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ABSTRACT 

The phenomenon of cooperation is central to a wide array of scientific disciplines.  

Not only is it key to explaining some of the most fundamental questions of biology and 

sociology, but it is also a cornerstone of understanding and successfully overcoming 

social dilemmas at multiple scales of human society. In addition, cooperation is 

considered crucial to any hope of long-term sustainable occupation of the earth by 

humans. Drawing on a broad interdisciplinary literature from biology, sociology, 

economics, political science, anthropology, law, and international policy analysis, this 

study uses computational methods to meld two disparate approaches to explaining 

cooperation – individual incentives and social structure. By maintaining a high level of 

abstraction results have broad applicability, ranging from colonies of social amoebae or 

ants to corporations or nations interacting in markets and policy arenas. In all of these 

cases, actors in a system with no central controller face a trade-off between individual 

goals and the needs of the collective. Results from evolutionary simulations of simple 

economic games show that when individual incentives, in the form of punishment, are 

coupled with social structure, especially complex social networks, cooperation evolves 

quite readily despite traditional economic predictions to the contrary. These simulation 

results are then synthesized with experimental work of others to present a challenge to 

standard, narrow definitions of rationality. This challenge asserts that, by defining 

rational actors as absolute utility maximizers, standard rational choice theory lacks an 

evolutionary context and typically ignores regard that agents may have for others in the 

local environment. Such relative considerations become important when potential 

interactions of a society’s individuals are not broad and random, but are governed by 
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emergent social networks as they are in real societies. Finally, analysis of the 

implications of these findings to efficacy of international environmental agreements 

suggest that conventional strategies for overcoming global social dilemmas may be 

inadequate when other-regarding preferences influence national strategies.
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CHAPTER 1 
 

 

INTRODUCTION 

government…though composed of men subject to all human infirmities, 
becomes, by one of the finest and most subtle inventions imaginable, a 
composition which is in some measure exempted from all these infirmities 
- Mancur Olson (1965) 
 
The history of life is punctuated by the periodic emergence of new hierarchical 

levels of organization, among them eukaryotic cells, multi-cellular life, eusociality, and 

institutions (Michod 1997). Like the human institution of government described by Olson 

above, these emergent levels are made of populations of individuals which become 

entities in their own right, often existing far longer than the life spans of the individuals 

of which they are comprised. These emergent entities frequently have global attributes 

and an evolutionary trajectory not predictable from observation of the component 

individuals. At the heart of these emergent levels of living organization lies the 

phenomenon of cooperation (Maynard Smith and Szathmáry 1997, Michod 1997), a 

mechanism that can facilitate collective action by individuals and make it possible for the 

collective to become itself an individual. 

This dissertation is an investigation into cooperative behavior – a phenomenon 

that remains largely unexplained by science and whose evolution is one of the greatest 

questions facing evolutionary biologists (West et al. 2007). A broadly applicable 

explanation of cooperation remains elusive despite years of theoretical and empirical 

investigation. Some researchers even suggest that the current state of sociobiologic 

inquiry is in disarray (Wilson and Wilson 2007). This is due partly to the recurring debate 

over the units of selection and simple semantics of social behavior (West et al. 2007), 

partly to a resistance by theoreticians to move beyond formal mathematical models 
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(Bedau 1999, Griffin 2006), and partly to the slow pace of incorporating new insights 

from emerging fields such as evolutionary economics, social network theory, and 

complexity science (Sawyer 2005). 

In addition, researchers are hindered by a narrow definition of cooperation 

wherein agents subordinate their individual self-interest to that of a larger group. In other 

words, the quest for an explanation of cooperation is often confused with a quest for an 

explanation of altruism (West et al. 2007). While not denying the existence of seemingly 

altruistic acts, such as a soldier jumping on a grenade to save his comrades, the focus of 

this dissertation is on behaviors that allow individuals to benefit a larger group while also 

being evolutionarily beneficial to the individual. Though it may seem an individual is 

behaving in the interest of a collective and not himself, those acts may nonetheless 

increase the evolutionary fitness of the individual. 

Experimental research on cooperation through the use of laboratory games 

generally assumes that participants will attempt to maximize payoffs in a game if the 

participants are rational. This is a subtle but important departure from rational choice 

theory, in which actors maximize utility, not payoffs (Mas-Colell et al. 1995). In this 

study I explore the implications of equating payoffs and utility in this manner. In 

addition, I incorporate the biological concept of relative fitness which further confounds 

predictions of economic experiments. 

Though fundamental questions of cooperation remain unanswered there are other 

pressing reasons that justify its investigation. Many environmental problems today 

require coordinated, collective action among nations of the world if they are to be solved 

(Oldero 2002, Rees 2002, Kaul and Mendoza 2003, Beddoe et al. 2009). As societies, 
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driven by a desire to avoid their own “tragedy of the commons” (Hardin 1968), 

increasingly push for sustainable management of the earth’s resources, international 

cooperation is required. Given that sustainability is a desirable policy course for a 

growing number of nations (Beddoe et al. 2009), and that cooperation is often a 

prerequisite for coordinated global sustainable management, a fundamental 

understanding of when and under what conditions cooperation will emerge becomes 

imperative. 

As defined in this dissertation, cooperation results when individuals act in a 

manner that produces some beneficial collective or social outcome, even though those 

individuals may have an incentive to cheat or act otherwise. Currently there is no broadly 

compelling theory that explains why unrelated individuals choose to cooperate. This is 

equally true at the international level where the actors are nations of the global 

community that may be called upon to cooperate in multinational initiatives to the 

detriment of their own national self-interests. But as Sandler (2004, p. 260) points out, 

“nations will sacrifice autonomy only in the most desperate circumstances.” 

A long tradition of western philosophy holds that cooperation is obtainable only 

through top-down coercion by a central authority. As Hobbes ([1651] 1946) asserted in 

his classic work Leviathan, “there must be some coercive power, to compel men equally 

to the performance of their covenants, by the terror of some punishment.” However, a 

coercive central power is often the least desirable solution to social dilemmas (Ostrom 

1990). Furthermore, for environmental problems requiring international cooperation, a 
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central power does not currently exist that could carry out such enforcement (Sandler 

1999, Wagner 2001, Barrett 2003b, 2005, Hodgson 2009)1. 

On the other hand, overwhelming evidence from both case studies and 

experiments does not support the Hobbesian notion that a Leviathan is the only path to 

collective action. Instead it shows that cooperation can emerge in the absence of a central 

controller despite predictions of economic theory that selfish individuals, left to their own 

devices, will fail to cooperate. Attempts to understand these empirical results have 

recently led to the concept of strong reciprocity – the idea that cooperation persists 

because individuals inflict costly punishment on cheaters and bestow rewards on 

cooperators, and in either case receive no benefit in return. 

Like cooperation, punishment is ubiquitous among social organisms. Where 

cooperating individuals have an incentive to cheat, punishment mechanism often exist to 

deter cheating (Frank 1995). This includes restricting cancer cell growth through 

preprogrammed death or senescence (Sharpless and DePinho 2005), toxin release by 

colonial bacteria that affects only non-cooperators (Travisano and Velicer 2004), the 

destruction of eggs laid by workers in social insect colonies (Foster and Ratnieks 2001), 

and enforcement of mating and dominance hierarchies in non-human mammals (Clutton-

Brock and Parker 1995, Dugatkin 1997b). Even the process of cellular meiosis can be 

viewed as a form of policing selfish genes (Michod 1996). In humans, punishment and 

policing are common across societies and many cultural groups (Marlowe et al. 2008) 

                                                 
1Abbott et al (2000) argue that the closest thing currently to an effective global government is the World 
Trade Organization. 
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and neurological research suggests this behavior is to some degree genetically coded in 

humans (Sanfey et al. 2003, de Quervain et al. 2004, Spitzer et al. 2007). 

In this dissertation I examine the ability of punishment mechanisms to induce a 

society or group to act cooperatively. In particular I explore the effects of punishment 

under different ratios of costs between the punisher and punishee and examine the role 

that social network structure plays in the ability of a society to cooperate. In addition, I 

examine the effects of both retaliation by a punished agent and punishment of those who 

refuse to punish cheaters, both of which are typically ignored in punishment studies 

(Clutton-Brock and Parker 1995, Nikiforakis 2008). The primary method of investigation 

used in this work is agent-based computer modelling, a computational tool that 

incorporates genetic algorithms, heterogeneity, mutation, and selection to simulation 

evolutionary trajectories of decision making behavior. 

It is important to distinguish between promoting cooperation in expectation that it 

will lead to the provision of a public good and promoting cooperation merely for 

cooperation’s sake. Though often implied that cooperation is always desirable, the costs 

required to facilitate cooperation may outweigh its benefits. In this dissertation I present 

evidence to support this point, especially when punishment is the mechanism used to 

induce cooperative behavior. 

The structure of this dissertation is as follows. Chapter 2 outlines background 

information on the problem of cooperation and presents theoretical fundamentals on a 

variety of topics meant to facilitate understanding of this study by a wide audience. 

Chapters 3 and 4 present empirical results from computer simulation experiments 

showing that in structured societies, punishment can increase contributions to a public 
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good but that it may also lead to detrimental side-effects. Chapter 5 presents simulation 

results demonstrating that, unlike cooperation, fairness, defined as a roughly equal 

division of resources, is not induced by a combination of punishment and social structure. 

Chapter 6 develops a theoretical framework to explain experimental results from this 

dissertation and other sources and shows that a model in which agents make decisions 

based, in part, on the decisions of others, best explains results. Chapter 7 applies this 

theoretical framework to the design of international environmental treaties, primarily 

those intended to promote sustainability and the provisioning of global public goods, and 

shows that treaties may not work as intended when nations are concerned with relative 

position. Finally, Chapter 8 reviews major findings of this dissertation and discusses 

possible future research related to this work. 

This study not only advances understanding in evolutionary biology, theoretical 

sociology, and behavioral economics, but also has practical applicability to transboundary 

environmental management and policy science.



CHAPTER 2 
 

 

COOPERATION: PROBLEM DISCUSSION AND BACKGROUND 

Before any discussion on cooperation can proceed it is necessary to address years 

of semantic confusion on the topic and to define the terms being discussed. Due in large 

part to the multidisciplinary nature of inquiry into cooperative behavior, many terms have 

been used interchangeably in various literature. This is especially true of the terms 

cooperation, altruism, mutualism, symbiosis, and reciprocity. These terms are often 

confused by the same author at different points in his or her career and at times even in 

the same literary piece (West et al. 2007). In advocating a clear distinction between 

cooperation and altruism, West et al (2007) define altruism as a behavior that is costly, in 

terms of biological fitness, to the individual performing the act but beneficial to another, 

while they define cooperation as behavior by an individual that benefits others, in terms 

of fitness, and which is evolutionarily selected for because of the benefit it bestows (see 

also Travisano and Velicer 2004). 

Though West and colleagues present an attempt to clarifying the confusing 

semantics of social behavior, they do so almost exclusively from a biological perspective. 

For applicability to a broader audience, especially those in social sciences, cooperation in 

this dissertation is defined as behavior by an individual that produces a beneficial 

collective or social outcome, even though those cooperating individuals may have an 

incentive to cheat or act otherwise. 

 

Early Work on the Evolution of Cooperation 

Among researchers vexed by cooperative behavior was Charles Darwin who 

could never, to his own satisfaction, rectify observations of seeming altruism with his 
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own theory of natural selection (Sulloway 1998). In his seminal work Darwin fretted that 

explaining altruism ubiquitous in social insects was “to me insuperable, and actually fatal 

to my whole theory” ([1859] 1996, p. 192). Subsequent researchers did not afford the 

question a high-priority since it could easily be explained by the classical notion of group 

selection. However, when the theory of group selection was largely discredited in the 

1960s (Olson 1965, Williams 1966, Hagen 1992) scientific interest in the topic of 

cooperation was renewed (Axelrod and Hamilton 1981).  

Two theories emerged at this time as extensions of neo-Darwinian evolution that 

were thought to explain most instances of cooperation: Hamilton’s (1964) theory of kin 

selection, which was thought to explain cooperation between related individuals 

(especially between non-human animals), and Trivers’ (1971) theory of direct reciprocity, 

which was thought to explain cooperation between unrelated individuals. These theories 

were so influential that many today still assume, though incorrectly, that nearly all 

instances of cooperation and altruism can be explained by these two theories (West et al. 

