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Abstract. Many urban areas face traffic congestion. Automatic traffic manage-
ment systems and congestion pricing are getting prominence in recent research.
An important stage in such systems is lane prediction and on-road self-positioning.
We introduce a novel problem of vehicle self-positioning which involves predict-
ing the number of lanes on the road and localizing the vehicle within those lanes,
using the video captured by a dashboard camera. To overcome the disadvantages
of most existing low-level vision-based techniques while tackling this complex
problem, we formulate a model in which the video is a key observation. The
model consists of the number of lanes and vehicle position in those lanes as pa-
rameters, hence allowing the use of high-level semantic knowledge. Under this
formulation, we employ a lane-width-based model and a maximum-likelihood-
estimator making the method tolerant to slight viewing angle variation. The over-
all approach is tested on real-world videos and is found to be effective.

1 Introduction

Globally, per-capita vehicle ownership is on a constant rise. In the US1 alone, in the year
2010, the per-capita vehicle ownership was 0.78 with an average individual covering
over 15528 kilo-meters. There were 1.77 fatalities per-kilo-meter, in the year 2010. In
the year 2011, there were 211.87 million drivers and 311.59 million people traveling on
highways alone, with over 244.77 million vehicles, of which 130.89 million are cars.
Travel on roads in the US, increased by over 1.5% from September 2012 to September
2013, with over 345.5 billion vehicle kilo-meters covered in this time-line.

This situation is not unique to the U.S. Similar trends were found in the UK2 as
well. Cars, vans and taxis traveled about 800 billion passenger kilo-meters. Distance
traveled by cars observed a steep increase from 27% to 87% from 1952 to 2013. In the
year 2013, 64% of all transportation was done by car, with over 34 million vehicles used
by over 62 million people everyday. The national transport model center forecast in UK
predicts a 43% increase in vehicle traffic from 2010 to 2040. With such drastic increase
in global road-traffic, intelligent transport system (ITS) research has taken center-stage
prominence in recent years.

A typical ITS involves collecting real-time vehicle and traffic information, estimat-
ing flow and congestion, and providing corrective feedback, usually through congestion

1 US statistics were from http://www.fhwa.dot.gov.
2 UK statistics were from http://www.gov.uk; Tables TSGB0101 to TSGB0102
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pricing and toll. Today’s state-of-the-art ITS stands at a level where they collect infor-
mation at a road-level and provide congestion pricing for platoons of cars entering the
road and exiting the road in a connected-pipes topology [1,2]. The envisioned future for
this kind of systems is to predict and model vehicle patterns and traffic at the lane-level,
along with modeling inter-lane and intra-lane traffic changes in addition to road level
traffic changes. This enables the ITS to price different lanes differently and to provide
routing assistance to drivers at a lane-level. Therefore self-positioning for cars is an
important stage in such an ITS model. Although, many hardware dependent modalities
such as lane marker detection using LIDAR and using those using GPS are popular in
literature, they are cost in-efficient and are not usually preferred [3,4]. With the impor-
tance of the problem and the multi-modal data streams involved, ITS applications calls
for development of new multi-media processing and analysis techniques.

Video-based lane detection and prediction is a popular modality as digital cameras
have become ubiquitous and portable. Although in the past, many simple solutions such
as the Hough transform, were found to give acceptable results in lane detection, extract-
ing knowledge about lanes from them is a difficult task [5]. In this paper, we develop a
lane modeling and prediction system from a wind-shield mounted front-facing camera.
The aim of this system is not to detect lane markers, although we treat it as a sub-
problem, but to predict the number of lanes on the road and the lane at which the car is
presently being driven. In this paper, we propose a Bayesian joint model with the num-
ber of lanes and lane number as parameters and we maximize the likelihood for every
combination of these parameters. The likelihood function is developed in a bottom-up
approach using guided filter, lane-width modeling and prediction confidence of a classi-
fier. To facilitate the exploration of the vehicle self-positioning problem and to improve
and verify the current techniques, we have made the database publicly available.

The rest of the paper is organized as follows. Section 2 discusses recent litera-
ture on lane detection. Section 3 formalizes the proposed method. Section 4 provides
experiments and results. Section 5 provides concluding remarks.

