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Stepwise Confidence Intervals Without Multiplicity
Adjustment for Dose—Response and Toxicity Studies

Jason C. Hsu and Roger L. BERGER

Not all simultaneous inferences need multiplicity adjustment. If the sequence of individual inferences is predefined, and failure to
achieve the desired inference at any step renders subsequent inferences unnecessary, then multiplicity adjustment is not needed.
This can be justified using the closed testing principle to test appropriate hypotheses that are nested in sequence, starting with
the most restrictive one. But what hypotheses are appropriate may not be obvious in some problems. We give a fundamentally
different, confidence set—based justification by partitioning the parameter space naturally and using the principle that exactly one
member of the partition contains the true parameter. In dose-response studies designed to show superiority of treatments over a
placebo (negative control) or a drug known to be efficacious (active control), the confidence set approach generates methods with
meaningful guarantee against incorrect decision, whereas previous applications of the closed testing approach have not always
done so. Application of the confidence set approach to toxicity studies designed to show equivalence of treated groups with a

placebo is also given.

1. STEPWISE CONFIDENCE SETS WITHOUT
MULTIPLICITY ADJUSTMENT

Suppose that data Y have a distribution determined by
the parameter 6 € O, the parameter space, and 8 € 6,4 =
1,...,m, are multiple comparison inferences of interest.
For example, suppose that 8 = (uq,..., k), @ vector of
mean effects of k treatments, where p; is the mean of the
control. Then in one-sided comparisons with the control
where significant difference inference is of interest (as in
dose-response studies, for example), the desired inferences
are u; > p1 + 6, where § defines practical significant dif-
ference, so ©F = {p; — p1 > 6},4 = 2,..., k. In multiple
comparisons with the control where practical equivalence
inference is of interest (as in toxicity studies, for example),
if ; and py can be considered practically equivalent when
01 < py — p1 < b2, then B = {(51 < Wy — pp < 52},’i =
2,..., k. Such multiple comparisons do not need multiplic-
ity adjustment in some situations. One such situation occurs
when it is desirable to give the inferences in a specified
order, and failure to achieve the desired inference at any
step renders subsequent comparisons unnecessary. This sit-
uation arises in dose-response and toxicity studies, where
e, - - ., g correspond to increasing dose of a substance. In
dose-response studies, it is desirable for a method to not
declare a lower dose to be efficacious if it does not declare
a higher dose to be efficacious. This can be achieved by
answering the question “is pu; > u1 + ¢” in a stepwise fash-
ion, continuing only while the answer is in the affirmative.
Likewise, in toxicity studies, it is desirable for a method to
not declare a higher dose to be safe if it does not declare a
lower dose to be safe. This can be achieved by answering
the question “is 6; < p; — 1 < d2” in a stepwise fash-
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ion, continuing only while the answer is in the affirmative.
We describe a general method of providing confidence sets
6 € ©f in a stepwise fashion without multiplicity adjust-
ment, stopping at the first 4 for which such inference is
impossible.

In this section we define our stepwise confidence set pro-
cedure and prove that it has the correct coverage probability.
In the sections that follow we show that in dose-response
and toxicity studies, our confidence set approach is more re-
liable in generating simple methods with meaningful guar-
antee against incorrect decision than other approaches.

Definition 1. Let ©* C ©. A confidence set, C(Y), for
0 is directed towards ©* if, for every sample point y, either
©* Cc C(y) or C(y) C ©*.

For our one-sided significant difference inference exam-
ple, ©§ = {u; — p1 > §}. Confidence intervals for p; — py
of the form C(Y) = (L(Y), c0) are directed toward ©f. If
D(Y) is any 100(1 — «)% confidence set for 6, then

D(Y), if D(Y) C O

o) - { . 0
D(Y)U©*, otherwise,

is a 100(1 — )% confidence set for @ that is directed toward
©*. In our practical equivalence inference example, O =
{61 < pi — p1 < 82}, so if D;(Y) is a confidence set for
i — i1, then

i =

D’L(Y)’ if D’L(Y> - (51’62)’
D;(Y) U (61,62), otherwise,

is directed toward ©f.
In general, suppose that the inferences 6 € ©f, in the
order ¢ = 1,...,m, are of interest.

Theorem 1. Suppose that for i = 1,...,m,C;(Y) is a
100(1 — a)% confidence set for € that is directed toward
©¢ and Cp,+1(Y) is any 100(1 — o) % confidence set for 6.
Let M denote the smallest integer ¢ such that C;(Y) ¢ ©f
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if suchan ¢ (1 <
Define ©g = 0 (so

C*(Y)=05() -

Then, for all 8 € ©,

i < m) exists, otherwise, let M =m + 1.
0§ = ©) and

P{0cC (Y)}>1-a.

Proof. Define 0,11 =

:@Sﬂ‘“ﬂ@f—lm@i-

O.Fori=1,...,m+1,let

Then ©7,...,0},,; partition the parameter space ©.
Clearly,
m+1
cy)=J(c ﬂ@*
i=1

is a 100(1 — &)% confidence set for 6, because if 8 € OF,
then
Py{0 € C(Y)} = Py{6 € (Ci(Y)[)©])}
= P9{0 S CAY)} >1—a.

Noting that

(@ C;(Y)n©5 = 0 for all j < M (if such j exists),
because ©F C ©;;

(b) ©F C O5A---NO%,_, N6, for all j > M (if such
7 exists); and

() 85 C Cm(Y), because if M < 'm + 1, then
Cu(Y) ¢ ©f5, implies ©§, C Cn(Y), whereas
05,11 C Cry1(Y) trivially,

we have
m+1
o) = |Jw@mner
i=1
b m-+1
L @mnen
i=M
by(b) * (4 C (4
c ( (Y)ﬂ@M)U(@Oﬂ”'ﬂ@M—lﬂeM)

= @ NG5 Mo NOn¥
U ©5---Mef(105)

"9 @5 M 65s-s (O Ou(Y)

U<@Sﬂ~ﬂ@?w—1ﬂ@?wﬂ0M<Y

05+ (O%-1[Cm(Y

= C*(Y).
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Note that our method provides confidence sets C;(Y) for
6 in a stepwise fashion, stopping at the first 4 such that

Ci(Y) ¢ ©5.

