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ABSTRACT 
 
Video deinterlacing is a key technique in digital video 
processing, particularly with the widespread usage of LCD 
and plasma TVs. This paper proposes a novel spatio-
temporal video deinterlacing technique that adaptively 
chooses between results from segment adaptive gradient 
angle interpolation (SAGA), vertical temporal filter (VTF) 
and temporal line averaging (LA). The proposed method 
performs better than several popular benchmarking methods 
in terms of both visual quality and PSNR and requires 
minimal computational overhead. The algorithm performs 
better than existing approaches on fine moving edges and 
semi-static regions of videos, which are recognized as 
particularly challenging deinterlacing cases.  
 

Index Terms- Deinterlacing, Interpolation, Saliency. 
 

1. INTRODUCTION 
 
The human visual system is more sensitive to temporal 
resolution than spatial resolution. Without increasing the 
overall transmission bandwidth, video interlacing can 
effectively double the video frame rate. A drawback of 
interlaced videos is that they are only suited for analog 
display technologies such as CRT. Modern displays require 
progressive or deinterlaced videos, necessitating a 
conversion. 
      The most straightforward way of deinterlacing a video is 
the weave algorithm (line-doubling or field insertion) [1]. 
This inter-field deinterlacing algorithm merges two fields, 
preserving the horizontal resolution while reducing the 
vertical resolution by half. The weave algorithm leads to a 
line crawling effect in regions that describe motion.  
      Line averaging (LA) and edge-based line averaging 
(ELA) [2, 3] are intra-plane deinterlacing algorithms. While 
LA is simply the average of two lines of data, ELA 
calculates directional distances over pixel neighborhoods 
and defines the interpolated pixel as the average of the pixel 
neighbors with the minimum intensity change. Modified 
versions of ELA are an area of active research [4].   
      Vertical temporal filtering is a spatio-temporal approach 
to deinterlacing. The filter includes the known vertical and 
temporal neighbors of the missing pixel being deinterlaced. 
The VTF method can be described as: 

 

, (1) 

 
where represents the pixel value at position in 
the nth field,  denotes the reconstructed pixel value at 
the same position, and  denotes the VT filter weights 
for field index m and vertical index k. The filter weights 

as proposed by Weston [5] are:  
 

 

 
Like ELA, VTF is a popular benchmarking algorithm and 
VTF variations are still actively researched. One example is 
content-adaptive VTF (CAVTF) [6]. 
      Oh, et. al proposed another inter-field deinterlacing 
technique: spatio-temporal edge based median filtering 
(STELA) [7]. STELA divides the video frame into low-pass 
and high-pass components. Six directional, inter-field 
distances are calculated on a low-pass version of the image. 
Referencing Figure 1, ‘X’ is the point to be estimated in 
frame ‘n’. The associated distances are,  
 

 
            (3) 
               . 
 
The de-interlaced point in the low-pass filtered image is 
estimated as  , where  is the average 
value of the two points that yield the minimum directional 
change among  to . A line-doubled version of the high 
pass image is added to y. STELA attempts to preserve both 
the horizontal and vertical frequencies of the image. 

 
Figure 1. Example video and neighborhood description. 

861978-1-4673-2533-2/12/$26.00 ©2012 IEEE ICIP 2012



       The remainder of this article is organized as follows: 
Section 2 describes the proposed algorithm. Section 3 
presents results of the new algorithm. Section 4 provides 
concluding remarks. 
 

2. PROPOSED ALGORITHM 
 

The proposed algorithm performs an intra-frame 
deinterlacing similar to ELA and incorporates inter-frame 
information selectively based on a novel measure of spatial 
saliency and temporal difference. The algorithm buffers 
three interlaced frames at a time and deinterlaces the middle 
frame. A difference map  is derived from the intensity 
differences between frame and frame  and a 
spatial saliency map  is calculated. The choice between 
deinterlacing estimates from SAGA [11], VTF and a pure 
temporal average is then made according to: 
 

 

 
where is as in Equation (2) and  is the 
interpolated value from the spatial interpolator SAGA. The 
parameters used in Equation (4) are discussed in the 
following subsections. 
 