2 Related Work

There have been extremely less attempts at predicting number of lanes and the posi-
tion of the car on road in literature. There is a plethora of lane detection algorithms
using lane-marker detection. Lane markers are usually detected in a multi-stage ap-
proach, typically involving an intra-frame prediction accompanied by an inter-frame
adjustment. The first stage will usually comprise of a pre-processing to select some can-
didate regions and later stages will involve tracking-based methods to exploit the cor-
relation between consecutive frames, thereby reducing false detections. Pre-processing
stage followed by tracking using Kalman filter was performed for detecting lanes in [6].
Huang et al, proposed a method where, a simple set of filters were used to detect candi-
date regions and second-order derivatives were used for further filtering [3]. A similar
idea was used in another lane-keeping paper, where the lane model was estimated row-
by-row from the bottom of the image to the top. This way, the lower rows provided
reference to detect lane markers on higher rows [7]. The supportive argument for this
method was the fact that probabilities of finding lane-markers on lower end of the im-
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age in a front-view is more than the higher end. Many methods enforce road models
using temporal integration. In one such tracking-based method the existing lane model
was enforced on the new image and only newer or emerging lanes were considered [8].
Similarly, in another method, albeit not as strict, the existing lane model was used as a
constraint to find the lanes in the current frame in a Hough transform based setup [9]. A
simpler way of using a similar idea is to define a region of interest in the current frame
using the the predictions of the previous frames. Such an idea was discussed in [10].

Since lanes are typically lines or curves, the use of line fitting or grid fitting is quite
popular. This is done either in the original view or in a transformed view, usually us-
ing inverse perspective mapping (IPM). Parametric line-fitting is used in many methods
[11,12,13]. In these methods, after an initial detection of lane-markers, lines are fit using
various methods to each lane-lines. Although they work well, they are dependent on the
initial prediction. Roads are not typically straight and sometimes require curves to be
fit. Many methods in literature fit either splines or poly-lines to solve this issue [14,15].
The major problem in using active-contour models like b-snakes for lane detection is
that, they are computationally in-efficient in convergence to a final contour. They also
require seed points which are typically provided from edge maps or pre-assumed re-
gions. Further more, even after the contouring of lane-markers, one still has to classify
contours between lanes and non-lanes. Beyond curve and line fitting is a grid-fitting
approach. One interesting method in the IPM view is the hierarchical bipartite graph
(HBPG) [16]. The major advantage of this approach is that the lane model is accompa-
nied by a confidence measure for each lane. Another method finds and tracks multiple
lanes by using computer vision techniques and LIDAR [17]. These both are stable
systems for lane-marker detection. Both of them have their disadvantages. The former
method doesn’t detect lanes beyond a limit and the latter depends on expensive com-
ponents such as LIDAR. Both methods do not attempt at predicting number of lanes or
lane number at which the car is currently being driven. An approach using Spatial RAY
features has tried to predict the position of the vehicle on road given a video stream
[18]. However, they predict at most 3 lanes either on the left or right hand side, whereas
we have upto 6 lanes in our database. They also have low traffic density and use IPM
for processing the data. We have normal-to-moderate traffic density and do not use IPM
which makes our method tolerant to different positions of the camera. Therefore, direct
comparison between these may not be appropriate.

Due to increase in computational capabilities and developments in fields such as
computer vision, a few learning based approaches have also been developed recently.
Patch-learning based approaches have also been developed to classify patches in images
as containing lane-markers. While most methods uses image gradients as features [19],
steerable filters based features have also proven reliable [20] for such patch based meth-
ods. Detection of lanes is further bettered by introducing learning of additional knowl-
edge such as types of lanes by recognition of colors and structure of lane-lines [21].
Texture of the lane-markers were studied and along with a pre-defined lane-model ,and
further adjustments using Hough [22].

While innumerable methods of lane-marker detection, lane detection and lane mod-
eling methods exist in literature, and a survey of all of them are beyond the scope of
this paper, a select few are surveyed to give the reader a general idea as to the directions
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that the research in this field have so far taken. Albeit the all the effort in lane detection,
there are no solutions to predicting the number of lanes or self-positioning of vehicles
given a front-facing view.

3 Proposed Method

Assume that we have labeled data D =


X1 Θ1

X2 Θ2

...
...