Step 1.

If C1(Y) C ©f
then assert 8 € ©f and go to Step 2;
else assert @ € C1(Y) and stop.

Step 2.

If C2(Y) C ©5
then assert 8 € ©5 and go to Step 3;
else assert € C(Y) and stop.

Step m. -

If Cr,(Y) C ©5,
then assert 6 € ©F, and go to Step m + 1;
else assert 6 € C,,,(Y) and stop.

Step m + 1.

Assert 6 € Cy,+1(Y) and stop.

Note the wide applicability of this method. As long as
individual 100(1 — «)% directed confidence sets are avail-
able, regardless of how the associated statistics are jointly
distributed, the method applies, and Theorem 1 guarantees
that the error rate is properly controlled.

This method readily provides a stepwise test for
Hy;: 6 €0, versus Hg;: 0 € ©F, i=1,...,m, (2)
as follows. The test ¢;, which rejects Ho; when C;(Y) C

0%, is a level-a test:

sup Py(¢; rejects Hy;)
0co;

= sup Py(Ci(Y) C ©%)
0cO;

sup Py(0 & C;(Y))
0c0,

IN

< a.

Thus if one executes ¢; in the sequence i = 1,...,m, stop-
ping as soon as a ¢, accepts, then, by Theorem 1, the family-
wise error rate (FWER) (see Hochberg and Tamhane 1987
for definition) is no more than «. The confidence set we
give is now the simplest known confidence set associated
with any stepwise test, simpler than the one associated with
the MPGN method discussed in Section 2.1.

One can apply the closed testing principle of Marcus,
Peritz, and Gabriel (1976) to test the hypotheses Hy;: 6 €
0;,i = 1,...,m. This principle tests all possible intersec-
tions of the null hypotheses, each at level a, rejecting a
resulting hypotheses only if it and all other resulting hy-
potheses implying it are rejected. Suppose that O4,...,0,,
are nested in the sense that ©; C --- C O,,. Then for any
I c {1,...,m}, the intersection of {Ho;, ¢ € I} is Hop,
where h = min{s: ¢ € I'}. Thus in this case it follows from
the closed testing principle that multiplicity adjustment is
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not needed in testing Hoy, ..., Hom in that sequence if one
stops as soon as a hypothesis is accepted. As shown by Mau-
rer, Hothorn, and Lehmacher (1995), when ©4,...,0,, are
not nested, this result can still be proven using the closed
testing principle by appropriately modifying the null hy-
potheses. But our confidence set derivation shows that the
closed testing principle is not needed in the proof.

For compatibility with existing literature, our presenta-
tion in Sections 2 and 3 is in terms of the one-way model
i=1,...,k,a=1,...

Yia = Wi + €ia,s y Mgy

where Y, is the ath observation under the ith treatment and
€11, - - - ,Ekn,, are iid normal with mean O and variance o
unknown. We use the following notations:

ng
fi=Y; = ZYia/ni
a=1

and

k  n;
§%= MSE => > (Yi,

i=1 a=1

—ﬁ)z/g(ni—l)

for the sample means and the pooled sample variance. The
upper 100 percentile of a Student’s ¢ distribution with v =

S ¥ n; —k df is denoted by 4, .

2. DOSE-RESPONSE STUDIES

Appropriate dosing of a drug is vitally important in bio-
pharmaceutics. Let p; be the mean of the control group,
which may be a negative control group receiving a placebo
or an active control group receiving a standard drug known
to be efficacious. Let us, .. .,y be the mean responses cor-
responding to increasing dose of a test drug. In practice,
dosing is determined by two quantities:

+ minimum effective dose (MED)
* maximum tolerated dose (MTD).

The MED of a drug is the minimum dose such that the
mean response at that dose is significantly better than the
mean response of the controls. The estimated MED (M/E\D)
is determined statistically from the observed dose-response
relationship, where the response is an endpoint that mea-
sures efficacy. The estimated MTD (M/’fD), on the other
hand, is determined from observed adverse events in terms
of both anticipated and unanticipated endpoints. As deter-
mination of the MTD appears to be nonstatistical at present,
our discussion concentrates on determination of the MED.
For convenience, we write MED = 4 and MED = 3 to rep-
resent that the true MED or the estimated MED is the dose
corresponding to ;. We assume that a larger y; indicates a
better average outcome.

Suppose that the control group is a negative control group
receiving a placebo. If the drug is not expected to be dele-
terious, then defining MED as the minimum dose ¢ such
that p; > p; makes sense only when it is known from biol-
ogy that the response follows a threshold model. Otherwise,
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MED = 2, the lowest dose to be compared with the placebo
in the study. Thus if the response curve is expected to be
continuous, then MED should be defined as the minimum
dose such that the mean response at that dose is clinically
significantly better than the mean response of the negative
controls; that is,

MED = min{s: p; > pu1 +6}, 3)

where ¢ > 0 defines a clinically significant difference. For
chronic peripheral arterial occlusive disease, for example,
in terms of percent improvement in walking distance, § has
been defined to be 30% (CPMP/EWP/233/95 1995).

Suppose that the control group is an active control group
receiving a drug known to be efficacious. Then, in so-called
noninferiority trials, MED can be defined by (3) with ¢ ei-
ther positive, 0, or negative, as long as § > ¢*, where ¢*
represents the known quantity, which is the mean placebo
effect minus the mean active control effect.