2007). 

Following pioneering work of Robert Axelrod in 1981, cooperative phenomena 

became a major focus of computational research. In a series of computer simulation 

tournaments between various prisoners dilemma strategies, it was shown that cooperative 

strategies could be evolutionarily stable despite the ever present incentive to cheat 

(Axelrod and Hamilton 1981). An immense response from researchers followed in which 

various parameters and settings of Axelrod’s original model were altered (see Dugatkin 

1997a for a detailed review of this work). Subsequent experiments led to a number of 
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important insights that have helped move the field toward a broadly applicable theory of 

the evolution of cooperation. 

One modification was the introduction of stochasticity. When strategies were 

executed probabilistically instead of deterministically, cooperative outcomes became 

much less likely (Nowak 1990). The same was found to be true if agents probabilistically 

made mistakes in the execution of their strategies (Hirshleifer and Coll 1988). 

A more important modification of Axelrod’s model was the introduction of space. 

Axelrod’s original work grew out of evolutionary game theory, in which techniques of 

population biology are used to explore evolutionary stability of game situations 

(Maynard-Smith 1982). The technique, however, is limited to exploration of equilibrium 

points within an infinite, homogeneous, and well-mixed population (Killingback and 

Doebeli 1996). Nowak and colleagues were among the first to include spatial explicitness 

and to demonstrate that it could lead to qualitatively different outcomes in terms of 

cooperation (Nowak and May 1992, Nowak et al. 1994). 

 

Other Theories 

The work of Axelrod and his successors is generally classified as a direct 

reciprocity theory of cooperation (described below). This is only one of a group of 

theories that has emerged in an effort to understand cooperative behavior. Below are brief 

descriptions of important theories regarding the evolution of cooperation, along with 

major criticisms of each. 
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Inclusive fitness 

Inclusive fitness theory, now often called kin selection, redefines an individual’s 

fitness as a product of how well that individual’s genes are propagated, regardless of who 

carries the genes (Hamilton 1964). In other words, an individual acting altruistically 

toward close relatives can pass on copies of genes through those relatives’ offspring in 

addition to its own offspring. An initial requirement that individuals share a common 

ancestry was thought to limit the theory’s applicability and later researchers broadened 

the definition of related individuals to include those that share particular genes of interest, 

regardless of ancestry (West et al. 2007). Despite this broader definition and its 

explanatory power regarding social insects and certain animal groups, inclusive fitness 

remains unsatisfactory for explaining cooperative behavior that is common between 

unrelated individuals in human societies (Di Paolo 1999, Abbot et al. 2001, Wilson 

2005). 

 

Direct reciprocity 

The idea of direct reciprocity is embodied in the phrase “you scratch my back 

now, I’ll scratch yours later”. This theory, formerly (and often still) referred to as 

reciprocal altruism, asserts that when a population of agents reciprocates each other’s 

cooperative behavior, that population will resist invasion by a selfish strategy (Trivers 

1971). Axelrod and Hamilton’s (1981) work with agents playing the iterated prisoner’s 

dilemma is one example. However, because its underlying requirements and assumptions 

are so restrictive, direct reciprocity has fallen out of favor as a general theory of 

cooperation and few researchers still believe it is has applicability beyond certain 
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situations involving humans (Dugatkin 1997a, West et al. 2007). In addition, direct 

reciprocity typically requires long-term repeated interactions and cannot explain 

cooperation in anonymous one-shot interactions – a phenomenon growing ever more 

prevalent in human societies (Nowak and Sigmund 2005). 

 

Indirect reciprocity 

In contrast to direct reciprocity, the idea of indirect reciprocity can be summarized 

as “you scratch my back, I’ll scratch someone else’s” (Nowak and Sigmund 2005). 

According to this theory, after an agent unconditionally confers a benefit on a 2nd agent, 

this 2nd agent will at some later time confer an unconditional benefit on a 3P

rd
P agent and so 

on (Leimar and Hammerstein 2001). Like direct reciprocity, indirect reciprocity requires 

a lengthy period of repeat interactions, though unlike direct reciprocity, these interactions 

must only be within the same group and not with the same individual. This excludes 

indirect reciprocity also as an explanation of cooperation in anonymous one-shot 

interactions.  

A related concept is that of tag recognition, or the so-called “green-beard” 

phenomenon, in which a benefit is unconditionally conferred on another, but only to an 

interaction partner that exhibits the proper trait or signal (Macy and Skvoretz 1998, 

Ostrom 1998, Riolo et al. 2001). This mechanism may lead to the development of 

reputation, which has been shown to promote cooperative acts between repeatedly 

interacting individuals, both human (Nowak and Sigmund 1998b, Nowak and Sigmund 

1998a, Suzuki and Toquenaga 2005) and non-human (Zehavi and Zahavi 1997). 

However, the ability of reputation to induce cooperative behavior requires the reliable 
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reception and interpretation of signals by an individual, which may not happen despite 

broadcast of signals by another individual  

 

Multi-level selection 

Multi-level selection theory, also know variously as demic selection, intrademic 

selection, trait-group selection, or new group selection, asserts that a trait’s frequency can 

increase in a population because it confers a benefit on a group of individuals, not on the 

individuals themselves (West et al. 2007). In contrast to classical group selection, which 

was discredited by both evolutionary ecologists and political economists during the 

1960’s (Olson 1965, Williams 1966, Hagen 1992), the contemporary theory of multi-

level selection is a more general version of classical group selection (Wilson 2007) and 

has provided explanatory power for many social insect phenomena as well as cultural 

patterns in isolated human populations (Wilson and Hölldobler 2005, Hölldobler and 

Wilson 2009).  

Multi-level selection theory was initially met with resistance because it required 

that selection forces be easily parsed into within-groups and between-groups forces (Price 

1970). This, in turn, required that some members of a group have alternating periods in 

its life history in which it is at one time within a clearly demarcated group and at another 

time well-mixed with those of other groups (Wilson 1975). Consequently, multi-level 

selection was not widely accepted as an explanation of cooperation among organisms that 

do not form clearly defined groups, including dynamic human societies. Theories 

incorporating the idea of population viscosity sought to remedy this, but with mixed 

results (Queller 1992, Mitteldorf and Wilson 2000).  
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Eventually researchers dispensed with the requirement of clearly defined groups, 

which has turned multi-level selection into a powerful theory in several fields. This 

broadening of the theory is best summarized by Wilson and Wilson (2007), who assert 

that “groups need not have discrete boundaries; the important feature is that social 

interactions are local, compared to the size of the total population.” Through this broader 

definition this dissertation contributes to the theory of multi-level selection by identifying 

complex social networks as the substrate that delivers the required local interactions. This 

is discussed further in the conclusion in Chapter 8. 

Others have criticized a broader definition of groups on the grounds that it blurs 

the distinction between multi-level selection and inclusive fitness, creating confusion and 

negatively affecting the ability to execute and interpret research on the evolution of social 

behavior (West et al. 2007). Whether this broadening of multi-level selection theory has 

been beneficial or counterproductive continues to be a source of contentious debate 

(Wilson 2007, West et al. 2008). 

 

Strong Reciprocity 

Theories described above have been variously in and out of favor since Darwin 

first raised the issue of cooperation. However, the quest for a fundamental understanding 

of cooperation through use of simulations and experimental games during the past three 

decades has increasingly focused on the concept of strong reciprocity – the idea that 

individuals reward others who cooperate and punish those who do not (Gintis 2000, 

Bowles and Gintis 2004). These acts of rewarding and punishing are performed 

altruistically in that the agent conferring the reward or punishment incurs a cost but 
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obtains no material benefit in return. Though West et al (2007) assert there is nothing 

altruistic about the punishment and rewards that comprise strong reciprocity, I retain the 

terminology here to be consistent with contemporary literature. 

Altruistic punishment, in particular, has been shown empirically to induce 

cooperative outcomes in social interactions (Fehr and Gächter 2000, 2002, Boyd et al. 

2003, Fehr and Fischbacher 2004, Gardner and West 2004, Fowler 2005, Fowler et al. 

2005). This finding is echoed by those engaged in statecraft, who assert that punishment 

mechanisms are prerequisites for successful international environmental agreements 

(Barrett 2003a, b). 

Though composed of two principles – punishment and reward – strong reciprocity 

research has been dominated by work on punishment, and it is now well-established that 

altruistic punishment can increase contributions in public goods games (see below). 

Researchers seem sufficiently sure of punishment’s ability to induce cooperation that 

they have moved to advocating its use by policy makers, both at local scales, in 

institutions governing common pool resources (Ostrom et al. 1992, Ostrom et al. 1994, 

Dietz et al. 2003), and at global scales, where non-compliance with environmental 

treaties must be deterred without the aid of an independent enforcement authority (Barrett 

2003a, b). 

An important parameter governing the mechanism of altruistic punishment, and 

one that will be referenced throughout this dissertation, is the ratio of costs incurred by 

the punishing party to those of the party being punished (Casari 2005). Letting c = the 

cost which an individual incurs to punish another, cM is then the fee or sanction imposed 

on the punished party where M is a parameter of the model referred to as the punishment 
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multiplier. In an evolutionary context, when costs and benefits represent fitness, as M 

becomes arbitrarily large there should be some point at which it could no longer be 

considered altruistic to provide punishment but is instead evolutionarily beneficial. M, 

therefore, becomes an important parameter in understanding outcomes of punishment 

experiments. 

As noted, altruistic punishment is only one aspect of strong reciprocity, and 

though it has dominated research on the topic, the phenomenon of altruistic rewarding 

should not be ignored. Those that advocate punishment, such as Ostrom (1994) and Dietz 

(2003), briefly discuss the benefits of rewards or incentives in social dilemmas but list 

only sanctioning mechanisms in their recommended institutional solutions. One 

explanation for less attention to rewards may be that experiments have demonstrated the 

threat of punishment leads to higher contributions in public goods games than the 

promise of rewards (Sefton et al. 2002, Andreoni et al. 2003). In addition, case studies of 

successfully managed common pool resources typically credit punishment instead of 

rewards (Ostrom 1990, Ostrom et al. 1992, Ostrom et al. 1994), though this may be a 

product of researcher preferences or bias. 

Economic theory does not predict that reward systems should be inferior to 

punishment systems. However, from a biological perspective the disparity is not 

unexpected. As stated above, there should be times when punishment is an evolutionarily 

beneficial strategy (Shutters 2009). On the other hand, a reward given will always reduce 

the fitness of the rewarder relative to the agent receiving the reward. 
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Rational Choice Theory 

Cooperation is the collective result of individual behavior and therefore the result 

of a series of individual choices. To begin to understand cooperation requires first an 

adequate understanding of theories of choice. By far the dominant paradigm for 

explaining how individuals choose among several alternatives is that of rational choice 

theory. This theory argues that individuals choosing from a vast set of options first rank 

those options in order of preference and then choose the option that is most preferred, 

given constraints on the ability to acquire those choices. To be rational is to have the 

following properties2 with respect to preferences: 

 

1) preferences are complete – given the set of all available consumption choices X, 

an individual can consistently rank his preferences for any two choices c1, c2 ∈ X 

so that one of the following is true: c1 f c2 (read c1 is preferred to c2), c1 p c2, or c1 

~ c2 (read c1 is indifferent to c2 , or the individual is indifferent between c1 and c2); 

2) preferences are transitive – given three choices c1, c2, and c3 ∈ X, if c1 f c2 and  

c2 f c3, then c1 f  c3; and if c1 ~ c2 and c2 f c3, then c1 f  c3; 

3) preferences are non-satiable – given c = consumption of some good and ε = some 

incremental consumption of the same good, (c + ε) f c and u(c + ε) > u(c). In 

other words, consuming more of a good is always better in terms of utility (Mas-

Colell et al. 1995). 

 

                                                 
2 Though only properties 1 and 2 are requirements of rational choice theory, property 3 is included as an 
important corollary customarily listed as a component of rationality. 
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Under the preceding restrictions all choices confronting an individual can be 

ranked in order of preference. For purposes of formalized models it is preferred to 

examine choices in terms of an individual’s utility, which may be defined simply as an 

individual’s satisfaction or happiness (Rayo and Becker 2007). Formally however, utility 

is a function of consumption u(c) that quantifies preference rankings such that if c1 f c2, 

then u(c1) > u(c2) and if c1 ~ c2, then u(c1) = u(c2). Therefore, a rational decision maker, 

in choosing the most preferred consumption alternative, maximizes his utility. Note that 

in standard rational choice theory the utility function of one individual is assumed to be 

independent of preferences and consumption of others, though most economists would 

now agree that this is simply a best first approximation of behavior. This point will be 

discussed in detail in Chapter 6. 

