O is orthogonal we have
p p
b'p* =bTOV* = a’(Z v,o,-) = ||a||o{<2 v,oi) = 0.
i=2 i=2

3. A TEST THAT IS MORE POWERFUL
THAN THE LRT

Under certain conditions, the following test will be
shown to be a size-a test that is uniformly more powerful
than the LRT for the testing problem described in (1.1).
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Definition 3.1. For values of a that satisfy 0 < a < .5,
define Test I as the test that rejects H, if, for some j €
aQ...,0,¢sZ =c_foralli =1,...,k,where
Co» - - . , ¢; are from Definition 2.1 and Z; = b/X/(b; X
b,)'’2. Alternatively, the rejection region for Test I can be
expressed as R; U --- U R;, where the sets R; are from
Definition 2.2.

Example 3.1. Letp = k = 2. Suppose X; and X, are
independent and X; ~ N;(;, 0?). Let b; = (1, 0) and
b; = (0, 1) so that we are testing (1.3). Then Z; = X/o;.
Ifa = .10,thenJ =5,¢;, = 1.28,¢c, = .84,¢; = .52, ¢,
= .25, and ¢; = 0. So Test Is rejection region consists of
the five rectangles, R; U -+ U R, in Figure 2. R is the
rejection region for the LRT.

Example 3.2. Let X; and X, be as in Example 3.1.
Consider testing Hy: 24, < u; or py < 0 versus H;: 0 <
#1 <2u,. Thenb; = (=1,2)and b; = (1,0). If 6, = 0,
= 1 and a = .2, the rejection region for Test I is S} U
S5 U S7 in Figure 1, where the axes are now the x; — x,
axes. For a smaller, more commonly used, value of a, the
picture would be similar but with more (but smaller) dia-
mond-shaped regions.

We now prove that Test I has the properties we desire.

Theorem 3.1. For the testing problem described in
(1.1), suppose that for each i = 1, . . . , k there exists an
m € {1, ..., k} (m will depend on i) such that b;Zb,, <
0. If0 < a < .5, then Test I is a size-a test and Test I is
uniformly more powerful than the size-a LRT.

Proof. The size-a LRT, as found by Sasabuchi (1980),
rejects Hyif Z; =z, foralli =1, ..., k. Butcy = @
and ¢; = z,. So R, is the rejection region of the size-a
LRT. Since R, is a subset of the rejection region Test I,
Test I is uniformly more powerful than the size-a LRT.

Zp=xp/ O
24 R,
. Re
Ry
Ry
Rs zZy=xy/d
—é T Re T T 17%3/04
R,
Re
Rg N
-a-

Figure 2. Rejection Regions for LRT, Test I, and Test Il in the Bivariate
Sign-Testing Problem With a = .10. The rejection region for LRT is R,.
The rejection region for Test | is R, U -+ U Rs. The rejection region for
Testllis R, U - U R,.
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Let H = (w:bjp=0foralli =1,..., kandb/p
= 0 for some i). Sasabuchi showed that sup,cy P.(X €
R;) = a; that is, the LRT is a size-a test for the null
hypothesis, H,. But H, C H,; hence

a

J
sup P,(X €ER;) = sup P,(X € UR)
REH REH) j=1

size of Test I.

(3.1)

Now let w € H,. Then there exists an i such that b/p =<
0. Forallx € Ry U - UR,, b/x/(b/Zb)? = z,=¢;, =
0; hence b;jx = 0. By Theorem 2.2, there is a p* with
b/pn* = 0 such that

J J
P,.(X€ UR)=P,X€UR). (3.2)
j=1 j=1
By Theorem 2.1, the conditions on {b;, . . . , b} imply

that
2] J
a= Pum(x (S U RI) > Pu»(X (S U RJ)' (3.3)
j=1 j=1

Since p € H, was arbitrary, (3.1), (3.2), and (3.3) imply
that Test I is a size-a test.

It may seem curious that one can take a size-a test (the
LRT), add sets of positive probability to the rejection
region, and still have a size-a test. Although sup,ey Pu(X
€ R;) = a, this is possible because P,(X € R;) < a for
every p € H,. Sasabuchi (1980) showed that the supre-
mum was only attained in a limit as one b;p = 0 and all
other b/ — . For all p € H,, Test I’s power function
satisfies P, (X E R)) < P,(X € U/_; R) < a.