Note that in general it is possible that u; < py + J for
some 4. This can certainly happen in the active control set-
ting. Even in the negative control setting with § = 0, this can
occur if the response has what the International Conference
on Harmonization (ICH) guideline E4 on dose-response
studies calls an inverted U or umbrella shape (International
Conference on Harmonization 1994, sec. 3, p. 6), mean-
ing that p;,4 = 1,...,k, first increases then decreases as i
increases.

Under a one-way model, our stepwise confidence set
method (which we call the DR—for dose-response—
method) takes the following form:

Step 1.

If ¥ — Vi — ta6/1/nk + 1/ng > 6,

then assert y > p11 + 0 and go to Step 2;

else assert puy — 1 > Yy — Y1 — ta0+/1/nk +1/n1 and

stop.
Step 2.

If Yk—l — ?1 —ta,u0/ 1/nk_1 -+ 1/n1 >4,

then assert pi—1 > 1 + 9 and go to Step 3;

else assert pig—1 — p1 > Vi1 — Y1 —ta6+/1/np—1 + 1/my

and stop.

Step & — 1.

If}_fz —}_/1 —ta’y&\/l/ng-f—l/nl >0

then assert p2 > p1 + ¢ and go to Step k;

else assert g — py > Yy — Y1 — to,,6+/1/n2 + 1/ny and

stop.
Step k.
Assert minj—o g pi; — i1 > ming=s, ;{¥; — Vi — ta,,0

v/1/n; 4+ 1/n;1} and stop.

To better understand how this stepwise method operates,
let step M (1 < M < k) be the step at which the stepwise
method stops. If M > 1, then the stepwise method declares
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doses k— M +2, ...,k to be efficacious. If M < k, then the
stepwise method fails to declare doses 2,...,k— M + 1 to
be efficacious, and gives a lower confidence bound (which
is less than §) for ug—pr41— 1. If M = k, then the stepwise
method gives a lower bound on how efficacious every dose
is. This lower bound is greater than J.

If the MED determined by the DR method is smaller
than the MTD, then a range MED MED + 1,...,MTD of
safe and effective doses is obtalned Note that in contrast,
applying Dunnett’s (1955) method to compare ps, ..., u
with p; will not necessarily produce a contiguous set of
effective doses. Having a therapeutic window of safe and
effective doses is desirable. For example, the manufacturer
may prefer a dose toward the high end of the range, to
better compete in the market place, whereas the regula-
tory agency may prefer a dose toward the low end of the
range, to better safeguard the consumer. A wide therapeutic
window can facilitate first choosing a higher dose for the
prescription version, and later a lower dose for the over-
the-counter version of the same drug. In the next section
we compare our approach with other approaches.

Instead of Theorem 1, an alternative derivation the DR
confidence set is to invoke the connection between tests and
confidence sets (Lehmann 1986, p. 90), as indicated for the
case of ¢ = 0 that follows. Let

@k = {ﬂ'k S ,Ufl}a
0; = {pi < pr <min{pigr,. .., pe}}
for i=2,...,k—1,
and
©1 = {1 < min{ug, ..., ux}},

so that ©® = UF_, 0, and ©, N O; —Q)whenz;ég For each

u = (1l .. ,/,Lk) € 0,4 = 2,...,k, define ¢;(u°) to be
the usual size-« ¢ test for
Ho: pi—pn < pf —pf versus  Ho: g — py > ) — pf;
that is, ¢;(u°) =1 if

_ Y-V (u - )

a,v.

T; >
G/ 1/n; +1/nq

For each pu® = (ud,...,u?) € O, define an intersection-
union test ¢; (u°) for

Hy: min{/”’Z’ LR /’l'k} —p1 < mln{:u’ga cee 1:“’2} - ,U/(]?
versus

Hy: min{pg, ..., puk} — p1 > min{pd, ..., ud} — ud
with ¢ (u0) = 1 if

Y; — Y1 — (min;= 9 —puf
Tl — min i 1 (mlnz—2,...,k 12 /”'1) > ta,ua
i=2,...,k G+/1/n; +1/n4

which is a level-a test. Then C(Y) = U {u% ul € ©;

and ¢;(u°) = 0} is a confidence set for p with coverage
probability exactly 1 — o for all p except for u € ©1 (for
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which the coverage probability is greater than 1 — o). But
C(Y) is tedious to describe even for k¥ = 3. Note that if
M > 1, then, for every i = k — M +2,...,k, ¢;(u°) re-
jects for every u® € ©;, so the confidence set C(Y) does
not include any points in @k, <.y Ok—_pr+2. The DR confi-
dence set is in fact {u0: u® € Op_pr41 and ¢ pr 1 (pu0) =
0} UU=M@;, (with the understanding that UF= M@, = ( if
M = k) and thus contains C(Y). If p € @m, then the
DR confidence set has the same coverage probability 1 — «
as C(Y) if p; — u1 — +oo for ¢ > m, but becomes in-
creasingly conservative (has higher coverage probability) as
— w1 — 04 for ¢+ > m. However, it can be shown that if
one deduces confidence limits on p; — 1,4 = 2, ..., k, from
C(Y) by finding the suprema of u; — uy for p € C(Y), the
confidence limits given by the DR method result.

2.1

Previous formulations of the MED problem have cast it
as one of testing a family of null hypotheses of equali-
ties against various alternatives. A method that controls the
FWER of testing equalities is guaranteed only to be a con-
fident inequalities method. But the desired inferences in the
MED problem, p; > p1 + 9, are directional. We show that
in fact most methods that have been proposed are not con-
fident directions methods. That is, they do not control the
probability of declaring an ineffective dose to be effective.
To control the directional error rate, the null hypotheses
must be directional themselves, as we now show.