 

Game Theory 

A common methodology for testing theories of choice and rationality is the use of 

controlled laboratory games. The economic theory of games provides a highly simplified 

framework for analyzing decision making under constraint (see Binmore (1992) or 

Osborne (2004) for a comprehensive introduction to game theory). Competitive situations 

can be made sufficiently abstract that they become mathematically tractable, are 

applicable across species or entities, and are readily simulated by computer applications. 

Games may be either one-shot (single stage) games or multi-stage games. A one-

shot game requires strategic reasoning while multi-stage games require that the agent 

reason based on what it learns through repeated interactions (Weirich 1998). As learning 

models are beyond the scope of this dissertation, simulations are restricted to one-shot 
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games. Agents’ strategic choices are independent of both their own past choices and of 

the past choices of other agents in the population. However, because an agent’s strategy 

in any given period is a result of the cumulative effects of evolution in an environment 

with other agents, one may validly argue that any agent’s strategy is indirectly driven by 

past choices of itself and others. 

Games may also be classified as either normal form or extensive form. An 

extensive form game describes a series of game plays in advance and thus applies only to 

multi-stage games. On the other hand, a normal form game describes a one-shot strategy 

and requires the strategy be causally independent of those against which it plays (Weirich 

1998). As stated previously, experiments presented in this dissertation consist only of 

one-shot games. Therefore, only normal form games are used throughout. 

Games may be further classified as either cooperative games or non-cooperative 

games. The designation of a game as cooperative or non-cooperative defines whether or 

not agents may make binding coalitions before strategies are played and should not be 

confused with whether or not the game has a cooperative outcome. In non-cooperative 

games agents may not make binding agreements before game play – agreements may be 

made in advance but they are non-binding and, therefore, not enforceable. Cooperative 

games, on the other hand, permit binding agreements prior to play which allows 

coalitions to form. These games have essentially two stages – a decision of whether to 

join a coalition or not and then a play of strategy. Experiments in this dissertation use 

only non-cooperative games, as a goal of this study is broad applicability to a variety of 

social species and at different hierarchical levels of society. In particular, attention is 

focused on the international level of human societies where actors are nation states. Both 
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in non-human societies and at the international level of human societies there is no 

effective mechanism or institution that facilitates binding agreements. This is true in 

human society despite the existence of the World Court and the United Nations, 

institutions considered ineffectual for the purposes of enforcing binding agreements 

(Barrett 2003b). Accordingly, games which allow for binding coalitions are excluded in 

this dissertation. Following are descriptions of common experimental games relevant to 

this study. 

 

The public good game 

A public good game consists of n players. Each player i is given an endowment 

and then contributes a portion of that endowment xi to a public good pool but keeps the 

remainder. Choice of xi by each agent is made strictly independently of the choices of 

other agents. In this dissertation initial endowments for players in all games are 

standardized to 1 unit so that 

[2.1]   [ ]1,0∈ix . 

 

A public good G is created by summing contributions from the n players and multiplying 

by some factor r that represents the synergistic effect of cooperation 

[2.2]   ∑
=

=
n

i
ixrG

1
. 

 

To make the game meaningful for studying social dilemmas, r must be greater than 1 or 

individuals have no incentive to contribute to a public good. Likewise r must be less than  
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n or individuals have no incentive to retain their endowments. Accordingly,  

[2.3]   ),1( nr ∈ . 

 

The public good G is then distributed evenly to all n players so that i’s payoff pi equals 

what the player did not contribute plus i’s share of the public good: 
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Substitution of [2.2] into [2.3] yields 
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Since [2.3] requires that r < n, it follows that 
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and any positive value for xi in [2.5], ceteris paribus, will decrease player i’s payoff. 

In other words, for any given set of contributions by all other participants, an 

individual’s payoff is maximized by contributing 0 to the public good. In contrast total 

social welfare, measured here as the sum of all payoffs, is maximized when every 

individual contributes its entire endowment to the public good. 
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The prisoners dilemma 

The prisoners dilemma is a reduced version of the public good game played 

between only 2 players. Unlike the public good game, it is customary in the standard 

prisoners dilemma to limit strategies to those of full defection (x = 0) or full cooperation 

(x = 1), so that each agent simply faces a binary choice – cooperate or defect. Despite this 

simplification, the expected outcome of the prisoners dilemma is the same as that of the 

public goods game – rational agents attempting to maximize their own individual benefit 

will experience the least desirable social outcome. 

A hybrid between the public good game and the standard prisoners dilemma is the 

continuous prisoners dilemma (CPD). In this version of the prisoners dilemma the game 

is still restricted to two players, but the set of allowable strategic choices is expanded to 

the entire interval [0, 1] as in the public good game. This allows for a richer set of 

possible outcomes while maintaining the analytical simplicity of a 2-person interaction 

(see Chapter 3 for a detailed description of the CPD). 

 

The ultimatum and dictator games 

Bargaining games comprise another class of experimental games. This category 

includes the ultimatum and dictator games, which are primarily used to understand the 

evolution of fairness. 

The ultimatum game is played between two players i and j and is structured so 

that i, the proposer, is given an endowment from which a portion xi must be offered to j, 

the responder. The offer may be any portion from 0% to 100% of the endowment. It is 

customary when possible to standardize the endowment to 1 so that xi ∈ [0, 1]. The 



22 
 

  

responder may accept the offer, in which case each player receives her agreed upon share, 

or may reject the proposal, in which case both players receive nothing. Economic theory 

predicts that a rational responder will accept the smallest possible positive fraction, and 

that a rational proposer, knowing this, will offer the smallest possible positive fraction 

(Binmore 1992). 

In a simplification of the ultimatum game known as the dictator game, the 

responder has no ability to react. i simply gives a portion of its endowment to j and the 

game ends (Osborne 2004). In this case the economic expectation is that i will offer 0. 

This game is often used as a control case for comparisons to ultimatum game results. 

 

Experimental games and rationality 

In the context of controlled economic laboratory games it is customary to discuss 

experimental predictions and results in terms of the utility of a subject’s payoffs u(p) 

instead of consumption u(c). Since monetary payoffs normally translate easily into 

purchasing power, this is a reasonable assumption and will be adopted throughout this 

text. 

It is an altogether different matter that in nearly all experimental economics it is 

implied, if not expressly stated, that rational agents are expected to maximize their payoff 

p, not their utility from that payoff u(p). This is a subtle but very important distinction. 

Experimenters can generally ignore this distinction by assuming that utility is a 

monotonic transformation of payoffs so that if p1 > p2, then u(p1) > u(p2). In other words, 

agents will maximize utility u(p) if they simply maximize their payoffs p. This 

assumption is valid only if payoffs are ordered the same as preferences for those payoffs. 
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If they are not, then there is no basis to predict game outcomes using strict rational choice 

theory. 

This becomes a problem in light of numerous studies from experimental 

economists that demonstrate human behavior in laboratory games is not always 

consistent with payoff maximization. Instead, evidence suggests that a player’s utility is a 

function, at least in part, of other players’ payoffs. This phenomenon, termed 

interdependent preferences, is examined in detail in Chapter 6. 

Contributing to this semantic confusion are the ways in which different authors 

use the terms payoff and utility. In the majority of behavioral literature cited in this study, 

expected payoff is the explicit quantified value (usually monetary) of a possible game 

outcome. For example, if choice A in a game earns a player 5 dollars, we would say the 

player’s expected payoff for choice A is 5 dollars. Yet, in David Morrow’s textbook 

Game Theory for Political Scientists (1994, p. 351) for example, the author defines the 

term payoff as “A player’s utility for an outcome of a game.” In other words, payoffs 

equal the utility of payoffs, or p = u(p). Is a payoff the expected value of a game outcome 

or the expected utility of that outcome? Without loss of generality I consistently interpret 

payoffs in this dissertation as the expected value of a game and not the expected utility. 

This allows investigation of a given payoff matrix under different utility functions, 

including functions that incorporate interdependent preferences or predispositions for fair 

allocations discussed above.  
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Social Network Theory 

The term “social structure” is increasingly confusing to those attempting to 

understand individual behavior by examining explicit connections between members of a 

society. The term is often used with models that segregate a society into smaller groups 

that are merely well-mixed subpopulations, especially multi-level selection models (e.g. 

Fryxell et al. 2007). This is still systems-level thinking with multiple, linked pools. 

However, the explicit connection pattern between individuals within these societies is 

still ignored. Here a narrower definition of social structure is proposed in which the 

connections of every member of a society to every other member are explicitly defined. 

In other words the social network of the society is defined. 

Social network theory emerged from attempts by social scientists to understand 

social phenomena in terms of the connection pattern among a society’s individuals (see 

Wassermann and Faust (1994) for a comprehensive text on social networks and their 

analysis). At the same time but in other academic circles, the mathematical theory of 

graphs developed to understand quantitative properties of network structures. This has 

unfortunately led to alternate vocabularies and techniques to address what are effectively 

equivalent properties and phenomena of social networks. Throughout this dissertation the 

following groups of terms from social network theory and graph theory may be used 

interchangeably: 

 

(a) social network, network, graph; 

(b) connection, link, edge; 

(c) agent, node, actor. 
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A social network is easily represented by a square matrix in which each node is 

uniquely identified by its column and row. The existence or absence of a link can then be 

listed between every possible pair within a society at the appropriate index site. Such a 

matrix is defined as an adjacency matrix. The simplest such matrix contains only binary 

information; aij = aji =1 if agents i and j are linked and aij = aji = 0 if they are not (Figure 

2.1). Index values may also contain information other than simply 0’s and 1’s such as the 

strength of a link, the cost of maintaining or using a link, probability of interaction, or 

any number of other meaningful types of information describing the relationship between 

two members of a population. 

In addition, the simplest adjacency matrix represents what is known as a non-

directed graph (Figure 2.1a). In a non-directed graph if node i is linked to node j, then j is 

linked to i. This need not always be the case. In some circumstances it is important to 

distinguish between the link from i to j and the link from j to i. This is done by means of a 

directed graph (Figure 2.1b). Simulation experiments in this dissertation use only simple 

binary, non-directed graphs. 

A further designation of graphs is whether they are connected or non-connected. 

A connected graph is a network in which every node is reachable by every other node, 

regardless of how many links it may take to reach each other (Figure 2.2a). If there exists 

any node that is not reachable by every other node, then the network is not a connected 

graph (Figure 2.2b). As this dissertation is concerned with ability of behavior to 

propagate throughout a society or population only connected graphs are considered. 
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Social network metrics 

There exist a myriad of quantitative descriptors of social networks, many of 

which require laborious algorithms to compute. Among them are at least four that are 

more relevant to the work of this dissertation. 

 

Degree - The measure of degree can be confusing because it can describe both an 

individual node and an entire network. The degree of any node i in an undirected network 

is simply the number of direct links from i to other nodes. In other words it is a count of 

how many neighbors to which i is directly connected in a non-directed network. In 

contrast, the degree of a network (not just a single node) is the average degree of all 

nodes in the network. In other words if di = number of neighbors to which i is linked, 

then the degree of the entire network with n nodes can be represented as 

[2.7]   ∑
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Geodesic and Eccentricity - The geodesic of two nodes is the shortest distance between 

them. When links are unweighted, so that they are all of equal length or value, the 

geodesic is simply the least number of links required to travel between two nodes. The 

geodesic (di,j) is synonymous with the popular notion of degrees of separation between 

nodes i and j. A related measure is a node’s eccentricity, which is simply the largest 

geodesic between that node and all other nodes in the network. 
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Diameter of a graph - The diameter of a graph D is the largest eccentricity value among 

the nodes of the graph (and therefore the largest geodesic among the nodes). This can be 

a useful measure of how close the members of a society are to each other. 

 

Clustering coefficient - The clustering coefficient is a measure of the density of local 

connections around a node. Specifically it measures how many neighbors of a node are 

connected to other neighbors of the same node. This measure is standardized by the 

number of possible connections between neighbors. 