The restriction in Theorem 3.1, that for each i there
exists an m such that b/Xb,, <= 0, is a restriction on the
hypothesis-testing problems for which we have shown that
Test I is a more powerful size-« test than the LRT. If 3,
= I, then this restriction, in light of Lemma 2.1 with ¢
= 0, has the following geometric interpretation. For each
subspace b/ = 0 that contains a face of the polyhedral
cone H,, there is another subspace, defined by d'p = 0,
such that the two subspaces are perpendicular, in the sense
that b/d = 0, and the cone H, lies entirely between these
two subspaces. So the restriction says that the cone cannot
be too spread out. Here are four examples of alternative
hypotheses H;:

Sign testing
Hf: y;>0@G =1, ...
Simple order
HY:py < pp < -
Simple loop
H{‘:ﬂl<ﬂi<”p(i=29"'
Simple tree
HlT',u1<,u,(l= 2,. ..

s P)-

< U

’p—l)'

» P)-

All but the simple tree satisfy this condition. This defi-
nition of perpendicular subspaces is not the usual defini-
tion of orthogonal subspaces. But it is what one would
mean in three dimensions if one thought of two planes
being perpendicular. Two two-dimensional planes cannot
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Table 1. Power for LRT, Test I, and Test Il in the Bivariate
Sign-Testing Problem With a = .10

u
0 .5 1 2 3 4

B0, w) .010 .022 .039 076 .096 .100
B0, w) .050 .069 .084 .098 .100 .100
B0, ) .090 .096 .099 .100 .100 .100
Bulp, 1) 010 .047 .151 .583 916 .993
Blu, 1) .050 .105 .209 .600 917 .993
Bulis 1) .090 124 215 .600 917 993
Bu(5u, 1) 010 .033 .085 .297 561 761
B(.5u, 1) .050 .087 A41 327 567 762
Bu(5u, w) .090 110 152 .328 567 762

be orthogonal in three dimensions according to the usual
definition.

To illustrate quantitatively the improvement in power
that Test I provides, consider again Example 3.1. We use
01 = g, = 1 and a = .10. The rejection region for Test
Iis R, U -+ U Rs in Figure 2, and the rejection region for
the LRT is just R;. Let fi(p) and B.(p) be the power
functions of Test I and the LRT, respectively. Values of
these two functions for certain w values are in Table 1.
[The third value, B (p), is the power of a test from Sec.
4.] The top part of the table is for values of p’ = (0, u),
u = 0. These values are on the boundary of H,, so the
power is everywhere less than a = .10. An unbiased test
would have power equal to @ = .10 for all of these .
values. Test I and the LRT are biased, but Test I is less
so than the LRT. The power comparison mentioned after
(1.3) can be made for this example: f;(0)/8.(0) = .05/
.01 = 5 = 1/2a. In the middle of Table 1 are values of
the power for mean vectors on the diagonal, p' = (4, u),
u = 0. fi(p) is noticeably above S, (p) for 4 < 2 with the
largest difference, () — BL(p) = .07, occurring in the
range .5 < u < 1. The bottom of Table 1 contains values
of the power function for mean vectors of the form p’ =
(:5u, u), u = 0. B(p) is noticeably larger than 8, () for
u = 3 with the maximum difference, fi(p) — Bo(p) =
.06, occurring in the range .5 < u < 1.1.

4. AN EVEN MORE POWERFUL TEST

Test I is not necessarily the most powerful size-a test.
In some cases there exist size-a tests that are uniformly
more powerful than Test I. In this section we give an
example of such a test, Test II.

Test II will reject Hyif X € R, U -+ U Ry, where J <
M < 2J. The rejection region for Test II consists of the
rejection region for Test I plus more of the sets R;. Test
II is obviously more powerful than Test I or the LRT. But
the verification that Test II is a size- a test is more difficult.
Theorem 2.2 cannot be used because the rejection region
does not lie on one side of a plane.

Test II may be primarily of theoretical interest because
it has a rather counterintuitive property. For any x € R;
(G>J),bx=0foralli =1,...,k. Thus, if we reject
H, for such an x, we are deciding that b/ > 0 for all i
=1, ..., k even though x, the estimate of w, satisfies
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b/x=0foralli = 1,. .., k. Although M can be chosen
so that Test II is a size-a test that is uniformly more pow-
erful than Test I, the important question might be this: Is
there a size-a test with power comparable to Test II that
only rejects for x such that bix = O foralli = 1, ..., k?

Again consider Example 3.1: X ~ N,(p, L) (for sim-
plicity we set both variances equal to 1). For @ = .10,
Test I has the rejection region R; U -~ U Rs, where the
R; are in Figure 2. We will show that Test II, with rejection
region R; U --- U Ry also has size a = .10. To compute
the size of Test II we use majorization techniques. See
Marshall and Olkin (1974) for all definitions regarding
these concepts. Each of the sets R; is a Schur-convex set,
and any union of Schur-convex sets is a Schur-convex set.
Thus the rejection region for Test II, for any M, is a Schur-
convex set. The density of X is Schur concave. By theorem
2.1 of Marshall and Olkin (1974), the power function of
Test II, By(p), is a Schur-concave function. That is, if p
majorizes p*, then fu(p*) = fu(n).