Xn Θn

 where Xi is the ith video clip

and Θi is a 2D vector label [θ1, θ2], where θ1 ∈ [1, L] is the number of lanes on the
observed video, L being the maximum number of lanes considered and θ2 ∈ [1, θ1] is
the lane at which the car is currently driving, and each video clip in Xi contains frames
[f1i , f

2
i , . . . , f

m
i ]. The joint probability density of the proposed model for any frame f jr

such thatXr /∈ D is P (f jr , Θ|D, f j−1
r , f j−2

r , . . . , f j−br ), where [f j−1
r , f j−2

r , . . . , f j−br ]
is a buffered set of b frames immediately before f jr .

The posterior density for the prediction of the label Θ̂ at frame f jr given the previous
b frames and the training data D is, P (Θ|f jr , f j−1

r , f j−2
r , . . . , f j−br , D). By Bayes rule,

P (Θ|fr, f j−1
r , f j−2

r , . . . , f j−br , D) ∝
P (fr, f

j−1
r , f j−2

r , . . . , f j−br |Θ,D)P (Θ|D). (1)

Assuming a uniform prior P (Θ|D), the maximum-a-posteriori problem becomes a
maximum-likelihood estimation problem as

Θ̂ = arg max
Θ

P (f jr , f
j−1
r , f j−2

r , . . . , f j−br |Θ,D). (2)

The weighted likelihood for each frame to be maximized is approximated as,

P (f jr , f
j−1
r , . . . , f j−br |Θ,D) ≈

ΦT [P (f jr |Θ,D), P (f j−1
r |Θ,D), . . . P (f j−br |Θ,D)], (3)

where Φ is a weighting kernel.
The advantage of modeling this formulation as a Bayesian framework is that it can

be easily expanded to include other parameters in the future, For example car dynamics
and higher-level knowledge about the road structure such as vehicle traveling directions
in various parts of the road. As the problem complexity grows and more data becomes
available, more classifiers/detectors/other small frameworks can be included as a part
of this bigger framework. This will help us in the future to create more accurate lane
assignments for vehicles. This formulation also helps us to update this likelihood for
every incoming frame as shown in equation 4. Although Φ can be any weighting kernel,
we consider an averaging kernel:

Φ =
1

b+ 1
· 1, (4)
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where 1 is a column vector of length b + 1. Averaging gives uniform weighting to the
current frame and all the frames in the buffer, thus helping us to compensate for false
predictions. This requires us to create a likelihood function P (f |Θ,D) for every frame
f and every label Θ.

3.1 The likelihood function.

There are several stages in the estimation of the likelihood function, P (f |Θ,D) for
each frame f . These are:

1. Pre-processing using guided filter.
2. Lane-width modeling.
3. Feature extraction.
4. Estimation of P (f |Θ,D).

Guided filtering. Guided filter is a linear-time, edge-preserving, smoothing filter [23].
It works with a pair of images. One of these images is a reference image, with the
guidance of which, the other is filtered. When both images are the same, the guided
filter smooths the entire image while preserving the edges. For the special case where
both the images are identical, the filtering is performed as follows:

G(f) = ᾱf + β̄, (5)

where f is a gray-scale video frame. ᾱ and β̄ are block-wise averaged values generated

from α =
σ2

σ2 + ε
and β = (1− α)µ, where µ is the mean, σ is the standard deviation

for any block in the image and ε is a small constant. If there is a flat patch in the image
then σ = 0 =⇒ α = 0 and β = µ. Each pixel in the flat region is thus averaged
with its neighbors. For a high variance region such as lane edges, σ � ε and hence
α ≈ 1 and β ≈ 0. This leaves the edges unchanged. A post-processing operation such
as over-subtracting and then saturating returns an image similar to the one shown in the
middle in Fig. 1. The post-processing operation can be represented as:

Binarizedf = [(f − δG(f)) ∗ 255] ≥ 0; (6)

Fig. 1: From left to right: Captured frame, pre-processing using guided filter, processing
using Marcos’ filter.
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where δ > 1 (in this case, δ = 1.06) due to which the original image gets over-
subtracted from itself. Since only sharp edges have retained their value in the filtered
image, other regions become negative after over-subtraction. This provides us a much
better frame to work with. Fig. 1 shows the application of the guided filter and com-
pares it with Marcos’ filter, specially designed for lane detection [24]. The Marcos’
filtering process can be defined as follows:

yi = 2xi − (xi−τ + xi+τ )− |xi−τ − xi+τ | (7)

τ is the width parameter which controls the filtering process. The filtering process will
produce high response if the current pixel has high value and pixels at a distance of τ
on both sides have equal value. The lane pixels satisfy these criteria. However, due to
the width parameter, Marcos’ filter is not as reliable as guided filter in detecting the lane
markers in extreme left/right. Fig. 1 shows the effect of guided and Marcos’ filter on a
frame. The zoomed-in region shows that Marcos’ filter fails to detect the extreme left
lane. Guided filter also works in many weather conditions, for example, rainy day, low-
sunlight conditions, low-contrast images etc. Section 4 compares the results obtained
with guided and Marcos’ filter.