 

Classification of social networks 

The following are descriptions of important classes of social networks or graphs 

used in this dissertation along with descriptions of how they are generated. Graphical 

representations of networks used in this research are presented in Figure 2.3 and Figure 

2.4. The actual computer algorithms used to generate networks for this dissertation were 

written in the Java programming language and are presented in Appendix B. 

 

Random networks - A random network, also known as an Erdős-Rényi graph, is simply 

generated by starting with a fixed number of nodes and then connecting pairs of nodes at 

random until the desired total number of links in the network is reached (Figure 2.4a). In 

this dissertation an extra step is added after a random network is generated to ensure that 

the graph is connected (see above). If the random generation process results in a non-

connected graph, additional links are added until it is connected, resulting in an 

insignificant variation in total number of links among these networks. Random networks 
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have the feature of low degrees of separation or network diameter, but also have low 

clustering coefficients. 

 

Regular network - A regular network is often represented as a grid structure. All nodes 

have the same degree, or number of neighbors, and are arranged in a regular repeating 

pattern. In addition, such structures are torroidal, meaning that they have no edges but 

instead loop around onto themselves such as the surface of a sphere. Regular networks 

typically have high clustering coefficients but also high degrees of separation. 

The two most commonly used regular networks in simulations are the von 

Neumann graph (Figure 2.3c), in which every node is connected to four neighbors in a 

torroidal grid, and the Moore graph (Figure 2.3e), in which every node is connected to 

eight neighbors in a torroidal grid. Hexagonal networks (Figure 2.3d) are also used but 

with less frequency. 

Regular networks may also be one-dimensional instead of two-dimensional. In 

this case the resulting network is linear and, because it is also torroidal, is known as a 

ring (Figures 2.3a & b). 

 

Random regular networks - Random regular networks have elements in common with 

both regular grid structures and randomly generated graphs. Like regular networks, all 

nodes in a random regular network have the same degree. However, links are generated 

randomly instead of in a regular, repeating pattern (Figure 2.4f). Like generation of an 

Erdős-Rényi, network pairs of nodes are linked at random but only until a node reaches 

some predetermined degree. At that point, the node becomes ineligible for further links. 
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Small world networks - Also known as a Watts-Strogatz graph, small-world networks 

show features of both random networks and regular networks (Figures 2.4d & e) and 

represent the dominant interaction pattern observed in human societies (Watts and 

Strogatz 1998). Watts-Strogatz graphs are generated by starting with a regular network 

and then randomly cutting and relinking ties in the network with a probability r. Watts 

and Strogatz found that over a certain range of r, networks are generated that exhibit 

features long sought by social scientists of both low degrees of separation and high 

clustering coefficients. 

 In this dissertation small world networks are generated by starting with a 

population structured in a linear ring (Figure 2.3a). This is known as the ring substrate 

method of generation. 

 

Scale-free networks - Also known as a Barabási-Albert graph, a scale-free network is 

characterized by a power law distribution of nodal degrees and are ubiquitous in the real 

world from metabolic pathways to river drainage patterns to the hyperlink patterns of the 

world wide web (Barabási and Albert 1999). Scale-free networks are generated by 

growth through preferential attachment (Figure 2.4b & c). That is, the network is 

“grown” by adding new nodes one at a time until the desired number of total nodes is 

reached. As a new node is added, the point within the existing network at which it is 

attached is probability-based. The probability that any one node in the existing network 

will be the point of new attachment is proportional to the number of existing links that 

node already has (for a discussion of preferential attachment based on factors other than 

number of existing links see Ko et al. 2008). 
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Though scale-free networks as described above are sometimes classified as 

simply another form of small world network (e.g. Buchanan 2002), in this dissertation I 

draw a sharp distinction between the two. While scale-free networks may have the feature 

of low degrees of separation in common with small world networks, the clustering 

coefficient of a scale-free network is rarely high and is more reflective of random 

networks. 

 

Agent-based Modelling 

Because we live in a world of continuous change, standard theories of behavior 

are of little use in understanding dynamic behavior (North 2005). Not only are traditional 

mathematical methods of understanding dynamic systems limited to a small number of 

special cases, but those methods may have little potential for understanding how 

individual behavior affects emergent properties at higher scales (Anderies 2002, Harrison 

and Singer 2006). Therefore, argues North (2005), researchers must dispense with a quest 

for elegant mathematical equilibria if their goals are to truly understand behavior in a 

changing world (see also Janssen 2002).  

In some cases the overzealous pursuit of mathematically simple models has led to 

unrealistic representations of a system (Harrison and Singer 2006). In the case of early 

models of group selection, simplifying assumptions made to allow formalized treatment 

led to vehement rejection of group selection theories and may have set back unbiased 

research on the topic for over 30 years (Wilson and Wilson 2007). 

Prior to the availability of sufficient computational power, systems of interacting 

parts were often analyzed through sets of difference or differential equations. As 
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computing power grew, methods of systems dynamics emerged in which computers were 

used to iteratively solve complex systems of equations. However, systems level analysis 

is still limited to discovering and describing macro-level, aggregate phenomena, and are 

not concerned with heterogeneous attributes of the individual components of a system 

(Sawyer 2005). While aggregate mathematical models have worked remarkably well for 

systems such as gas molecules, they may create particularly unrealistic representations of 

biological systems (Bedau 1999). This is especially true of societies (Sawyer 2005, 

Harrison 2006).  

Since the early 1990’s agent-based modelling has emerged as a preferred method 

of investigating such dynamic processes when analytical methods become intractable and 

it is ideal for creating models in which social structure is explicitly acknowledged or 

individuals are not atomistic clones of one another (Drogoul and Ferber 1994, Bedau 

1999, Janssen 2002, Sawyer 2005, Wilson and Wilson 2007). In hierarchical terms, the 

modelled unit moves from the system to the individual entities that comprise the system. 

Thomas Schelling’s (1971) Sugarscape model, which exhibited aggregate social patterns 

not predicted by equations, is often acknowledged as the first fruitful use of agent-based 

modelling in the social sciences. Nowak and May further demonstrate the shortcomings 

of systems level models by showing that restricting agents to a defined structure of 

possible interactions led to very different outcomes than when the same system was 

modelled as a well-mixed aggregate (Nowak and May 1992). 

Agent-based modelling has achieved acceptance in part from a growing 

realization of the limitations of reductionist science (Sawyer 2005) and by renewed 

attempts to use holistic or organic approaches to understanding a social system as a whole 
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(Sawyer 2005, Harrison 2006). To fully explore the evolution of cooperation in systems 

of social agents, computational social simulation, or agent-based modelling, is used as the 

primary method of investigation in this dissertation. Unlike laboratory experiments the 

use of agent-based simulations allows careful control over factors that may confound 

empirical studies such as emotion, reputation, visual cues, anonymity, or cultural 

influences (Cederman 2001). This control allows researchers to single out cultural and 

other factors that may be most important to facilitating cooperation and allows almost 

unlimited creativity in designing virtual experiments. More importantly, agent-based 

models go beyond the capabilities of mathematical analysis to allow investigation of 

dynamic systems far from stable equilibrium points. In particular agent-based modelling 

is used in this study to explore behavior in populations of agents that play dynamic, 

evolving strategies in various economic game situations. 

However, it should be noted that this dissertation does not advocate simulations of 

networked populations as a panacea for understanding the evolution of social behavior. 

For instance, certain social aspects of eusocial insect colonies are described well by 

systems of differential equations (Reeve and Hölldobler 2007) even though there is 

evidence that colony interaction patterns exhibit characteristics of social networks 

(Fewell 2003). Instead the explanatory power of this dissertation is most applicable to 

those superorganisms whose internal structure is clearly described by complex social 

networks. 

One criticism of agent-based computer simulations is that their results are often 

produced from proprietary programs or cannot otherwise be independently verified 

(Bedau 1999). The appropriate response to this is to verify that results are independent of 
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software platform and that results are reproducible by sufficiently informed colleagues. 

This can be accomplished by supplying colleagues with only pseudo-code, or a concise 

description of a simulation, and confirming that they are able to reproduce results 

(Edmonds and Hales 2003). When possible, simulation programs developed for this 

dissertation have been independently recreated by fellow researchers3 with sufficient 

expertise in agent-based modelling using only pseudo-code as a guide. 

The simulation algorithms developed for this dissertation4 will continue to have 

research uses well beyond those of this project. In addition to follow-up questions that 

may arise from this research, seemingly unrelated questions about the evolution of 

cooperation may be explored easily once models such as these are standardized.

                                                 
3 Preliminary findings of this dissertation were successfully replicated by Dr. Francois Bousquet of 
CIRAD, France, using the CORMAS modeling platform (http://cormas.cirad.fr/indexeng.htm), and by S. 
Alessio Delre, of the University of Groningen, Netherlands, using the C programming language. 
4 Simulations were written in Java 1.5.0 (http://java.sun.com/) using the Eclipse 3.2 software development 
kit (http://www.eclipse.org/). See Appendix B for detail code. 
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 1   2   3   4   5   6 
1-   0   0   1   0   0   0 
2-   0   0   0   1   1   0 
3-   1   0   0   0   1   0 
4-   0   1   0   0   1   1 
5-   0   1   1   1   0   1 
6-   0   0   0   1   1   0 
 

(a) Example of a non-directed graph with 6 nodes and its representation as an adjacency 

matrix. Note that the adjacency matrix of a non-directed graph is symmetrical about the 

main diagonal. 

 
 
 
 
 
      1   2   3   4   5   6 
1-   0   1   0   0   1   0 
2-   0   0   0   0   0   1 
3-   0   0   0   0   1   0 
4-   0   1   0   0   1   1 
5-   0   0   1   0   0   0 
6-   1   0   1   1   0   0 
 

 
(b) Example of a directed graph with 6 nodes and its representation as an adjacency 

matrix. The adjacency matrix of a directed graph need not be symmetrical. 

 

Figure 2.1. Examples of directed and non-directed graphs and their adjacency matrices. 
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(a) A connected graph with 20 nodes. Every node is reachable by every other node. 

 

(b) A non-connected graph. No node is reachable by every other node. Note that node 6 is 

reachable only by three other nodes, while node 14 is not reachable by any other node. 

 

Figure 2.2. Examples of connected and non-connected graphs. Because this dissertation 

examines cases where interactions take place between agents, only connected graphs are 

used throughout. 
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          (a)           (b)          (c) 
 
 

 
          (d)           (e)          (f) 

 

Figure 2.3. Examples of regular networks used in this dissertation. Each example network 

is composed of 64 nodes. (a) A ring with neighborhood radius = 1. (b) A ring with 

neighborhood radius = 2. (c) A von Neumann lattice. (d) A hexagonal lattice. (e) A 

Moore lattice. (f) A complete graph. Examples c, d, and e are known as regular lattices 

and are actually torroidal, meaning they bend back around on themselves to make a 

single surface with no edges. 
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          (a)           (b)          (c) 
 

 
          (d)           (e)          (f) 

 

Figure 2.4. Examples of non-regular networks used in this dissertation. Each example 

network is composed of 64 nodes. (a) A random network with probability of link = 0.20. 

(b) A scale-free network with one link per new node. (c) A scale-free network with two 

links per new node. (d) A small-world network using a ring substrate with neighborhood 

radius = 2 and probability of rewire = 0.2. (e) A small-world network using a ring 

substrate with neighborhood radius = 2 and probability of rewire = 0.05. (f) A random 

regular network with 4 links per node.



CHAPTER 3 
 

 

PUNISHMENT AND SOCIAL STRUCTURE:  

COOPERATION IN A CONTINUOUS PRISONERS DILEMMA 

 

Introduction 

The phenomenon of cooperative behavior remains unexplained in several 

branches of science. Though a number of mechanisms have been proposed to explain at 

least some observable instances of cooperation (Hamilton 1964, Trivers 1971, Axelrod 

and Hamilton 1981, Wilson and Sober 1994, Fehr et al. 2002, Foster et al. 2004) they 

invariably apply to limited cases or special circumstances (see Chapter 2, Alternate 

Theories for further discussion). 