2.1 Difference map. 
 
The static regions of a video, where there are no temporal 
differences in pixel values, are best deinterlaced by temporal 
averaging. Accordingly, a difference map  is calculated 
for the  frame by finding the difference between frame 
number and frame number . Any region that is 
temporally static ( , where  is a 1 bit difference) is 
interpolated by averaging temporally.  
 
2.2 Spatial Saliency map. 
               
The procedure for identifying saliency is well presented in 
[9]. A quaternion version of the same is implemented here. 
A color image can be represented using quaternions of the 
form:  

 
                                  
where  satisfies, ,   

. The three color channels of the images are 
allocated to Ch2, Ch3 and Ch4. Ch1 is set to zero. The 
Quaternion Fourier Transforms (QFT) of the frame n are 
defined in [10] as: 

   
and   

 
 
where are the pixel locations of individual pixels and 

 describe the frequencies. W and H are the width and 
height of the frame. The phase spectrum of is 
given by . The spatial saliency map,  is 
obtained by Gaussian smoothing (σ = 8) the L2 norm of the 
inverse QFT of , as defined by Equation (6b).                      
The spatial saliency map is then used as part of the decision 
making process in Equation (4) with a threshold level of b 
where b is 4% of the bit depth. 
                           
                                
 
2.3 SAGA. 
 
ELA and STELA both use edge-based information to 
improve deinterlacing results. Interpolation along rather 
than across edges avoids jagged or blurring artifacts known 
to be visually distracting. Using simple pixel subtraction to 
identify the direction of minimal change is an extremely 
rapid and reasonably effective approach to determining the 
edge direction. Notable short-comings include a restriction 
to a quantized subset of possible edge orientations, a 
sensitivity to noise, and problems detecting weaker edges. 
While a number of more effective edge-directed 
interpolators have been established for static image 
interpolation, the use of those methods in deinterlacing has 
been limited. Many of the complex methods for edge-
directed or adaptive interpolation are computationally 
prohibitive in the context of video. Furthermore, many 
image interpolation methods include kernels with 
expectations for a uniformly (horizontally and vertically) 
under-sampled lattice. 
      We previously introduced one-dimensional control grid 
interpolation (1DCGI), an interpolator based on reducing the 
brightness constraint of optical flow to a one-dimensional 
edge constraining equation: 
 

 
 
where points on a line of constant intensity (isophote) can be  
parameterized in terms of a displacement variable  [8]. 
The control grid formulation of optical flow uses nodes to 
parse an image into sub-grids. Displacement parameters are 
determined explicitly at nodes and interpolated within the 
sub-grids. Using this formulation and the Taylor series 
expansion of Equation (8), we define the matching error for 
1DCGI to be a function of the displacements at the nodes. If 
basis functions  and  are used to define the 
displacements between points x and x+k (where k is the 

862



node spacing), the error associated with selection of the 
displacements  and  can be formulated as: 
 

(9) 

 
 where 
                                          (10)  
 
and i indicates the distance from the previous node (0 to k). 
The displacement  appears in the error calculations for the 
range  to  as well as  to . The solution for the 
set of displacements mapping one line of pixels to the 
adjacent line is identified as the set with the lowest 
cumulative error over the full line.       
      The nodal framework of 1DCGI mitigates the impact of 
noise and allows for the detection of gradual edges. 
Furthermore, interpolation is performed by inserting new 
lines of data as: 
 

           
 
making the 1DCGI approach suitable for deinterlacing 
applications. A drawback of 1DCGI for this application is 
the use of an iterative, conjugate gradient approach for 
determining the optimal displacements. More recently we 
have developed a method called, segment adaptive gradient 
angle (SAGA) interpolation that is based on a similar 
parameterized definition of image isophotes and nodal 
structure [11]. Unlike 1DCGI however, the cost function 
used to determine the optimal displacements for a given line 
of data is formulated as a least squares problem with a tri-
diagonal coefficient matrix. This allows for a numerical 
solution with complexity.  
        Use of the SAGA interpolator as an intra-frame 
deinterlacing method is presented as an alternative to ELA. 
SAGA is also extended as an intra-frame deinterlacer 
SAGA+TF by applying the temporal component of the VTF 
filter and is defined by:  
 

  

 
where 
  

   

 
      The output of the proposed algorithm thus depends on 
the saliency map, the difference map, and the SAGA 
estimate as indicated by Equation (4). 