Lane-width modeling. The pre-processing using guided filter provides us a frame that
contains all the lane markers and some spurious objects. Before extracting features,
these spurious regions may be filtered. Assuming that the lanes on the free-ways and
such are of a fixed width, the width of lanes, and thereby the probable regions for finding
lane markers in the video, can be modeled as a function of camera parameters and the
ordinates in the image plane with respect to an initial lane (center-lane in this case).

We first detect the lane-markers of the lane in which the car is present. The center
lane markers are detected from the pre-processed video using heuristics about its pos-
sible locations and low-level color and gradient features. A line is fit for left (cl[xl, yl])
and right (cr[xr, yr]) center-lane-lines individually along the detected lane-markers.
(xl, yl) and (xr, yr) are the points lying on the left and right lane markers of the center
lane respectively. Three additional lane-lines on the left and right of the center-lane are
modeled as:

li[xl, yl] = dli(cl[xl, yl]) = ψliyl + τ li ,∀i ∈ [1, 2, 3], (8)

Fig. 2: Lane width modeling
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Fig. 3: Pixel types: The lane pixels in white are type-1. The pixels with blue cross mark
are type-2. Black pixels indicate the boundary of lane pixels. The rest are type-3 pixels.
Please zoom in on a computer monitor for better viewing.

and,
ri[xr, yr] = dri(cr[xr, yr]) = ψri yr + τ ri ,∀i ∈ [1, 2, 3]. (9)

where li[xl, yl] and ri[xr, yr] are the x and y coordinates lying on the ith left and
right of the center lane markers respectively (also shown in Fig. 2). dli(cl[xl, yl]) and
dri(cr[xr, yr]) are the horizontal distances of the li and ri lane markers from cl and
cr respectively. yl and yr are the y-coordinates of the left and right lane markers.
{ψli, ψri , τ li , τ ri } are the slope and intercept parameters of the left and right lane markers.

Feature extraction. Fig. 2 shows the lane-lines that are modeled for L = 7. For sim-
plicity, we assume a constant camera position. Equation 8 and 9 model the distance
between all the left (right) lane markers and the center-left (center-right) lane marker as
a function of only the y-coordinate in the image. Other parameters such as the camera
parameters can also be included. Similarly, although it was sufficient for us to model the
displacement as a linear function, other kernel representations may also be used. The
intersection of these regions is the vanishing point, which can act as an additional pa-
rameter in this formulation. The vanishing point is the intersection of the lines {li}3i=1,
{rj}3j=1, cl and cr as shown in Fig. 2.

For every region chosen by the lane-width model, we classify every pixel in the
region into type-1, type-2 or type-3 pixels. The pixels given by the guided filter are type-
1 pixels. The pixels that are just outside the type-1 pixels and along the direction of the
gradient of the nearest type-1 pixel are the type-2 pixels. Every other pixel in the region
is classified as type-3. Type-1 and type-2 pixels are mean centered. We empirically
observed that subtracting the mean from the pixels provides robustness against varying
lighting conditions. Fig. 3 shows the various types of pixels.

For every region now we extract the following 40 dimensional feature:

1. First and second moments of the type-1 pixels (2−D).
2. First and second moments of the type-2 pixels (2−D).
3. 36-bin histogram of gradients of type-1 pixels (36−D).

We neglect the type-3 pixels as they usually constitute anomalies with the road, like
shadows, repair and vehicles. This gives us a 40 − D vector for each lane. First four



8 Parag S. Chandakkar, Ragav Venkatesan and Baoxin Li, Senior Member, IEEE

Fig. 4: Distribution of Video Frames in Train and Test Set

features act as low-level color features by encoding mean and standard deviation of
lane and road pixels respectively. The remaining features describe the shape and the
color contrast of the contour under consideration. A lane line would have most of the
gradients pointing only in one direction (treating two opposite directions as one) and
with high contrast and thus high magnitudes. We found these low-level statistics enough
to describe lane-lines well. The maximum number of lanes we consider are L = 7. We
model all the lanes except the lane in which the car is present. Therefore our feature
dimensionality is 240.