Arguably the leading contemporary explanation for the evolution of cooperation 

is the phenomenon of altruistic punishment. Altruistic punishment occurs when an 

individual incurs a cost to punish another without receiving any material benefit in return 

(Fehr and Gächter 2002). This mechanism has been shown repeatedly to induce 

cooperative behavior in laboratory experiments with humans, where subjects often pay to 

punish players that are not even in the same game as the punishee (Ostrom et al. 1992, 

Fehr and Gächter 2000, 2002, Andreoni et al. 2003, Gürerk et al. 2006). 

From an economic perspective, however, the phenomenon of altruistic 

punishment is just as irrational as cooperation and as an explanation of cooperation in 

one-shot anonymous interactions it only shifts the question from “why should an 

individual cooperate?” to “why should an individual altruistically punish?” It therefore 

remains to demonstrate a causal mechanism for altruistic punishment if it to explain the 

evolution of cooperation. One mechanism currently proposed as the key to altruistic 
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punishment is cultural group selection (Richerson and Boyd 2005, Hagen and 

Hammerstein 2006). This dissertation offers evidence for at least one mechanism leading 

to the evolution of altruistic punishment – social structure. 

Like other explanations of cooperation, many theories of altruistic punishment are 

limited by the fact that they are framed in terms of evolutionary game theory (Maynard-

Smith 1982) and fail to address the social structure governing interactions between actors 

(Jackson and Watts 2002). Such explanations assume a system is homogeneous or well-

mixed and that members of the system interact randomly with each other with equal 

probability. These system dynamics models have limited applicability to groups of social 

organisms (Sawyer 2005, Griffin 2006, Harrison and Singer 2006).  

Previous simulations have shown that adding simple two-dimensional space leads 

to very different behavior than simple well-mixed population models (Schelling 1971, 

Nowak and May 1992). Despite a growing tendency to include social structure in 

simulation models, there is still a bias for use of overly simplistic, regular two-

dimensional lattices. Real-world network structures of cooperating agents are known to 

be far from well-mixed, yet neither do they conform neatly to the regular pattern of a 

lattice (Barabási and Albert 1999, Amaral et al. 2000, Dorogtsev and Mendes 2003). 

Social scientists, on the other hand, have long acknowledged the association 

between complex social networks and cooperation (Oliver 1984, Marwell et al. 1988, 

Gould 1993, Chwe 1999, 2000). Yet only recently has the simulation and modelling 

community begun to move beyond regular lattice structures to explore the important role 

that complex social networks play in the evolution of cooperation (Santos and Pacheco 

2005, Santos et al. 2006b, Chen et al. 2007, Olfati-Saber et al. 2007). 
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It remains then, to explore the combined effects punishment and social structure 

and whether their combination may lead to a broadly applicable explanation of 

cooperation. As Michael Chwe (1999) lamented, 

Collective action has been studied in two largely disjoint approaches, one 
focusing on the influence of social structure and another focusing on the 
incentives for individual participation. These approaches are often seen as 
competing or even opposed. 
 

This chapter attempts to bridge these two approaches by focusing on altruistic 

punishment as the mechanism for the evolution of cooperation and by demonstrating how 

incorporating social structure may make punishment a viable mechanism for the 

evolution of cooperation. Agent-based computer simulations were conducted to test the 

ability of altruistic punishment to induce cooperation on a variety of social network 

structures. 

 

The Simulation Model 

To test the ability of altruistic punishment to induce cooperation, a punishment 

option was incorporated into simulations of the continuous prisoners dilemma played out 

on a variety of social networks. These networks included a complete graph, representing 

a well-mixed system, several regular lattices representative of some of the first 

computational simulations and often analogous to spatial explicitness, and more 

sophisticated complex social networks, such as scale-free5 and small-world networks6, 

representative of many real-world processes in physical, biological, and social systems. 

                                                 
5 This simulation uses a Barabási-Albert (1999) type algorithm to create scale-free networks by preferential 
growth. That is, the network is “grown” by adding new nodes one at a time until the desired population 
level is reached. As a new node is connected, the point within the existing network at which a new node is 
attached is probability-based. The probability that any one node in the existing network will be the point of 
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The continuous prisoners dilemma (CPD) 

In the classic prisoners dilemma players are limited to two choices - cooperate or 

defect. Here that requirement is relaxed and players are able to select a level of 

cooperation at any point on a continuum between full cooperation and full defection. This 

presents an arguably more realistic picture of choices facing those in social dilemmas 

(Sandler 1999, Killingback and Doebeli 2002). In this dissertation the set of contribution 

choices is standardized to the interval [0,1] so that 0 = full defection and 1 = full 

cooperation. This is known as the continuous prisoners dilemma (CPD). 

The CPD can also be thought of as a simplified version of the public goods game 

described in Chapter 2 with only 2 players, i and j. When n = 2, [2.4] is modified so that 

i’s payoff becomes 

[3.1]   pi = 1 – xi + r(xi + xj)/2;     r ∈ (1,2). 

 

The addition of altruistic punishment introduces a 3rd player to the game, the observer k 

and the possibility of punishment further modifies potential payoffs. The CPD payoff 

matrix used in this chapter is presented in Table 3.2. 
                                                                                                                                                 
new attachment is proportional to the number of existing connections that node already has. An important 
parameter to consider when growing these networks is the number of links that a new node makes to the 
existing network. Results in this study were obtained using scale-free networks grown by nodes that linked 
to two nodes of the existing network. Supplementary simulations with single-link attachment showed no 
appreciable difference in results. 
 
6 This simulation uses the Watts-Strogatz (1998) algorithm for creating small-world networks by random 
rewiring of a regular ring structure). That is, the algorithm begins with a simple circle of connected agents 
(a ring substrate) then randomly rewires links from an adjacent node in the circle to one selected at random 
anywhere in the population. An important parameter governing this algorithm is the radius of agents in the 
initial circle that are considered neighbors. Let r = the neighborhood radius which equals the number of 
links between an agent and what constitutes a neighbor. Given any agent A, when r = 1, only the two 
agents on either side of A are considered neighbors; when r = 2, two agents in each direction from A (four 
total) are considered neighbors, and so forth. Results presented in this study for small-world networks were 
obtained using a ring substrate with r = 2. Supplementary simulations using a ring substrate with r = 1 
showed no appreciable difference in results. 
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Like the public goods game, for any given contribution by an opponent, an 

individual’s payoff is maximized by contributing 0 to the public good. This is the 

expected rational choice or Nash equilibrium of the prisoners dilemma (Binmore 1992). 

The dilemma arises, however, because total social welfare is maximized when both 

individuals cooperate fully. Theory predicts that, given rational agents, each player in the 

CPD will contribute 0 to the public good and regardless of the amount of the agent’s 

contribution, an observing neighbor will never pay to punish (Fehr and Gächter 2000). 

 

Game play 

A simulation run initiates by creation of a social network. Let N(V,E) be a 

connected network where V is the array of vertices or nodes and E is the array of edges or 

links. Each node is occupied by a single agent i consisting of strategy (xi, ti, ci) where xi = 

the contribution i makes to the public good when playing against j, ti = the contribution 

below which the agent will punish another agent in a game being observed by i, and ci = 

the cost that i is willing to incur to punish the observed agent when the observed agent’s 

contribution is too low (Table 3.1). In other words ti determines if agent i will punish and 

ci determines how much agent i will punish. Each strategy component xi, ti, ci ∈ [0,1] and 

is generated randomly from a uniform distribution at the beginning of each simulation. 

To control for other factors that might contribute to the maintenance of cooperation, such 

as interaction history or reputation, the model does not allow recognition of or memory of 

other agents within the population. Every game is effectively one-shot and anonymous. 

During a single CPD game an agent i initiates the encounter by randomly 

selecting j from its neighborhood, which unless otherwise indicated, consists of all nodes 
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one link away from i in the given network type. Agents are given their endowment of one 

unit from which each simultaneously contributes a portion to a public good. Payoffs are 

then calculated using the payoff matrix in Table 3.2. The initiating player i then randomly 

selects a second neighbor k, who is tasked with observing and evaluating i’s contribution. 

If k judges the contribution to be too low (xi < tk), k pays ck to punish i in the amount of 

ckM, where M is the relative strength of punishment referred to here as the punishment 

multiplier. Each agent initiates three CPD games during a single generation of the 

simulation and each simulation run proceeds for 10,000 generations.  

Each generation consists of three routines – game play, observation & 

punishment, and selection & reproduction. During each routine an agent interacts only 

with its immediate neighbors as defined by the network type and all interactions take 

place in parallel. The payoff variable for each agent p, tallies the costs and payoffs an 

agent experiences during a generation. Because this model depicts the elementary case in 

which parents do not differentially provision resources for their offspring, p = 0 for each 

agent at the beginning of a new generation7. 

Following game play and punishment agents compete with one another for the 

right to pass offspring to the next generation. During this reproduction routine each agent 

i randomly selects a neighbor j with which to compare respective payoffs accumulated 

during the generation. If pi > pj, i’s strategy remains at i’s node in the next generation. 

However, if pi < pj, j’s strategy is copied onto i’s node for the next generation. In the 

event that pi = pj, a coin toss determines the prevailing strategy. As strategies are copied 

                                                 
7Many species, especially social animals, do contribute to the success of their offspring through resource 
provisioning or parental care. See (Wilson 2000) for examples. 
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to the next generation each of the three strategy components of every agent is subject to 

mutation with a probability m = 0.10. If selected for mutation, Gaussian noise is added to 

the component with mean = 0 and std. dev. = 0.01. Should mutation drive a component’s 

value outside [0,1] the value is adjusted back to the closer boundary value. 

 

Simulation variables and output  

The important parameter governing the mechanism of altruistic punishment is the 

ratio of costs incurred by the punishing party to those of the party being punished (Casari 

2005, Shutters 2008). Defined above as the punishment multiplier M, this parameter is 

analogous to the strength or efficiency of punishment and, along with network type, is the 

independent variable in these simulations. The dependent variables of interest are the 

mean contribution and the mean payoff which evolve in a population after 10,000 

generations. The mean contribution represents the population’s level of cooperativeness 

while the mean payoff represents the population’s social welfare. 

Data were collected in two sets. In the first data set, 100 simulation replications 

were conducted at M = 0.0 and then at subsequent values of M in increments of 0.5, up to 

M = 6.0 (Table 3.2). This allowed for an analysis of variances in outcomes for a given 

simulation parameter set. In the second data set, a parameter sweep of M was conducted 

so that a single simulation was run at 0.0 and at subsequent values of M in increments of 

0.01 up to M = 6.0 (Figure 3.1). This allowed for an analysis of the effect of M at higher 

resolution but at the cost of no replications. 

 

 



45 
 

  

Results 

Control case: no social structure, no punishment 

For control purposes the initial population was simulated on a complete graph 

with no altruistic punishment. As predicted by rational choice theory, the population 

evolved contribution rates of approximately 0. In the absence of both punishment and 

social structure no cooperation was exhibited. 

 

Either punishment or social structure alone 

In the second set of simulations, populations were subjected to alternate 

treatments of either social structure or punishment. First, with punishment disabled 

simulations were run on a variety of network structures (Table 3.4). Unlike similar 

experiments with fairness in the ultimatum game (Chapter 5), social structure alone did 

not drive outcomes from the Nash equilibrium (Table 3.2) and no cooperation evolved. 

Only in the anomalous case of scale-free networks did contributions deviate from the 

expected contribution rate of approximately 0. 

Next, using a well-mixed complete graph analogous to no social structure, 

simulations were run in which punishment was enabled. Despite having the ability to 

punish each other populations lacking structure continued to evolve to the Nash 

equilibrium with increasing M (Figure 3.1a). Neither social structure alone nor 

punishment alone was sufficient to induce the population to evolve away from non-

cooperative behavior. Again these results concur with rational expectations. 
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Punishment and social structure together 

In the final round of simulations, the CPD was played using both structured 

populations and altruistic punishment for which the punishment multiplier M was 

systematically varied. Results are presented in Figure 3.1. With increasing M, punishment 

eventually led to nearly full cooperation on a Moore lattice and a small-world network. 

Under these network types as M increased, populations underwent a rapid transition from 

contributions ~ 0 to contributions ~ 1 (Figure 3.1b & 3.1c). This flip from nearly full 

defection to nearly full cooperation occurred also in supplemental simulations run on the 

following social structures: von Neumann lattice, hexagonal lattice, and linear (ring) 

structures (Table 3.4). Response curves to these structures were so similar to those of the 

Moore lattice and small-world network that their figures are excluded for the sake of 

brevity. 