The size of Test II is sup,ep,fu(p). We wish to deter-
mine the largest M > J (if any exists) for which the size
is a. Let w € H, with u; + u, = 0. Then p majorizes p*
= (u; + Uy, 0)'. The rejection region of Test II, for any
M, is a subset of R; U .- U R,;. So by Theorem 2.1,
Bu(r) = fu(r*) = a. Now let p € H, with y; + p, < 0.
Then p majorizes p* = (&, i)’ [where & = (u; + u,)/2]
and By(p) = fu(p*). If we can show that (i, i) = a for
all i = 0, then we will have verified that Test II is a size-
a test. Furthermore, we actually need only verify that
Bu(i, i) = afor ¢y = i = 0, because for every x € R; U
== U Ry, x; + x5 = 2¢y. Thus by translating the problem
s0 that (¢, ¢y) is the origin, we can use Theorem 2.2 to
show that fy(i, &) =< Bulcu, cu) for all iz < ¢y. For a =
.10, .05, and .01, we calculated fy(iz, p) forcyy = <0
on a grid with spacing of .001 to find the maximum M for
which (&, i) = a for all such z. The results are in Table
2. Test II with M equal to the tabled value is a size-a test.
In the table we also list the value of iz (¢ = iz = 0) at
which By(, ) is maximized and the maximum value of
Bu(zi, ). But the size of Test II is a, not the value listed
as Pu(i, i). The sup,ey fu(m) occurs, as with Test I
and the LRT, in the limit of parameter points (0, x) as
p—> .

Values of the power function of Test II for @ = .10 are
given in Table 1. For p near 0, f;(p) is 1.8 times bigger
than f(p) and 9 times bigger than f;(p). In the top
part of Table 1, one can see that Test II is much more
nearly an unbiased test than either of the other two.
But, as mentioned earlier, despite these superior power
properties, Test II is probably only of theoretical inter-
est.

Table 2. Value of M That Gives Size « for Test Il

[ at which maximum

a M occurs B, )
.10 9 .000 .09000
.05 19 —.884 .04906
.01 95 ~.901 .00985
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5. UNKNOWN VARIANCE EXAMPLE

The previous sections all dealt with models in which
3 is known. Sasabuchi (1980, 1988a,b) considered two
models in which % was unknown. He showed that the
LRT’s for these models were very similar to the known-
2 LRT. The test statistics Z;, were the same, except % was
replaced by an estimate, and z, was replaced with a
t-distribution percentile, ¢,.

Because of the similarities it is natural to ask whether
making the same changes in Test I will yield a test that is
of size a and uniformly more powerful than the LRT. The
answer is that, in general, this does not yield a size-a test.
The following example illustrates this.

Consider again testing Hy: u; = 0 or u, = 0 versus H;:
41> 0and u, >0. Let X; and X, be independent with X;
~ Ny(u;, 0?). Let $? be an independent estimate of ¢
such that v$?/¢2 has a chi-squared distribution with v de-
grees of freedom (df). Typically S? will be a pooled esti-
mate of ¢2. The LRT rejects H, if X,/S > t, and X,/S >
t,, where ¢, is the upper 100« percentile of a ¢ distribution
with v df. Define ¢, . . . , ¢; as in Definition 2.1 except
with ¢, replacing z;,. The analog of Test I rejects H, if ;
=xi/s=c¢_;and ¢ =xy/s <ci_forsomej=1,...,
J. If h,(s) is the density of S, the power function of this
test is

J
B, 0) = f 2 Puo(os = Xy = ¢y,
0 j=1

cs < X, = ¢j_18)h,(s)ds.

(5.1)

Using Theorem 2.2 on the integrand in (5.1), it can easily
be shown that the size of this test is supy<,<fi((1, 0), 1).

We calculated f,((u, 0), 1) for values of u between 0
and 20 by increments of .1 using numeric integration. We
did the calculations for « = .10 and .05 and various df.
The maximum value found (approximately the size of the
test) is given in Table 3. In every case 8((u, 0), 1) increased
to a maximum that was greater than « and then decreased
to a. So this construction does not yield a size-« test. But
the size of the test does approach a as the df becomes
large. For moderate or large df, this test might be pref-
erable to the LRT, since its size is approximately « and it
has higher power.