The MED problem can be formulated as one of testing
the family of hypotheses

Comparison With Other Approaches

v
Hi: (< m+6}

4)
j=i
versus
k
Yz () s > + 6} (5)
j=i
for 1 = 2,...,k, because if Hgi is rejected, then there is

evidence that doses j,j > i, are effective. Because the al-
ternative H), implies the alternatwe H,,; when i < j, one

takes as MED the lowest dose ¢ for Wthh H{, is rejected.
If a method strongly controls the FWER of testing (4) at c,
then the probability of declaring a dose as the MED when
either it or a h1gher dose is ineffective is no more than «.
Because H{, C --- C H{, to control the FWER, the closed
testing principle of Marcus et al. (1976) states H0 PR L HY,
can be tested in that sequence, each at level-q, stoppmg as
soon as a hypothesis is accepted. It thus remains to find a

suitable level-c test for each H{,. For i = 2,...,k, let ¢!
be the size-« test that rejects Hp; in

Hop: py <pp +96 (6)
versus

Hait pi > p1 + 6, (7)
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when
)_/i —?1 —ta,04/ 1/ni+ 1/72,1 > 4.

Because Hgi is expressed as a union, by work of Berger
(1982), the test ¢! that rejects H{, if and only if ¢t for
Hoj,j = 4,...,k, all reject is a level-a test of H{,. The
resulting closed test of the hypotheses HE;Q, Ceey Hgk using
¢g, .. .,qﬁ}; reaches the same decision about MED as the
DR method, and can be thought of as the testing version
of the DR method. In this testing form, the DR method
first performs a size-« one-sided ¢-test comparing uy with
w1 + 6. If the test accepts, then it stops and asserts nothing.
If the test rejects, then it asserts py > p; + d and proceeds
to a size-« one-sided t-test comparing pux—1 with the uq +9,
and so on. (Note that the pooled estimate & for o is used in
the standardization of the ¢ statistics.)

If the MED problem were posed as one of testing (6)
versus (7) instead, declaring dose i to be effective if Hy; is
‘rejected, then any test that strongly controls the FWER of
testing (6) controls the probability of making the directional
error of declaring p; > p1 + 6 when in fact p;, < py + 6.
One can use the simultaneous lower confidence bounds on
u; — py of Dunnett (1955) or the ones of Bofinger (1987)
(which were also independently given in Stefansson, Kim,
and Hsu 1988) to test (6), rejecting Hy,; only if the lower
bound on pu; — py i greater than or equal to J. Stefans-
son et al. (1988) showed that the latter confidence bounds
correspond to the closed test of (6), which was proposed
in the multiple testing setting by Marcus et al. (1976) and
in the ranking and selection setting by Naik (1975). If we
define

Y, -Y1-94
6y/1/n;i +1/ny’
let [2],..., [k] be the random indices such that Tjy < --- <

Tix)» and let dj;) be the critical value of Dunnett’s (union-
intersection) test for

k
Hi;: m {ug) <+ 6},

j=i

then this closed test (call it the MPGN method) has the
same form as the DR method except

Vi =Y —to,6y/1/n;+1/ny > 6
in each step is replaced by
Ty = dyy-

The simulation results described in Section 2.3 indicate that
when p; increases as i increases, the DR method tends to
infer an MED that is closer to the true MED than Dunnett’s
method and the MPGN method.

Instead of testing (4) against (5), a second approach to
the MED problem is to formulate it as one of testing the
multiple hypotheses

Journal of the American Statistical Association, June 1999

versus
Hi: pi=po=-=pi—1 < s 9

for i =2,...,k, with u = uq + 6. To strongly control the
FWER, because Hjy,, C --- C Hg,, the closed test of Marcus
et al. (1976) tests Hy,, ..., Hg, in that sequence, stopping
as soon as a hypothesis is accepted. If ¢; is a level-a test
for H3;,,1=2,...,k, then MED is taken to be the smallest
i such that all ¢;, j > i, reject. Because the hypothesis (8)
implies the hypothesis (6), which in turn implies the hy-
pothesis (4), a level-a test for (4) is also a level-« test for
(8). Thus some authors have viewed the DR method in its
testing form as one of many stepwise tests generated by
applying the closed testing technique to (8). We will show,
however, that the formulation of testing (8) versus (9) fails
to differentiate between methods which control the direc-
tional error rate of declaring a p; > pi when p; < pi from
those that do not. That is, even though both the formula-
tions of testing (4) versus (5) and testing (8) versus (9) lead
to stepwise testing with no multiplicity adjustment, only the
former formulation guarantees that the directional error rate
is controlled.

For example, Ruberg (1995) and Tamhane, Hochberg, and
Dunnett (1996) studied methods based on size-a. contrast
tests ¢;* for Hy, (with § = 0) of the form

" Sor_, cijll

) ~ k
o = G\ 216/

> constant

0, otherwise,

with C; = (cﬂ, ey Cik), Z?=1 Cij = 0,ci1 < 0,¢45 > 0, and
¢;; = 0 for all j > 4. Even though these methods strongly
control the FWER of testing (8) at «, they do not generally
control the probability of incorrectly declaring a noneffec-
tive dose as effective at .. Bauer (1997) showed this for the
case of k = 3, but it occurs for all k¥ > 3. The problem is
that the clinical error of incorrectly declaring p; > py + 0
when it is false is not counted as an error in testing (8).
That is, the family of null hypotheses in (8) is too small
a subset of the entire parameter space to offer meaningful
protection against incorrect decision making.

We in fact show that unless the contrast tests method is
the testing form of the DR method, which is the special
case of ¢;; = —1,¢;; = 1, and ¢;; = 0 for all j # 1 and
1, it will not control the error rate of declaring p; > pj
when p; < ui. Consider a contrast tests method that is
not the DR method. Then some comparison is not a simple
pairwise comparison between p; and p. Let ¢* denote the
largest index that is not a simple pairwise comparison. Then
2<i*<kand forall i >4, ¢1 =—-1,¢; =1,and ¢;; =0
for all j # 1 and 4, but there is a j (1 < j < ¢*) with
ci=; # 0. If we fix p1 and all pp (1 < h < % h # j)
but let H; = (—207;*7;*/(37;*3‘)[14‘*,/%* — —oo and Ky, — OO
for all m > 4*, then all ¢S (m > i*) as well as ¢;"" will
reject with probability approaching 1, and dose ¢* will be
incorrectly declared to be effective.