Estimation of P (f |Θ,D) A linear SVM is constructed using the features extracted
from D. For any test frame, the same set of extracted features are projected onto the
SVM feature space. The likelihood estimate P (f |Θ,D) is the confidence of prediction
for each Θ. It is measured as the distance of the data-point to the hyper-plane. The
likelihood extracted is then fed into the MLE system for prediction.

4 Experiments and Results.

The videos for this experiment have been captured using a camera mounted on the in-
side of the wind-shield. Our data set contains 53 videos, captured at 30 frames/second 3.
The average length of each clip is 11.8 seconds. Though there are many possible config-
urations with L = 7, we consider only a subset of frequently occurring configurations.
The following configurations exist in our database:Θ = {[4, 1], [4, 2], [4, 3], [4, 4], [5, 2],
[5, 3], [5, 4], [6, 4]}. Uniform prior is assumed among all these configurations and 0 prior
for configurations that are not considered. We use 27 out of 53 videos in our database
for training purposes and the rest for testing purposes. The total number of frames in
training and testing set are 9018 and 9036. The distribution of video frames over all

3 The dataset is available at http://www.public.asu.edu/˜bli24/
CodeSoftwareDatasets.html

http://www.public.asu.edu/~bli24/CodeSoftwareDatasets.html
http://www.public.asu.edu/~bli24/CodeSoftwareDatasets.html
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Table 1: Per-class accuracy.

Guided filter

Class = [θ1, θ2] RF Lin. SVM
Model + Lin. SVM
(Proposed method)

Marcos’ filter+
+Model+RF

(Best combination)
[4, 1] 30.22% 46.67% 44.27% 30.48%
[4, 2] 76.94% 73.27% 80.03% 38.47%
[4, 3] 55.22% 68.75% 71.66% 57.29%
[4, 4] 98.98% 79.52% 82.59% 21.84%
[5, 2] 36.94% 56.48% 63.25% 47.40%
[5, 3] 63.99% 53.30% 51.70% 59.32%
[5, 4] 46.46% 39.06% 39.94% 59.91%
[6, 4] 96.80% 96.80% 100% 98.17%

Overall Accuracy 56.37% 58.33% 60.15% 51.76%

configurations in training and testing set can be seen in Fig. 4. Each configuration con-
tains videos of varying lighting, weather and surface conditions. In this problem, the
training data has noise embedded in it. Many frames contain vehicles which occlude
the full view of all the lanes. These external factors increase the difficulty.

The results are presented in two-fold. Table 1 compares the per-class accuracy ob-
tained using guided and Marcos’ filter. Two classifiers, Linear SVM and Random Forest
(RF) have been used. Due to the uneven distribution of data in each class, weights in
RF have been adjusted accordingly. For Marcos’ filter, best performance has been re-
ported. Due to Marcos’ filter’s inability to detect extreme lanes, it has poor accuracy
when compared to guided filter. Table 1 also shows the per-class accuracy of detection
for both the prediction from the SVM stage and the improvements seen using the MLE
model. Table 2 shows the confusion matrix for the initial prediction and Table 3 shows
the confusion matrix for the final prediction by MLE. From the confusion matrices, it
can be seen that the MLE estimator betters the initial prediction in all but two configura-
tions. The decrease in the performance occurs when SVM wrongly predicts for at least
b/2 consecutive frames with high probability. Increasing the value of b increases the ac-
curacy but it also delays the determination of the current frame configuration. We input

Table 2: Confusion matrix for SVM prediction.
Class = [θ1, θ2] [4, 1] [4, 2] [4, 3] [4, 4] [5, 2] [5, 3] [5, 4] [6, 4]