Interestingly, populations using scale-free networks neither evolved to the Nash 

equilibrium nor showed any significant response to the introduction of altruistic 

punishment. Though Figure 3.1d reveals a slight positive trend in mean contributions 

under a scale-free network with increasing M (R2 = 0.007), the trend is not significant 

(Spearman rank order correlations, p = 0.086). 

 

Discussion 

Cooperation in continuous versus discrete games 

 In treatments with social structure and no punishment, populations playing the 

continuous prisoners dilemma evolved contribution levels of approximately 0. This 

presents an interesting contrast to early simulation work of Nowak and May (1992), in 
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which spatially arrayed populations played the standard prisoners dilemma. Recall that in 

the standard prisoners dilemma agents are restricted to only two choices – cooperate or 

defect (see Chapter 2 above). In other words the standard prisoners dilemma is the 

discrete choice counterpart of the continuous prisoners dilemma. Nowak and May found 

that under certain parameter settings populations evolved to an equilibrium mixture of 

cooperators and defectors. This may indicate an important difference between continuous 

and discrete games and should be explored further. However, Nowak and May also used 

a non-torroroidal, finite plane, which gives rise to edge effects that are not present in the 

current study. Furthermore, their simulations used initial populations of 90% cooperators 

whereas in this study’s initial population uses a uniform distribution of public good 

contribution levels. 

 

Localization of interactions and the evolution of altruistic punishment 

Though altruistic punishment is now accepted as a mechanism for maintaining 

cooperation, it remains to explain the evolution of the punishment mechanism itself. This 

is true because, just as an agent contributing in the prisoners dilemma receives a lower 

payoff than those that do not contribute, an agent that punishes receive a lower payoff 

than those that do not punish. 

Social structure, through its restriction of agents to local interactions, offers one 

possible explanation for the rise of the seemingly irrational phenomenon of altruistic 

punishment. Results are robust when moving from artificial social structures, such as 

regular lattices, to stochastically generated small-world networks which more realistically 

represent complex human interaction patterns. Furthermore, because social networks are 
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not exclusive to human societies (Fewell 2003, Lusseau and Newman 2004, Flack et al. 

2006) this finding may have broad applicability wherever social organisms engage in 

costly punishment. 

Under the parameters of these simulations it is clear that punishment, as a 

mechanism for the evolution of cooperation, is only a viable explanation in the presence 

of structured populations. It would appear that Chwe is correct in his call for a melding of 

those exploring social structure and those studying individual incentives as mechanisms 

for collective action. 

 

Cooperation and network density 

These results also shed light on a contemporary debate among network scientists 

regarding the role that social networks play in facilitating cooperation. In particular there 

has been lively discussion on the role of “dense” networks, or what is defined in this 

study as complete (or nearly complete) networks. A long-held belief is that when a 

population is more densely connected the likelihood of cooperation increases (Marwell 

and Oliver 1993, Opp and Gern 1993, Jun and Sethi 2007). On the other hand, recent 

research suggests the opposite and shows that dense networks inhibit cooperation in a 

structured population (Flache and Macy 1996, Flache 2002, Takács et al. 2008). Results 

from this dissertation support the latter view. Simulations using the maximally dense 

complete network never evolved cooperation even when the punishment multiplier was 

set to the unrealistic value of M = 5,000. Instead, cooperation evolved only on sparsely 

linked networks (Table 3.4, Table 3.5).  
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The view that increasing network density adversely affects cooperation is further 

supported by the results from regular networks. Though full cooperation eventually 

evolved on each of the regular networks, the severity of punishment (measured as the 

magnitude of M) required to move the population from defectors to cooperators increased 

as the density of the network increased (Table 3.5). In other words, the more densely a 

network was linked, measured as the number of neighbors per agent in a regular lattice, 

the stronger the punishment required to evolve cooperation (Figure 3.2). This finding is 

in direct contrast a study by Jun and Sethi who conclude that “dense networks are more 

conducive to the evolution of cooperation” (Jun and Sethi 2007, p. 625). 

 

Social dilemmas and their underlying social structure 

Results from these simulations reveal that it may be possible to classify social 

dilemmas based on the social structure under which they occur. If so, it may give policy 

makers a new tool by creating a system of institutional recommendations for each 

structural class of social dilemma. For instance, social dilemmas occurring in a society 

characterized by a small-world network may be amenable to institutionalized 

punishment. Dilemmas characterized by interactions following a scale-free network or a 

highly dense network may require other institutional solutions. 

 

The anomaly of scale-free networks 

An unexpected simulation result was the response to punishment of populations 

embedded in scale-free networks. Unlike other social networks used in this experiment, 

populations on scale-free networks appear to be unresponsive to punishment even as M 
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increases. To ensure that results were not due to an inadequate sampling of the model’s 

parameter space, simulations were run on scale-free networks at M = 5,000 but again 

resulted in no convergence. 

Another possible explanation for these results is that convergence on scale-free 

networks takes longer to emerge. Therefore, simulations were re-run at M = 1.5 but 

extended to 200,000 generations. However, even after extending the evolutionary period 

by 20 times, no convergence in contribution rates occurred. 

These results suggest that there are features unique to scale-free networks that 

should be identified through further investigation. This is especially important given that 

scale-free architecture is common in nature and is known to exist in widely diverse 

organic systems, from cellular signal transduction pathways to the world wide web 

(Barabási and Albert 1999).  

 

Evolutionary dynamics 

 Results presented thus far have consisted of a population’s mean contribution at 

the end of 10,000 simulated generations. Before ending discussion it is important to 

examine the evolutionary trajectory through time. While it is true that one advantage of 

evolutionary computer simulations is the ability to store data of every interaction during 

every generation, the immense data processing and storage requirements that would be 

needed to completely analyze evolutionary dynamics was beyond the scope of this 

dissertation. However, a small subset of such trajectories is presented as examples of 

population dynamics over time. Complete generation-level data was collected for three 

individual simulations run on small-world networks. Simulations were selected to give 
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examples of a population that evolved to full defection at low strength of punishment (M 

= 0.5), a population that evolved to full cooperation at higher strength of punishment (M 

= 3.0), and a population that evolved to an intermediate level of cooperation at M = 1.75, 

corresponding to the chaotic transition range in Figure 3.1c. 

 Results of this brief survey are presented in Figure 3.3. Simulations run at M = 0.5 

and M = 3.0 converged to full defection and full cooperation respectively within the first 

400 generations. In the intermediate range near the transition between defection and 

cooperation (M = 1.75), the population’s mean contribution rate did not converge over 

time to either cooperation or defection but instead drifted in a random fashion. To 

ascertain whether the population was simply converging more slowly at punishment 

strengths near the transition point, the simulation run at M = 1.75 was extended to 

100,000 generations but still exhibited no convergence in contribution rate. 

 

Cooperation in other games 

 It is important acknowledge that the prisoners dilemma is but one of many 2-

person games used to explore and understand social dilemmas. Though it is more 

commonly used than others, it is likely not representative of all social dilemmas. 

Manipulation of the payoff structure in the prisoners dilemma leads to several other 

games with alternative equilibria and expected outcomes. Hauert (2001) gives a 

comprehensive description of different games that arise when ordinality of payoffs 

changes. It is likely that all these alternate games have applicability to at least some real 

world social dilemmas. 
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 One alternative game enjoying increased attention from scientists in recent years 

is the snowdrift game, also known as the chicken game or the hawk-dove game. Unlike 

the prisoners dilemma the snowdrift game has two Nash equilibria, neither of which is 

the least socially desirable outcome (defect-defect). In recent simulations of the snowdrift 

game on a regular (von Neumann) network, results showed that, in contrast to the 

prisoners dilemma, spatially structuring the population actually inhibits cooperation 

(Hauert and Doebeli 2004). 

 

Future Directions 

A limitation of this study is that comparisons were made between different 

networks based on a nominal classification scheme. While this does allow for a test of 

significance through ANOVA, it is less desirable than a general linear model in which 

CPD contributions could be regressed against one or more numerical descriptors of the 

underlying networks. As stated above, several such quantitative statistics exist to describe 

social networks (Wasserman and Faust 1994). However, the computational requirements 

to calculate such statistics for even a single randomly generated network are extensive 

and the exploration of evolutionary space required to generate a meaningful linear model 

would require the random generation and quantitative measure of hundreds or even 

thousands of networks. There is currently no feasible way to accomplish this high-

volume quantitative analysis in addition to the computational requirements of the CPD 

simulations themselves. To move forward with evolutionary network science such as that 

presented in this dissertation, it is important that such a computational solution be 

developed. 
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 Second, even though several nominal classifications of networks were used in this 

experiment the simulated worlds remain essentially flat and one-dimensional. An 

approach more representative of the complexities of real-world societies would be the use 

of multiple hierarchically nested networks. For instance, a model of metapopulations may 

place populations at each node of a network. However, each population may itself be 

made of multiple interacting actors arranged in their own network. The same is true for 

models of international relations networked nations are made of networks of people. In 

addition, there is no reason why an actor at one hierarchical level may not interact with 

an actor at another level. While adding multiple layers of complexity to such models it 

should also lead to a much richer array of outcomes for analysis and hypothesis testing.
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Table 3.1  

Strategy components used by agents in the continuous prisoners dilemma 

Component  Description 

   x   contribution to public good 

   t   threshold for punishment 

   c   amount or cost of punishment 

 

Note: x, t, c ∈ [0, 1]
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Table 3.2 

Payoffs p in the continuous prisoners dilemma between i and j with possible punishment 

of i by k 

   xi ≥ tk    xi < tk 

k punishes i?  no    yes 

pi   1 – xi + r(xi + xj)/2   1 – xi + r(xi + xj)/2 – ckM 

pj   1 – xj + r(xi + xj)/2  1 – xj + r(xi + xj)/2 

pk   0    – ck 

 

Note: see Tables 3.1 and 3.3 for description of variables 
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Table 3.3 

Simulation parameters for the CPD and their values 

Parameter       Values     

The population size (N)     400 

The number of generations a single simulation run  10,000 

The number of games initiated by each agent  

       in one generation      3 

The range for strategy component values (x, t, c)  [0, 1] 

The probability of strategy component mutation (m)  0.1 

The (mean, standard deviation) of Gaussian noise  

      added to a mutated strategy component   (0, 0.01) 

The punishment multiplier (M)    0.0 to 6.0a 

The public good multiplier (r)    1.5b 

The probability of rewire for small-world networks  0.05 

The number of links per new node in scale-free networks 2 

 

a In increments of 0.01. 

b An alternative representation of the public good multiplier r is to be standardized by the 

number of players per game. Stated in this manner r is bounded by 0.5 < r < 1 for the 

prisoners dilemma and is fixed at r = 0.75 in all cases in this dissertation. 
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Table 3.4 

Mean ending contributions on various networks with and without punishment 

     Mean contribution (std. dev.) 

Network type   M = 0.0   M = 4.0 

Complete graph  0.003 (0.001)   0.030 (0.010) 

 

Regular graphs 

     Moore   0.004 (0.001)   0.990 (0.017) 

     Hexagonal   0.005 (0.001)   0.997 (0.002) 

     von Neumann  0.005 (0.001)   0.998 (0.001) 

     Linear   0.006 (0.001)   0.996 (0.002) 

 

Complex, real-world graphs 

     Small-world  0.006 (0.001)   0.997 (0.001) 

     Scale-free   0.490 (0.310)   0.666 (0.232) 

 

Other graphs 

     Random   0.023 (0.012)   0.455 (0.284) 

     Random regular  0.005 (0.001)   0.999 (0.001) 

 

Note: in each case number of replications = 100 
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Table 3.5 

For regular networks, approximate value of M at which populations transitioned from low 

to high contributions in the continuous prisoners dilemma  

Network type  Number of neighbors  Approx. transition value of M a  

Linear    2     1.5 

von Neumann   4     1.8 

Hexagonal   6     2.2 

Moore    8     2.8 

Complete   N – 1     N/Ab 

 

a See Appendix A for method of approximating transition values. 

b A transition did not occur on the complete graph with increasing M. This was true even 

at values as high as M = 5,000. 
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Figure 3.1 Results of the continuous prisoners dilemma on four different networks. Mean 

contributions vs. M are presented for populations on (a) complete network, (b) a regular 

(Moore) lattice, (c) a small-world network, and (d) a scale-free network. Each dot 

represents the population’s mean contribution in the 10,000th generation of a single 

simulation run. Simulations on small-world networks clearly demonstrate a transition 

effect as M increases. Scale-free networks exhibit no such effect. 
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(b) 

Figure 3.2. Response of mean ending contributions to increasing M in the continuous 

prisoners dilemma. (a) on regular network structures, and (b) on other networks. For 

networks that experience a rapid transition from low to high contributions, approximate 

transition values are listed in Table 3.5. 
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Figure 3.3. Evolutionary dynamics of the continuous prisoners dilemma on small-world 

networks. (a) Through 200 generations. (b) Through 10,000 generations. While 

simulations run at M = 0.5 and M = 3.0 converged to full defection and full cooperation 

respectively within 200 generations, the simulation run at M = 1.75 did not converge to 

any value even after 10,000 generations. The end point of each curve in (b) corresponds 

to a single point in Figure 3.1c.