The simulation results described in Section 2.3 in fact
indicate that, compared to the methods based on lin-
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ear, Helmert, and reverse Helmert contrasts discussed by
Tamhane et al. (1996), the DR method does about as well
as the best method for each of the response shapes stud-
ied but is the only method that always controls the error
rate.

Indeed, the lower confidence bound on p;+ — p1 obtained

by pivoting the ¢3¢ test is —oo regardless of data. This can
be seen as follows. The test
L Ci
1, i i ](,u — 1) > constant
6% (19, ..., 1)) = \/ZJ 1 g/
0, otherwise
is clearly a size-a test for Ho: p1 = pd, ..., pe = pf. If we

fix all /:Zj (1 <3< k’),p,l, and all Uh (1 < h< 2*,h 75‘])
but let M = (_2Ci*i* /Cz'*j),u'i*a then, as L;x — —00,

k
Zj 10: (B — 1) .

Therefore, the set of (uf,...,u9) for which ¢S (uf,
.., 1) accepts always includes a sequence for which
o — pf — —oo. Thus, by the usual correspondence be-
tween tests and confidence sets, the lower confidence bound
on p; — pp is —oo regardless of data. That is, the re-
jection of (8) in favor of (9) does not in general support
Bi > pi
A third approach to the MED problem that has been taken
is to test the hypotheses

Hif: pi= = (10)
versus
Hyfoopy <0 <y

with at least one strict inequality (11)
for i = .k, usmg the size-a likelihood ratio test

$MR, and then take MED to be the smallest i such that
all HyY,j > i, are rejected (e.g., Williams 1971). How-
ever, the size-a likelihood ratio test for (10) is not nec-
essarily a size-o test for (6). For example, suppose that

= 3,0 =0, and uy = 0 = pz so that Hys in (6) is
true, while po — oo. Then with probability approaching 1,
the isotonic regression estimates of ps and us under (11)
become (n2Ys +n3Y3)/(ng +n3), while the isotonic regres-
sion estimates of y; remains Y;. Thus the probability that
the likelihood ratio test rejects (10) and us > wf is incor-
rectly declared approaches 1. Again, the rejection of (10) in
favor of (11) does not in general pivot to a positive lower
confidence bound on u; — uy. For example, when £ = 3
and n; = no = ng, the lower confidence bound on p3 — p;
obtained by pivoting ¢5® is —oo regardless of data. This
can be seen as follows. The test 5% (19, u3, 13), which is
¢5® applied to the shifted data (fi; — p9,j = 1,2,3) and 4,
is clearly a size-a test for Ho: pp = p, po = p, us = pl
against Hy: pp — pf < po — pd < ps — pd with at least
one strict inequality. If we fix all 45,5 = 1,2, 3, and y; but
let uo = —2pug3, then, as us — —oo, the isotonic regres-
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sion estimates of 3 — uS, ue — 9, and pz — pg become
((1 = p8) + (fi — p3) + (f1s — 413)) /3. Therefore, the set of
(9, 19, 1) for which ¢}”’j§(u1, .., 1Y) accepts always in-
cludes a sequence for which p§ — u? — —oo. Therefore, by
the usual correspondence between tests and confidence sets,
the lower confidence bound on us — py is —oo regardless
of data.

The motivation for this third approach is presumably to
take advantage of the power of isotonic regression when p;
is suspected to decrease as ¢ decreases from k to 2. How-
ever, even though the validity of the DR method does not
depend on the validity of this suspicion, the simulation re-
sults described in Section 2.3 indicates that the DR method
takes advantage of this suspicion when it is true to much
the same extent that Williams’s test does.

Finally, sampling as well as confidence set construction
can proceed in.a stepwise manner. First, the control group
and dose k are sampled. If dose & is found to be efficacious,
then dose k — 1 is sampled, and so on. Failure to declare
a dose 1 to be efficacious renders sampling at doses lower
than 4 unnecessary. This modified method has the distinct
advantage of reducing the exposure of patients in clinical
trials to possibly ineffective doses. To analyze this stepwise
sampling plan, the DR method is modified so that t,,,,5;
replaces t,,, 6 in comparing p; with pf, where v; = ny +

me n; — (k—14+2) and
o2 X (o -T2+ 550 Y02, (Ve — %)

7 v;

2.2 An Example

To illustrate the DR method and its difference from Dun-
nett’s method and the MPGN method, consider the data in
Table 1, taken from Ruberg (1995). If 6 = 7, then Table
2 shows the 95% lower confidence limits on p; — p1,7 =
2,...,10, given by the three methods. (Note that for com-
patibility, the inference given by the MPGN method is pre-
sented in terms of its associated confidence bounds, as de-
scribed in Bofinger 1987, and Hsu 1996, sec. 3.1.1.2). Thus,
whereas both Dunnett’s method and the MPGN method find
doses 6, . .., 10 to be effective (with an MED of 2.5 mg/kg),
the DR method finds doses 5,...,10 to be effective (with
an MED of 2.0 mg/kg).