[4, 1] 505 399 96 0 58 24 0 0
[4, 2] 6 899 52 0 231 14 2 23
[4, 3] 112 181 1560 8 1 308 99 0
[4, 4] 0 39 13 233 3 0 4 1
[5, 2] 11 127 69 10 292 0 8 0
[5, 3] 0 569 166 0 0 863 2 19
[5, 4] 11 448 268 14 6 4 707 352
[6, 4] 0 3 0 0 0 0 4 212
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Table 3: Final Confusion Matrix
Class = [θ1, θ2] [4, 1] [4, 2] [4, 3] [4, 4] [5, 2] [5, 3] [5, 4] [6, 4]

[4, 1] 479 391 134 0 63 15 0 0
[4, 2] 3 982 27 0 215 0 0 0
[4, 3] 112 170 1626 0 0 266 95 0
[4, 4] 0 31 13 242 0 7 0 0
[5, 2] 9 119 45 8 327 0 9 0
[5, 3] 0 614 168 0 0 837 0 0
[5, 4] 14 494 232 0 0 0 723 347
[6, 4] 0 0 0 0 0 0 0 219

previous 10 frames (b = 10) to the MLE estimator. Also due to averaging kernel, there
is a smooth transition in the likelihood when the configuration changes. Therefore, first
b/2 frames may be predicted wrongly which may decrease the final accuracy. While the
configurations [4, 1], [5, 4] have low accuracy, it should be considered that there are 3
lanes on one of the sides of the current lane. The presence of the third lane is difficult
to detect given that the lane is not more than 4 pixels wide in the frame. The approach
also has to deal with broken and faint lane lines on the road in addition to occlusion.
Interestingly, the configuration [6, 4] achieves 100% accuracy despite having the most
number of lanes. We would like to point out the fact that the [6, 4] configuration has the
best weather and relatively less occlusion from vehicles. It shows that our approach can
achieve excellent results if the road conditions, weather and the traffic density permits.

The final confusion matrix in Table 3 shows that two lowest performing configu-
rations are [5, 4] and [4, 1]. Bad weather conditions and the presence of extreme lane
in both the configurations, as shown in Fig. 5, reduces the classification performance.
This is an eight-class classification problem and the variable weather conditions, road

Fig. 5: From left to right, row 1: Correct predictions for configurations [4, 4], [5, 2] and
[6, 4]. Row 2: Wrong predictions for configurations [4, 1], [5, 3] and [5, 4]. Occlusion,
bad lighting conditions and bad road conditions are the plausible causes for wrong
detections.
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conditions and inherent noise in the training data makes the problem challenging. As
shown in Fig. 5, the proposed approach is able to handle partial occlusions and bad road
conditions. Still many improvements can be made to the current approach. Apart from
the lane-width modeling, it can incorporate other semantic knowledge such as the vehi-
cle movement, vehicle detection to assist lane detection etc. The current approach does
not perform so well in bad road conditions such as broken lanes or disappeared lane
markers. More sophisticated tracking along with accelerometer and a better lane-model
can be used to overcome these problems.

5 Conclusion and Future Scope

A novel problem of predicting the number of lanes from a video and self-positioning of
the car in those lanes was introduced and a high-level model based approach is devel-
oped. This video-based self-positioning approach provides the system an ability to per-
form dynamic traffic routing on a lane-level. This would possibly contribute to greater
reduction of congestion and thus result in faster travel times. This was formulated as
a top-down maximum-likelihood estimator. The likelihood of the two parameters were
modeled using the confidence of a low-level predictor and guided-filtering. Lane-width
modeling and pixel-level statistics were used to choose candidate-lane regions before
the prediction. Testing this framework on real-world videos yielded satisfactory results.

The system presently accommodates just the video data to perform prediction. Our
aim is to expand this model to include vehicle dynamics and GPS information. Vehicle
dynamics which includes (but not limited to) accelerometer data, speed information etc.
can be used as a high-level knowledge to filter out obvious false detections. To increase
reliability of prediction on the roads with large number of lanes, we may obtain the
number of lanes as an input. Our ultimate aim remains to integrate all these systems to
build a lane-level dynamic traffic routing system.
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ence Foundation. Any opinions expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

References

1. Zheng, H., Chiu, Y.C., Mirchandani, P.B.: On the system optimum dynamic traffic assign-
ment and earliest arrival flow problems. Transportation Science (2013)

2. Angel, A., Hickman, M., Mirchandani, P., Chandnani, D.: Methods of analyzing traffic im-
agery collected from aerial platforms. Intelligent Transportation Systems, IEEE Transactions
on 4 (2003) 99–107