3. RESULTS 
 
 To facilitate comparisons to published results, we introduce 
a statistical relevance factor ‘r’. If MSEVTF is the mean 
squared error from VTF and MSEnew is the mean squared 
error of a new algorithm, then the statistical relevance ‘r’ is 
 

  
  
Comparison of the proposed approach against CAVTF [6] in 
terms of ‘r’ is given Table 1.  
         The PSNR results of SAGA, SAGA+TF and the 
proposed algorithm are provided in Table 2 along with 
results from other state-of-the-art methods. The performance 
of the proposed method and other methods is shown in 
Figure 3.  
         Table 2 shows that SAGA performs better than ELA 
and that SAGA+TF outperforms its inter-frame counterparts 
VTF and STELA. Furthermore, SAGA provides an 
analytical solution avoiding the expensive sorting involved 
in ELA and STELA. The proposed algorithm also 
outperforms the recently published approach CAVTF as 
shown in Table 1.  
 

4. CONCLUSION 
 
        Advantages of the proposed algorithm are particularly 
noticeable in videos like ‘mother’, where there are distinct 
salient and background regions as indicated in Figure 2. 
SAGA interpolates better than any temporal method along 
the edges in the salient regions, while the background 
regions are estimated using either VTF or temporal average 
(depending on temporal motion). It is clear that this 
selection process improves the performance of SAGA alone 
as a deinterlacer and makes the overall approach better than 
the prior art methods.  
 

   
        a) Original               b) Saliency Map          c) Deinterlaced 

Figure 2. Original frame, saliency map and deinterlaced output 
 
 
Table 1. Statistical relevance ‘r’ values for the proposed algorithm 

and the CAVTF algorithm proposed in [6]. VTF is used as the 
reference algorithm. 

Video CAVTF[6] Proposed Algorithm 
Akiyo 70.620 74.941 

Container 93.200 97.090 
Foreman 41.920 66.547 

Hall Monitor 76.770 89.694 
Mother 57.040 82.529 
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Table 2. PSNR (dB) values for the proposed algorithm and other deinterlacing algorithms.

Video Weave LA ELA STELA VTF SAGA  SAGA+TF Proposed 
Algorithm 

Akiyo 33.302 38.359 36.758 41.237 41.117 38.720 46.024    47.301 
Bowing 31.617 36.850 34.617 37.013 40.962 36.228 42.881    46.122 

Bridge Far 29.854 32.244 32.135 38.788 33.689 32.225 39.138    42.423 
Container 24.436 28.017 27.795 35.479 31.055 28.769 46.278    46.417 
Deadline 27.178 30.443 28.519 35.662 33.152 30.603 42.954    42.814 
Foreman 28.162 31.519 32.149 31.467 32.202 34.539 35.709    36.957 
Galleon 21.411 24.333 23.344 31.609 27.058 24.290 31.780    42.048 

Hall Monitor 25.801 29.945 30.435 36.942 32.023 31.566 37.948    41.892 
Mother 33.103 36.637 36.016 42.599 38.058 36.690 44.351    45.635 
News 28.469 34.202 31.765 36.855 39.088 34.068 40.053    44.597 

Students 28.124 31.906 30.994 37.086 33.436 32.323 38.479    45.173 
Paris 23.541 26.717 25.370 30.943 28.934 26.764 32.114    33.799 

Sign Irene 32.667 36.468 36.268 36.181 36.401 37.462 37.489    40.108 
 

  
                a) Original                                       b) ELA  

  
                c) STELA                                        d) VTF    

  
                 e) SAGA                                     f) Proposed  

Figure 3. Visual comparison among deinterlacing algorithms. 
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