Table 1. Sample Dose-Response Data
Dosage Sample Mean SD
Group (mg/kg) size response response

1 0 6 255 2.6
2 5 6 23.9 4.0
3 1.0 6 27.7 3.3
4 1.5 6 33.4 23
5 2.0 6 40.5 10.5
6 25 6 57.9 9.9
7 3.0 6 74.4 14.6
8 3.5 6 734 7.6
9 4.0 6 73.5 4.5
10 4.5 6 76.2 7.9
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Table 2. 95% Simultaneous Lower Confidence Limits on p; — py

Group Estimated DR MPGN Dunnett’s
difference difference method method method
2 -1 —-1.6 —11.52 —12.73
3-—1 2.2 —-7.72 —8.93
4 —1 7.9 40 —2.02 —-3.23
5—1 15.0 7.00 5.08 3.87
6 —1 324 7.00 7.00 21.27
7 -1 48.9 7.00 7.00 37.77
8 —1 47.9 7.00 7.00 36.77
9—1 48.0 7.00 7.00 36.87
10 — 1 50.7 7.00 7.00 39.57

2.3 A Simulation Comparison of Methods for
Dose-Response Studies

A simulation study was conducted to compare the be-
havior of the DR method with methods based on linear
contrasts, Helmert contrasts, reverse Helmert contrasts, and
Williams’s test (as described in Tamhane et al. 1996). For
each of four mean configurations with & = 6, 10,000 mul-
tivariate normal random vector with the identity variance—
covariance matrix were generated. Figures 1-4 compare the
distributions of MEDs inferred by the five methods. The
graph in the upper left corner of each figure shows the true
response corresponding to each dose level, with y; + ¢ in-
dicated by the horizontal line. In these figures, an inferred
MED of dose level 7 means that none of the dose levels is
inferred to be effective. The nominal error rate o was 5%
for all our simulations.

The first two p’s are monotonically increasing; for these,
all five methods control the error rate. For these two u’s,
the methods can be compared in terms of closeness of the
inferred MED to the true MED.

For linearly increasing response p = (1,2,3,4,5,6) and
0 = 1.5, a method commits an error only if it infers
MED = 2. Figure 1 shows that the linear contrast method,
Williams’s test, and the DR method do well, whereas the
methods based on Helmert contrasts and reverse Helmert
contrasts tend to infer a somewhat larger MED.

For logarithmic response p = (0,2.08,3.30,4.16,4.83,
5.38) and 6 = 2.7, a method commits an error only if it
infers MED = 2. Figure 2 shows that Williams’s test and
the DR method do well, whereas methods based on lin-
ear, Helmert, and reverse Helmert contrasts tend to infer a
somewhat larger MED.

For inverted-U response p = (1,2,3,4,8,2) and § = 1.5,
a method commits an error if it infers any dose level ¢ (2 <
1 < 6) to be the MED. Figure 3 shows that Williams’s test
and methods based on linear and reverse Helmert contrasts
have very excessive error rates.

For U-shaped response p = (7.0,3.5,0,2.0,4.0,6.0) and
0 = 0, a method commits an error if it infers any dose level 4
(2 < i < 6) to be the MED. Figure 4 shows that the method
based on Helmert contrasts has rather excessive error rates.

In short, the DR method does about as well as the best
method for each of the response shapes studied but is the
only method that always controls the error rate. Also, the
other methods are not confidence set methods. They are
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testing/decision making methods, and we have compared
the DR method with them in that context. But the DR
method additionally provides a confidence bound for the
first noneffective dose. Or, if all doses are deemed effec-
tive, the DR method provides a lower confidence bound on
how effective they are. None of the other methods provides
this additional inference.

A separate simulation study was conducted to see
whether the DR method takes advantage of suspected
monotonicity in the response, compared with Dunnett’s
method and the MPGN method, which do not. For linear re-
sponse with p = (1,2, 3,4, 5,6), 10,000 multivariate normal
random vectors with the identity variance—covariance ma-
trix were generated. Suppose that § = 1.5; then dose levels
3-6 are truly effective. Because all three methods control
the error rate, we compare them, in Figure 5, in terms of
the distribution of the number of truly effective doses that
they infer. As can be seen, the DR method does take advan-
tage of suspected monotonicity in the response, tending to
infer more truly effective doses as effective than the MPGN
method and Dunnett’s method.

The DR method makes an inference of the form, “all
doses greater than dose i are effective.” It is not designed
to detect effective doses in the middle of an inverted-U
(umbrella) response such as in Figure 3. Dunnett’s and the
MPGN methods could identify such a subset of effective
doses. If an inverted-U response is suspected, then the DR
method should not be used, although it will maintain the
correct error rate in this case, as in all cases. Dunnett’s and
the MPGN methods are not stepwise methods and would
not have the advantages of stepwise sampling described
at the end of Section 2.1. A stepwise method, similar to
the DR method, that would be appropriate for inverted-
U responses has been described by Berger and Boos
(1999).

3. TOXICITY STUDIES

Consider toxicity studies designed to assess the safety
of a substance at various dose levels. Let u; be the
mean response of the negative control (placebo) group. Let
U2, ..., k—1 be the mean response of k — 2 dosed groups,
and let px be the mean response of a positive control group
that is typically included in a toxicity study. Toxicity anal-
ysis is an example where the desired inference is practi-
cal equivalence between u;,i = 2,...,k — 1, and p;. The
rationale for the inclusion of a positive control group is
that if the study fails to detect significant difference be-
tween the positive and the negative control groups, which
are known to be different, then any lack of observed sig-
nificant difference between a dosed group and the nega-
tive control group may be due to failed experimentation
instead of closeness of their mean responses. Suppose that
u; can be considered equivalent to py if 61 < p; — py < da.
Without loss of generality, we can assume that —§; =
d, = & > 0 (for otherwise, we can base our inference on
Y;' —}71 — (51 +52)/2,i =2,...,k— 1). Then @i: = {Nk
> ,11,1} and ©;, = {,ui — M1 € (—5,5)},’i = 2,...,
kE—1.
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Figure 1. Histograms of Inferred MED: Linear Response. (a) Response curve; (b) DR method; (c) Helmert contrasts method; (d) reverse Helmert
contrasts method; (e) Williams’ method; (f) linear contrasts method.
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method.