6. A UNIFORMLY MORE POWERFUL TEST IN A
TWO-SIDED PROBLEM

In this section we return to the known covariance model
and consider a two-sided problem involving linear ine-
qualities. A two-sided version of the testing problem (1.1)
is obtained if the alternative hypothesis is H; U (—H,),
where H, is the set defined in (1.1). That is, consider

Table 3. Size of Test | for Unknown Variance:
Bivariate Sign-Testing Problem

Degrees of freedom

a 2 6 10 20 50 120 ©
10 1235 1059  .1028  .1009 .1003 .1000  .1000
05 0702 .0564 .0535 .0514 .0505 .0501 .0500
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testing
H}: b/p<0forsomei =1,...,kand
b/jp=0forsomei=1,...,k
versus
H%: b/p>0foralli=1,...,kor

b/jp<Oforalli=1,...,k. 6.1)

Sasabuchi (1980) showed that the LRT rejects H3 if Z;
= b/X/(bjZb)? = cforalli =1,...,kor Z; = —c
for alli = 1, ..., k. Sasabuchi showed that, in some
cases ¢ = z, gives a size-a test. We will show for a sign-
testing problem that Test III, the test that rejects H3 if X
€ R, U -+ U R,,, is a size-a test that is uniformly more
powerful than the LRT. (The sets R; are still the sets in
Def. 2.2.) If ¢ = z,, then R; U R,, is the rejection region
for the LRT. Thus Test III is obviously a more powerful
test than the LRT. The difficulty is in showing that it is a
size-a test.

As mentioned in Section 1, Sasabuchi (1980) actually
considered the null hypothesis that p was on the boundary
of H?. For Sasabuchi’s null hypothesis, Theorem 2.1 shows
that ¢ = z, is the constant that gives a size-a LRT in a
broader class of problems than found by Sasabuchi in his
theorems 4.1, 4.2, and 4.3. It also shows that, for this
broader class, Test III is a size-« test that is uniformly
more powerful than the LRT.

For the rest of this section we consider this sign-testing
problem. Let X, . . ., X, be independent, X; ~ N;(u;,
d?), and consider testing

Hf: y;=<0forsomei =1,...,pand
ui=z0forsomei=1,...,p
versus
Hf:y;>0foralli=1,...,por
ui<Oforalli=1,...,p. (6.2)
The LRT rejects Hf if X;/0, = z,foralli=1,...,por

X/o;= —z,foralli = 1,...,p. Test IIl rejects Hj if
forsomej=1,...,2J,¢=X/o;=ci_ forali =1,

.., D-

To see that Test III is a size-a test, we will use major-
ization concepts. Let Z;, = X/g;. Then Z = (Z,, . . .,
Z,)' ~ N,(0, 1,), where 6, = y,/0;. For any p € Hj there
is the corresponding 0, and this @ majorizes a vector 0*
that has at least one coordinate equal to 0. Furthermore,
the density of Z is Schur concave and U, {z: ¢; < z; <
¢i-1,i =1,...,p}is a Schur-convex set. Thus we have

2J
P.X€ UR)
j=1

2]

=PU{=Z =¢_ foralli=1,...,p}
=1
2J

=Pp(U{=Z =c¢_ foralli=1,...,p}
i=1

= a,
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where the first inequality is from theorem 2.1 of Marshall
and Olkin (1974) and the second is from Theorem 2.1
here.

An application in which the two-sided hypotheses are
of interest was described by Gail and Simon (1985). Let
Ui = v — vy;, Where v;; is the average response of the ith
patient subset (i = 1, ..., p) to the jth treatment (j =
1,2).If y;>0foralli = 1,...,p, then Treatment 2 is
better in all subsets. If 4; <Oforalli = 1,...,p, then
Treatment 1 is better in all subsets. Thus HY states that
the same treatment is better for all subsets. In the ter-
minology of Gail and Simon, there is no qualitative in-
teraction between treatment effects and patient subsets.

Gail and Simon had Hf: “no qualitative interaction” as
the null hypothesis. So the LRT they studied is different
from the one we have considered, and our results are not
generally applicable in their problem. But in one case,
that of p = 2 patient subsets, our Test III provides a
uniformly more powerful size-a test in the Gail and Simon
problem. To see this, let 4, = v, — vy, as before, but
let u, = vy, — vy Now, Hf: u; > 0and u, > 0 or y; <
0 and u, < O states that there is a qualitative interaction,
as in the Gail and Simon formulation. For this case, Zel-
terman (1987) constructed an approximate test that is uni-
formly more powerful than the Gail and Simon LRT and
locally most powerful at p = 0.

We have only shown that Test III is a size-« test for the
special sign-testing problem (6:2). For the more general
problem (6.1), Theorem 2.1 would still be useful. But the
rejection region (even after transformation) might not be
a Schur-convex set. Thus other techniques may be needed
to find uniformly more powerful tests in the general two-
sided problem.

[Received January 1988. Revised July 1988.]
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