CHAPTER 4 
 

 

EXTENDING THE CONTINUOUS PRISONERS DILEMMA MODEL:  

THE AFTERMATH OF PUNISHMENT8 

In this chapter, the continuous prisoners dilemma (CPD) simulation developed in 

Chapter 3 is modified to answer a serious of supplemental questions. These questions are 

related to the premise that in real world situations, or action arenas, the unilateral 

punishment of a non-cooperator is rarely the final interaction in a social dilemma. 

Therefore, experiments in this chapter investigate what happens after punishment takes 

place. 

 

The Detrimental Side of Punishment 

Thus far this dissertation has demonstrated that punishment can induce a 

structured population to cooperate, provided that the punishment multiplier is sufficient. 

However, it remains to examine whether such punishment-induced cooperation has a 

favorable impact on social welfare, measured as the sum of all individual payoffs in the 

population. Laboratory experiments have shown that even when punishment leads to 

increased contribution rates in a public good game, it may consistently decrease overall 

social welfare in the form of total payoffs (Sefton et al. 2002). This occurs because the 

fees collected from those wishing to inflict punishment, as well the sanctions collected 

from those being punished, are not redistributed by the experimenter and may be greater 

than the benefits from increased contributions to the public good. 

 Unfortunately this has led to ambiguity in the literature regarding the efficacy of 

altruistic punishment. For example, in a ground-breaking laboratory experiment by Fehr 

                                                 
8 This chapter is based, in part, on (Shutters 2008). 
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and Gächter (2000), participants played the public goods game for 20 rounds and had the 

ability to punish others after each round. Treatments in which punishment was allowed 

led to higher contributions than when punishment was not allowed and the authors 

concluded that, since free-riding was deterred, punishment had facilitated cooperation. 

Yet in 18 of 20 rounds with punishment, average payoffs to all participants was actually 

lower than without punishment. So while punishment induced higher contributions to the 

public good it led to decreased social welfare. 

Herrmann et al (2008) found that in some human societies, those contributing to a 

public good are punished just as frequently as non-contributors. This “antisocial 

punishment”, as the authors call it, can be so strong that it destroys the ability of 

punishment to facilitate cooperative outcomes. 

Therefore, it is with great care and caution that scientists should approach policy 

makers to advocate the use of punishment as some have done (Ostrom et al. 1992, 

Ostrom et al. 1994, Barrett 2003b, a, Dietz et al. 2003). Using this argument, an 

oppressive and coercive central power that punishes those whose views do not concur 

could be considered a source of cooperation as long as it deters free-riding, but this may 

come at terrible cost to individual liberty (Marlowe et al. 2008). 

 

Punishment versus payoffs 

In the previous chapter, simulations of the CPD were used to examine the effect 

of punishment on contributions to a public good. However, it is prudent to also 

investigation the effect that punishment has on payoffs. Close examination of the rapid 

transition in contributions that occur in small-world and regular networks reveals that 
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mean payoffs actually drop as M increases but before the transition occurs (Figure 4.1). 

This suggests that unless M is sufficiently high, altruistic punishment can actually lead to 

decreased social welfare. In the complete network, where there is no transition to high 

contributions, mean payoffs simply continue to decrease with increasing M. 

Once the transition occurs to cooperative behavior, further increases in M beyond 

its transition value again decreases total payoffs (Figure 4.2). These results indicate that 

once a society achieves widespread cooperation some level of punishment persists, and 

suggest that there is an optimal strength of punishment at the point just beyond the 

transition to full cooperation. Any attempt to craft institutions that promote punishment 

as a mechanism for inducing cooperation will face a practical problem of attempting to 

find this optimal formula for punishment. At worst, a poorly crafted punishment regime 

will lead to worse payoffs than without punishment. 

 

The 2ND Order Free-rider Problem 

To facilitate the provisioning of a public good it is often the case that institutional 

solutions are implemented to deter free-riding. However, these institutions are themselves 

public goods and the question then arises of how these institutions are maintained 

(Hodgson 2009). What deters free-riding in the provisioning of deterrence institutions? 

This is the essence of what is known as the 2nd order free-rider problem (Okada 2008). 

For example, it is common for human societies to employ police to enforce laws. 

A police force is tasked with detection and punishment of 1st order free-riders. However, 

what incentives exist to ensure that members of a police force carry out their duties? 

Without deterrents and/or incentives it is expected that a rational enforcer would collect 
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wages but then rely on fellow police officers to carry out enforcement of laws – a costly 

endeavor in terms of individual risk to the enforcement officer (Oliver 1980). 

This scenario may continue for several levels, each with a new free-rider 

dilemma. If a police force should create an internal affairs department to ensure that its 

members are carrying out their enforcement duties, we then ask what incentives do 

internal affairs agents have to carry out their internal enforcement duties? 

It is expected that individuals that cooperate but that do not punish others –  

individuals Heckathorn (1998) refers to as private cooperators – will have an 

evolutionary advantage over those that both cooperate and punish. This has been shown 

in experimental games where those that cooperate but do not punish receive the highest 

payoffs (Dreber et al. 2008). However, if punishers are responsible for cooperative 

outcomes but are evolutionarily inferior to those that do not punish, it is expected that 

they will evolve out of the population, taking any hope for general cooperation with 

them. Therefore, even if we conclude that cooperation is maintained in a society by the 

tendency of individuals to inflict costly punishment on non-cooperators, it remains to 

explain in an evolutionary context how these punishers could out-compete other 

cooperators that do not punish. 

In addition to those that cooperate but do not participate in enforcement, there 

may also be individuals that cheat or defect with regard to provisioning a public good but 

participate actively in sanctioning other cheaters (hypocritical cooperators). This is a 

further complication that contributes to expected frailty of 2nd order cooperation 

(Heckathorn 1998). 
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This 2nd order problem is of no concern once the society has reached a population 

of all cooperators, as punishers no longer reduce their fitness to punish. But as shown in 

Figure 3.3 even those societies that evolve to full cooperation pass through evolutionary 

periods in which members of the society contribute less than a fully cooperative amount. 

Yet the fact that populations with punishers do achieve full cooperation despite passing 

through periods of lower cooperation, indicates that social structure alone may create the 

feedbacks necessary to overcome the 2nd order (and higher) free-rider dilemma. This 

concurs with Hodgson (2009, p. 145) who states that to understand 2nd order institutions 

“explanations must ultimately devolve on individuals and their interactions.” Full 

cooperation evolves despite the prospect that some cooperators may not contribute to the 

punishment of non-cooperators. Like Panchanathan and Boyd (2004) the 2nd order free-

rider problem appears to have been solved without intervention. 

Therefore, it remains to answer the question, what effect does 2nd-order 

punishment have in these simulations? It may be that the strength of punishment required 

to achieve cooperation under different social structures is affected by whether or not 2nd 

order free riders are subject to punishment. On one hand it is intuitive to predict that, 

since punishment of 1st order cheaters led to cooperative behavior, further punishment of 

2nd order cheaters may lead to cooperation at even lower values of the punishment 

multiplier M. However, laboratory experiments with human subjects have demonstrated 

the opposite and suggest that 2nd order punishment can inhibit the emergence of 

cooperation (Denant-Boemont et al. 2007) 

To test the effects of 2nd order punishment simulations were conducted of 

populations playing the CPD described in Chapter 3. The simulation was modified so that 
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when a game is played between i and j and observer k, a new agent l simultaneously 

evaluates k’s punishment behavior (Table 4.1). To assess k’s general predisposition to 

punish, l compares its punishment threshold tl to k’s threshold tk. If k is generally more 

lenient on low offers compared to l (tk < tl), l punishes k. In simpler terms, the newly 

introduced agent l is ensuring that the punisher is doing its job. 

As in Chapter 3 a sweep of the parameter M was conducted on several networks 

to determine the effect of this additional 2nd order enforcement. 

 

Results and discussion: 2nd order free rider simulations 

 Figures 4.3 and 4.4 present comparisons of simulations on several networks with 

and without punishment of 2nd order free riders. Contrary to expectations, the ability to 

punish 2nd order free-riders led to the requirement of higher M in order to induce 

cooperative behavior in a population. In other words, punishment needed to be more 

severe to achieve cooperation than in Chapter 3 when punishment of 2nd order free riders 

was not allowed (Table 4.2). 

 This is likely due to the fact that 2nd order punishment is not based on whether the 

punishment recipient was a cooperator or defector, but on whether the recipient was a 

punisher or not. In the presence of a 2nd order punishment institution, simply contributing 

to a public good is no longer sufficient to guarantee freedom from punishment. Many 

cooperative agents that would have otherwise helped moved a population to full 

cooperation in Chapter 3 may have been injured through sanctions in the present 

experiment, and would therefore decrease the overall effectiveness of punishment. 
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The Effect of Retaliatory Behavior 

Another often unacknowledged drawback to punishment is the phenomenon of 

retaliation. Studies have shown that humans and other animals do not take kindly to being 

punished and often retaliate at a cost both to themselves and their punisher (Molm 1989a, 

b, Clutton-Brock and Parker 1995, Saijo and Nakamura 1995, Hopfensitz and Reuben 

2005). This can inhibit the punishment of free-riding and ultimately negate the 

cooperative effects of punishment (Nikiforakis 2008). However, previous research on 

punishment has rarely considered the potential consequences of retaliation (Fon and 

Parisi 2005, Denant-Boemont et al. 2007). 

In the previous chapter, simulation experiments revealed outcomes that may be 

achieved under a variety of social structures when altruistic punishment is allowed. 

However, the ability to punish was limited to a single act by a 3rd party. In the current 

experiment the CPD simulation used in Chapter 3 is modified to allow a punished agent 

to retaliate against its punisher. 

To examine the effects of retaliation on cooperative outcomes, agent behavior was 

modified so that agents automatically retaliate after being punished by paying an amount 

s ∈ [0, 1] to have its punisher sanctioned by an amount sM. Because the amount of 

retaliation s may be 0, agents may evolve so that they effectively do not retaliate, even 

when punished. Three different rules were implemented for calculating how much a 

punished agent should spend on retaliation: 

(1) s equals the same amount the punished agent would have spent to punish a 

low contributor (s = c). This assumes that a single strategy component 



69 
 

  

dictates how much an agent will spend to punish another regardless of the 

reason for punishing. 

(2) s is a new, independently evolving strategy component (s is independent). In 

this case acts of retaliation are assumed to be independent of other 

punishment acts by an agent. 

(3) s equals the amount the agent contributes to the public good in the CPD (s = 

x). This reflects the idea that both punishment and retaliation are non-self 

interested behaviors, and so may be governed by the same strategy 

component. 

 

Results and discussion of retaliation experiments 

Using retaliation rule 1 (s = c) cooperation did not evolve on any network. The 

ability to retaliate led to the collapse of cooperation that evolved when there was no 

retaliation. Likewise with retaliation rule 2 (s is independent), full defection evolved on 

all social structures.  

However, in simulations using retaliation rule 3 (s = x), results were more 

complex. As with simple punishment, simulations on networks other than the complete 

network underwent a rapid transition from low to high contributions with increasing M. 