Under a one-way model, (Y, — Yy —ta,,6+/1/n; + 1/ny,
00) obviously is a 100(1 — )% confidence interval for p, —
wy directed toward {py > p1}. Fori=2,...,k -1, let

Dz_ = mln{i/z — ?1 - ta,l/a- l/nz + 1/TL1, 0}

and

D;" =max{Y; - Y, + ta,u5Ma 0}.
Then
(D;,Df), if D; <0< Df
[O,D;"), if D, =0
(D;,0], if Df =0,

D; =

is a 100(1 — a)% confidence interval for u; — p1 (Berger
and Hsu 1996). Therefore, using (1), if we let
Dia

if D; C (=6, 6)
C; =
{ D;U(=4,9),

then C; is 100(1 — )% confidence interval for p; —
directed toward (—4,5). We now show that max;—o . x_1
max{—D; , D]} is a 100(1 — )% upper confidence bound
for max;—o,... x—1|pi — p1]; this confidence bound is used at
the last stage of the stepwise procedure. Let j be such that

otherwise,

479

lpj — pa1| = maxi=g . k-1 |t — pu1]. If pj > py, then

P(pj—m < _max {¥i=¥i+tapoy/1/ni+1/m})

> P(uj — 1 <Yj; = Y1 +ta,64/1/n; +1/n1)

=1—-a.

A similar proof holds for the case of p; < p.
Our stepwise confidence set method (which we call the
TX—for toxicity—method) is as follows.

Step 1.

If Yk — Yl — ta,,,&\/l/nk +1/n1 >0
then assert px > p1 and go to Step 2;
else assert pp — 1 > Yy — Y1 — ta6+/1/ng +1/n1 and

stop.
Step 2.

If Dy C (=6,0)
then assert po — 1 € (—4, ) and go to Step 3;
else assert g — p1 € Co and stop.

Step 3.

If D3 C (—4,9)
then assert us — p1 € (—46,8) and go to Step 4;
else assert p3 — p1 € C3 and stop.

Step £ — 1.

If D1 C (—5, 5)
then assert ux—1 — p1 € (—4,6) and go to Step k;
else assert pi—1 — 1 € Cx—1 and stop.

Step k.

Assert max;=o,....k—1|pi — p1| < max=,. k-1 max{—D;,
Dj} and stop.

To better understand how this stepwise method operates,
let Step M (1 < M < k) be the step at which the stepwise
method stops. If M = 1, then the sensitivity of the experi-
ment is inadequate, and a lower confidence bound (which is
negative) for uy — pq is given. If 1 < M < k, then a confi-
dence set for iy, — iy that contains (—4, 6) is given, and the
confidence intervals u; — pu; € (=6,0) fori =2,...,. M -1
are given if M > 2. If M = k, then a common confidence
interval for p; — 1,1 = 2, ..., k, which is entirely contained
in (-4, 4), is given.

Recall from Section 2 that instead of Theorem 1, the
DR confidence set can be alternatively derived by par-
titioning the parameter space, applying an appropriate
family of tests to each subspace, then invoking the con-
nection between tests and confidence sets. This same tech-
nique can be used to alternatively derive the TX confi-
dence set, with each subspace in the partition being the
subspace that a step of the TX method seeks to rule out
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(e.g., {pa — p1 < =0} U {ua — 1 > 4} in step 2), followed
by applying tests appropriate for each subspace.

3.1 Comparison With Other Approaches

A common practice of analyzing toxicity data for both
carcinogenicity and systematics is to test the hypotheses of
equalities between the negative control (placebo) group and
the dosed groups,

Hy: oy =1 versus Hi: p; # pa, (12)
for ¢ = 2,...,k, with a small p value associated with Hj
and large p values associated with H;,i =2,...,k — 1, ad-

justed for multiplicity, taken as evidence of safety. This is
unreasonable, because p values do not provide quantitative
information. In fact, regarding carcinogens, the U.S. Envi-
ronmental Protection Agency (EPA 1993) states that “there
is theoretically no level of exposure for such a chemical
‘that does not pose a small, but finite, probability of gen-
erating a carcinogenic response”—that is, the EPA’s posi-
tion is all Hy;: p; = pa,t = 2,...,k — 1, are false a for-
tiori. Thus when toxicity studies are formulated as in (12),
noncarcinogenicity of any substance can be contradicted by
conducting a well-controlled experiment with a large sam-
ple size. On the other hand, under this formulation, safety
of any substance can be concluded by conducting a small,
sloppy experiment that includes a potent positive control.
A significant p value associated with the positive control
does not lend support to the interpretation that nonsignif-
icant p values indicate practical equivalence between the
associated treatments and the control; it merely indicates
that p, — w1 € (0,00). Adequate “power” designed into a
study lends at most partial support, because the “power” of
a test of homogeneity includes the probability of directional
errors. Even if the sample size is computed to ensure that
all sufficiently large differences are detected in the right di-
rection (cf. Hsu 1996, app. C for such computations), there
still must be a linkage analysis quantifying the consequence
of error in the specification of ¢ in the sample size compu-
tation on the multiple comparison inference, which we have
not seen done. We recommend taking the direct approach of
the TX method. (Perhaps the ¢ that would have been spec-
ified in the sample size calculation as the difference that
should be detected with adequate “power” can serve as the
& defining practical equivalence.)

For a single dose 7 in a general toxicology setting, Stallard
and Whitehead (1996) proposed, in effect, to conclude that
|pes — p1] < & if a 100(1 — 2a)% confidence interval for p;
— wq is contained in (—4,d). Note however, as shown in
theorem 5 of Berger and Hsu (1996), unless the confidence
interval is equal-tailed (as D; is), the probability of an in-
correct conclusion may be higher than a.