3. Kammel, S., Pitzer, B.: Lidar-based lane marker detection and mapping. In: Intelligent
Vehicles Symposium, 2008 IEEE, IEEE (2008)

4. Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S.: Finding multiple lanes in urban
road networks with vision and lidar. Autonomous Robots 26 (2009) 103–122

5. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a
survey. Machine Vision and Applications (2012) 1–19



12 Parag S. Chandakkar, Ragav Venkatesan and Baoxin Li, Senior Member, IEEE

6. Nieto, M., Laborda, J.A., Salgado, L.: Road environment modeling using robust perspective
analysis and recursive bayesian segmentation. Machine Vision and Applications 22 (2011)
927–945

7. Wu, S.J., Chiang, H.H., Perng, J.W., Chen, C.J., Wu, B.F., Lee, T.T.: The heterogeneous
systems integration design and implementation for lane keeping on a vehicle. Intelligent
Transportation Systems, IEEE Transactions on 9 (2008) 246–263

8. Lipski, C., Scholz, B., Berger, K., Linz, C., Stich, T., Magnor, M.: A fast and robust approach
to lane marking detection and lane tracking. In: Image Analysis and Interpretation, 2008.
SSIAI 2008. IEEE Southwest Symposium on, IEEE (2008) 57–60

9. Cheng, H.Y., Jeng, B.S., Tseng, P.T., Fan, K.C.: Lane detection with moving vehicles in the
traffic scenes. Intelligent Transportation Systems, IEEE Transactions on 7 (2006) 571–582

10. Labayrade, R., Douret, J., Laneurit, J., Chapuis, R.: A reliable and robust lane detection
system based on the parallel use of three algorithms for driving safety assistance. IEICE
transactions on information and systems 89 (2006) 2092–2100

11. Kong, H., Audibert, J.Y., Ponce, J.: Vanishing point detection for road detection. In: Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE (2009)
96–103

12. Alon, Y., Ferencz, A., Shashua, A.: Off-road path following using region classification and
geometric projection constraints. In: Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. Volume 1., IEEE (2006) 689–696

13. Zhang, G., Zheng, N., Cui, C., Yan, Y., Yuan, Z.: An efficient road detection method in noisy
urban environment. In: Intelligent Vehicles Symposium, 2009 IEEE, IEEE (2009) 556–561

14. Sawano, H., Okada, M.: A road extraction method by an active contour model with inertia
and differential features. IEICE transactions on information and systems 89 (2006) 2257–
2267

15. Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using b-snake. Image and
Vision computing 22 (2004)

16. Nieto, M., Salgado, L., Jaureguizar, F.: Robust road modeling based on a hierarchical bipar-
tite graph. In: Intelligent Vehicles Symposium, 2008 IEEE, IEEE (2008) 61–66

17. Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S.: Finding multiple lanes in urban
road networks with vision and lidar. Autonomous Robots 26 (2009) 103–122

18. Kuhnl, T., Kummert, F., Fritsch, J.: Visual ego-vehicle lane assignment using spatial ray
features. In: Intelligent Vehicles Symposium (IV), 2013 IEEE, IEEE (2013) 1101–1106

19. Samadzadegan, F., Sarafraz, A., Tabibi, M.: Automatic lane detection in image sequences
for vision-based navigation purposes. In: Proceedings of the ISPRS Commission V Sympo-
sium’Image Engineering and Vision Metrology. (2006)

20. McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance:
survey, system, and evaluation. Intelligent Transportation Systems, IEEE Transactions on 7
(2006)

21. Collado, J.M., Hilario, C., De La Escalera, A., Armingol, J.M.: Adaptative road lanes de-
tection and classification. In: Advanced Concepts for Intelligent Vision Systems, Springer
(2006)

22. Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection based on
geometrical model and gabor filter. In: Intelligent Vehicles Symposium (IV), 2010 IEEE,
IEEE (2010) 59–64

23. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell 35
(2013) 1397–1409

24. Nieto, M., Laborda, J.A., Salgado, L.: Road environment modeling using robust perspective
analysis and recursive bayesian segmentation. Machine Vision and Applications 22 (2011)


	Video-based Self-positioning for Intelligent Transportation Systems Applications
	Parag S. Chandakkar, Ragav Venkatesan and Baoxin Li, Senior Member, IEEE