If the establishment of equivalence between u;,i =
2,...,k—1, and u; is posed as testing the hypotheses

Hg’i: |s — p1| > 6 versus Hji Js — pa] <6,

then Dunnett’s (1955) two-sided simultaneous confidence
intervals for p; — py or their stepwise version by Bofinger
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and Bofinger (1995) can be used to assess whether u; — iy
€ (=4,0),i = 2,...,k — 1. But either method may declare
a noncontiguous set of doses as safe.

Hauschke (1997) and Neuhauser and Hothorn (1997)
have formulated the comparisons of wa, ..., pr—1 with gy
in toxicity studies as tests of the one-sided hypotheses

HOZi: Wi — 1 >0 versus Ha% Wi — p1 < 6.

In toxicity studies for which this formulation is appropriate,
our general confidence set technique can be applied with
G)i :{,u'k? >,U,1} and@i:{,u'i_,ufl <5}1i:21"-1k_1'

The TX method can be modified, as in Section 2.1, if
sampling and confidence set construction are stepwise. The
TX method is modified so that t,,,6; replaces t, 6 in

comparing u; with u;, where v; = Z}zl nj — i and

j2_ Sim Npl (G~ V)
7 V/L

With this method, failure to declare dose ¢ to be safe
renders sampling at doses higher than ¢ unnecessary. This
modified TX method has the distinct advantage of reducing
the exposure of patients in clinical trials to possibly toxic
doses.

3.2 Bovine Growth Hormone Toxicity Study Example

The use of bovine growth hormone is controversial [as the
articles, both titled “Udder Insanity,” in Consumer Reports
(Consumer Union 1992) and in Time (Horowitz and Thomp-
son 1993) indicate]. Writing for the Federal Food and
Drug Administration (FDA), Juskevich and Guyer (1990)
reported on a number of experiments that did not indicate
bovine growth hormones are harmful if present in milk con-
sumed by humans. A subset of the data from one experi-
ment included in that article gave absolute weights of vari-
ous organs measured from control hypophysectomized rats
and hypophysectomized rats treated orally with the peptide
hormone recombinant insulin-like growth factor-I (rIGF-
I). In addition to groups given rIGF-I orally, one group
was given a negative “saline control,” and another group
was given rIGF-I via a subcutaneously (sc) implanted os-
motic minipump as a positive control. Spleen weights of
rats treated for either 17 days by gavage or .15 days by
continuous sc infusion are given in Table 3. (To keep the
discussion simple, data from one group of rats given bovine
serum albumin as a negative “oral protein” control are not
included here.)

Table 3. Spleen Weight (in Grams) of Male Rats

Dosage
Treatment (mg/kg Sample Mean SEM
label per day) size weight weight
1 = none (saline) 0 20 147.6 8.8
2 = oral rIGF-I .01 20 147.2 57
3 = oral rIGF-I A 20 149.6 5.8
4 = oral rlGF-I 1.0 20 1471 6.6
5 = SC Infusion rIGF-I 1.0 10 239.6 17.9
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Table 4. Individual and Simultaneous 95% Confidence
Intervals on p; — g -

Group Individual X Dunnett’s
difference interval interval interval

2 -1 (—18.43, 17.63) (—20.03, 20.03) (—27.51, 26.71)

3-—-1 (—16.03, 20.03) (—20.03, 20.03) (—25.11, 29.11)

4 —1 (—18.53, 17.53) (—20.03, 20.03) (—27.61, 26.61)

5—1 (69.91, o) (0, o0) (58.80, 125.20)

Juskevich and Guyer (1990) assessed bovine growth hor-
mone safety by testing the multiple hypotheses of equality
(12). Adjusting for multiplicity in accordance with Dun-
nett’s (1955) two-sided method, they reported on the non-
significant p values associated with Hg;,¢ = 2, 3,4, and the
significant p value associated with Hy;. Based partly on the
nonsignificant p values of the treated groups (except the
positive control group) in this and other similar datasets pre-
sented in their article, Juskevich and Guyer (1990) stated,
“Therefore, the FDA scientists concluded that the use of
rbGH in dairy cattle presents no increased health risk to
consumers.” Apparently, the FDA formulated this safety
study statistically as a significant difference problem: The
substance is considered safe if there is no statistical evi-
dence that it causes any change. However, a large p value
associated with a test of equality does not necessarily imply
that the difference is close to 0.

We believe that comparison of the three levels of orally
fed bovine growth hormone with the saline control should
be formulated as a practical equivalence problem: Weight
gains in rats given any growth hormone are close to weight
gains of rats given the saline control. Juskevich and Guyer
(1990) did not describe any sample size computation to
suggest an appropriate J. Table 4 shows individual 95%
confidence intervals for p; — p1,i = 2,...,5 (D; for
1 = 2,3,4), 95% TX simultaneous confidence intervals
assuming 6 = 25, and 95% Dunnett simultaneous confi-
dence intervals. Thus, for § = 25, the TX method is able
to infer practical equivalence, whereas Dunnett’s method
is not.

4. CONCLUDING REMARKS

That some simultaneous inferences need no multiplicity
adjustment has been perceived, in the hypotheses testing
setting, as a consequence of the closed testing approach.
We have shown that the reason is more fundamental. If
the sequence of individual inferences is predefined, and
failure to achieve the desired inference at any step ren-
ders subsequent inferences unnecessary, then confidence
sets for such inferences can be obtained without multiplicity
adjustment.

Deciding what doses are safe and effective are inherently
decision problems. For these problems, the most relevant
quantity to consider is the probability of making an incor-
rect decision, which is not necessarily the same as artificial
constructs such as the familywise type I error rate. As we
have demonstrated, careless formulation of these problems
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as tests of equalities have led to statistical methods that do
not control the probability of making an incorrect decision.
A better approach is to state the desired inferences ©¢ on
which correct decisions depend, and then act as one would
when 6§ € ©f only if a confidence set C(Y) for 6 is con-
tained in ©f.

[Received July 1997. Revised December 1998.]
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