However, contributions did not transition to full cooperation as before (Table 4.3) but 

instead plateaued at a value between full cooperation and full defection depending on the 

network (Figure 4.5). In addition, payoffs initially increased with increasing M but 

eventually evolved to levels even below the Nash equilibrium payoffs of the base CPD, 

in which there is no punishment or retaliation (Figure 4.6). 
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These results present a challenge to the explanation of cooperation based on 

punishment because humans often do retaliate after being punished (Hopfensitz and 

Reuben 2005, Nikiforakis 2008). However, results, at least under retaliation type 3, also 

do not result in full defection. While the presence of retaliatory behavior may present a 

barrier to full cooperation it does not preclude some intermediate level of contributions to 

a public good provided there is a sufficient strength of punishment. 

Despite an intermediate level of public good contributions, results are ambiguous 

regarding cooperation. Though free-riding was partially deterred and contributions to the 

public good evolve to some positive level, social welfare eventually evolved to levels 

lower than the worst possible outcome in the absence of punishment and retaliation. In 

other words, populations with the option to retaliate fared worse than populations with no 

punishment at all, even though those with retaliation had a partially provisioned public 

good and those without punishment had none. 

It is precisely this type of outcome that should lead policy makers to scrutinize 

punishment mechanism before they are incorporated into policies designed to foster 

cooperation. Their efforts may only result in the illusion of cooperation through increased 

compliance but at the cost of decreased social welfare. Perhaps this helps to explain the 

existence of institutional policies such as that of the United States Department of Labor, 

which implements methods for discouraging retaliation (USDL 2009). 

 

Summary and Future Directions 

 This chapter demonstrates the potential danger of generalizing about the benefits 

of using punishment to induce cooperation. On the other hand it points to numerous 
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potential questions that may be foci of future studies. First, while this study has thus far 

used a form of the prisoners dilemma, future studies should duplicate these type of 

simulations on a wide variety of 2-player games to ascertain a more general nature of 

punishment in social dilemmas and to inform policy makers of potential adverse affects 

of institutionalized punishment. 

Second, as stated above, in experiments with punishment collected fees and fines 

are routinely removed from the experimental system without further consideration. It is 

more likely in real world situations that collected penalties and fines are redistributed, to 

some degree, to the society from which they are collected – either to those who did not 

defect or to all society members. Future simulations should include and explore a variable 

that allows redistribution of collected sanctions and fees. 

In addition, simulations results presented here regarding 2nd-order punishment 

should be coupled with laboratory experiments to validate the detrimental nature of such 

supplemental punishment. 

Finally, a rich suite of questions is posed regarding retaliation. Three methods for 

determining how to retaliate are presented in this study. Others surely await discovery 

and testing. 
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Table 4.1 

Payoffs p in the continuous prisoners dilemma between observer k and 2nd order punisher 

l  

  tl < tk    tl ≥ tk 

pk  – clM       0 

pl  – cl       0 

 

Note: see Tables 3.1 and 3.3 for description of variables 
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Table 4.2 

Approximate value of M at which populations transitioned from low to high contributions 

in the continuous prisoners dilemma, with and without punishment of 2nd order free-

riders 

Network type (No. of neighbors)     Approx. transition value of M a  

     with no 2nd order with 2nd order   

       punishment    punishment  

Linear (2)     1.5   1.6 

von Neumann (4)    1.8   2.8 

Hexagonal (6)     2.2   4.1 

Moore (8)     2.8   5.7 

Complete (N – 1)    N/Ab   N/Ab 

 

a See Appendix A for method of approximating transition values. 

b A transition did not occur on the complete graph with increasing M under either 

treatment. This was true even at values as high as M = 5,000. 
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Table 4.3 

Response of contribution rate to network type with and without retaliation in the 

continuous prisoners dilemma  

            Mean contribution (std. dev.) 

Network type   Without Retaliationa  With Retaliation (type 3)b 

Complete graph  0.030 (0.010)   0.036 (0.050) 

Regular graphs 

     Moore   0.990 (0.017)   0.065 (0.018) 

     Hexagonal   0.997 (0.002)   0.115 (0.035) 

     von Neumann  0.998 (0.001)   0.277 (0.064) 

     Linear   0.996 (0.002)   0.949 (0.015) 

Complex, real-world graphs 

     Small-world  0.997 (0.001)   0.525 (0.066) 

     Scale-free   0.666 (0.232)   0.644 (0.231) 

Other graphs 

     Random   0.455 (0.284)   0.126 (0.035) 

     Random regular  0.999 (0.001)   0.129 (0.040) 

 

Note: in both treatments, punishment of low contributors is allowed 

a Mean contribution over 100 runs at M = 4 (see table 3.4 above). 

b Mean contribution over 100 runs at each M = 10, 15, 20, 25, 30 (N = 500). 
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Figure 4.1. Prisoners dilemma payoffs vs. M at low values of M. The rational expectation 

for selfish individuals is that mean payoff = 6.0. As punishment is introduced, however, 

under both regular and small-world networks, payoffs fall below expectations. Payoffs 

continue to fall until the value of M reaches a threshold point (Table 3.5) at which 

payoffs jump to near the full cooperative value. Under a complete network, payoffs are 

always lower under a punishment regime than without. 



76 
 

  

Punishment Multiplier M

0 5 10

M
ea

n 
En

di
ng

 P
ay

of
f

8.20

8.45

8.70

Moore Lattice
Small-world Network 

 

 

Figure 4.2. Prisoners dilemma payoffs vs. M at high values of M.  The rational 

expectation for a population of fully cooperating individuals is that mean payoff = 9.0. 

However, having made the transition to cooperative contributions with increasing M 

(Table 3.5), payoffs steadily decline with increasingly potent punishment. This same 

trend is observed with increasing M before the transition to cooperative contributions 

(Figure 4.2) and suggests that crafting an optimal punishment institution may be difficult. 



77 
 

  

Linear

0 3 6
0.0

0.5

1.0

von Neumann

0 3 6
0.0

0.5

1.0

Hexagonal

0 3 6
0.0

0.5

1.0

without 2nd order punishment
with 2nd order punishment

Moore

0 3 6
0.0

0.5

1.0

Punishment Multiplier M

M
ea

n 
En

di
ng

 C
on

tri
bu

tio
n

(a) (b)

(c) (d)

 

Figure 4.3. Effect of 2nd-order punishment: lattice networks. Introducing punishment of 

2nd-order free-riders leads to less cooperative contributions at any given value of M. This 

effect becomes more pronounced as network density increases. 
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Figure 4.4. Effect of 2nd-order punishment: other networks. In cases other than scale-free 

networks, allowing punishment of 2nd-order free-riders leads to less cooperative 

contributions at any given value of M. 
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Figure 4.5. Effect of retaliation on mean ending contributions in the continuous prisoners 

dilemma. In populations given the option to retaliate, neither full cooperation nor full 

defection evolved in the above networks. These data come from simulations using 

retaliation type 3, in which the amount an agent spends on retaliation s is the same 

amount the agent contributes to the public good x. Using types 1 and 2 retaliation 

cooperation collapses completely and full defection evolves on all networks. 
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Figure 4.6. Effect of retaliation on mean payoffs in the continuous prisoners dilemma. In 

populations given the option to retaliate, mean payoffs eventually evolved, with 

increasing M, to levels lower than the least possible payoffs without punishment and 

retaliation (dashed line at p = 6.0). These data come from simulations using retaliation 

type 3, in which the amount an agent spends on retaliation s is the same amount the agent 

contributes to the public good x. 

 



CHAPTER 5 
 

 

PUNISHMENT AND SOCIAL STRUCTURE:  

THE EVOLUTION OF FAIRNESS IN AN ULTIMATUM GAME9 

 

Introduction 

Kazemi and Eek (2008) assert there are two predecessors to cooperative outcomes 

of social dilemmas, the provisioning of public goods and the allocation of public goods. 

Whereas questions of provisioning are often associated with cooperation, questions of 

allocation are concerned with fairness. Though research on social dilemmas has been 

dominated by cooperation and provisioning questions (Kazemi and Eek 2008), to better 

facilitate the resolution of social dilemmas, research should encompass both antecedents 

of cooperative outcomes. Accordingly chapters 3 and 4 of this dissertation investigate 

cooperation through experiments with public goods provisioning, demonstrating that 

social structure, coupled with punishment, has an important influence on cooperative 

outcomes. In this chapter I present experimental results on the allocation step and discuss 

whether punishment and social structure similarly affect the ability of a population to 

evolve fairness behavior.  

 

The question of fairness 

Despite a voluminous literature addressing fair allocations, authors rarely attempt 

to define the term fairness. This is partly because concepts of fairness are often culturally 

contextual norms and may vary among individual groups (Kazemi and Eek 2008). 

However, a general definition is warranted to adequately discuss abstract questions of 

                                                 
9 This chapter is a modified version of Shutters (2008). 
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fairness. Here I adopt the definition proposed by Varian (1974) in which a fair allocation 

is one that is both pareto efficient and equitable. Being pareto efficient an allocation 

cannot be altered without decreasing the payoff of at least one participant. Being 

equitable, says Varian, means no participant prefers the allocation of another participant. 

This definition may explain why many authors, while declining to explicitly define 

fairness, nevertheless typically imply that a fair allocation is one resulting in 

approximately equal shares to participating parties (Nowak et al. 2000, Henrich et al. 

2001). 

In the 2-player ultimatum game used in this chapter and described below, every 

allocation resulting from an accepted offer is pareto efficient. In other words, 

disregarding cases where an offer is rejected, the ultimatum game is a zero-sum game – 

no player can increase his payoff without decreasing the payoff of his opponent. This 

satisfies the first criterion for fairness. Regarding those allocations that are also equitable, 

all simulated agents used in this study begin each generation with the same resource 

endowment and compete in the same reproduction algorithm for the ability to pass 

offspring into the next generation. Therefore, an agent will benefit from the higher share 

of an allocation and, in this sense, will prefer an opponent’s allocation if it is larger. The 

only point at which neither agent would prefer the other’s allocation is when the 

allocation is an equal split so that in the following simulated ultimatum game, a fair 

allocation is one in which each player receives a 50% share.  
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Background 

Since cooperation often means overcoming an incentive to cheat or free-ride, the 

emergence of cooperation among unrelated individuals remains largely unexplained in 

the life and social sciences. A long history of explanations includes kin selection 

(Hamilton 1964, Rothstein and Pierotti 1988, Wilson 2005), direct and indirect 

reciprocity (Trivers 1971, Nowak and Sigmund 1998a, Riolo et al. 2001, Killingback and 

Doebeli 2002, Nowak and Sigmund 2005), and multi-level selection (Wilson and Sober 

1994, Goodnight 2005, Reeve and Hölldobler 2007). However, these explanations often 

require assumptions such as close genetic relationships, small populations, or repeated 

interactions in order for cooperation to evolve (Fowler 2005). Recent findings suggest 

that strong reciprocity – the altruistic punishing of cheaters and altruistic rewarding of 

cooperators – may provide an alternative and more general explanation. In particular 

altruistic punishment by third-party observers has been shown to play a positive role in 

maintaining cooperation (Fehr and Gächter 2000, Gintis 2000, Henrich and Boyd 2001, 

Fehr et al. 2002, Fehr and Gächter 2002, Boyd et al. 2003, Bowles and Gintis 2004, Jaffe 

2004, Shinada et al. 2004, Fowler 2005).  

The effectiveness of punishment as a mechanism for cooperation has long been 

debated, with some suggesting that it may simply lead to a destructive cycle of costly 

retaliation (Molm 1994). However, researchers now seem sufficiently sure of 

punishment’s ability to induce cooperation that they have moved to advocating its use by 

policy makers, both at local scales, in institutions governing common pool resources  

(Ostrom et al. 1992, Ostrom et al. 1994, Dietz et al. 2003, Anderies et al. 2004), and at 
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international scales, in agreements designed to provision global public goods (Sandler 

1992, Wagner 2001, Barrett 2003b, a, 2005). 

 

The punishment multiplier 

An important parameter governing the mechanism of altruistic punishment is the 

ratio of costs incurred by the punishing party to those of the party being punished. Letting 

c = the cost that an individual incurs to punish another, cM = the fee or sanction imposed 

on the punished actor where M is the punishment multiplier. As M becomes arbitrarily 

large there should be some point at which it is no longer altruistic to provide punishment 

but is instead strategically beneficial. M, therefore, becomes an important parameter in 

understanding outcomes of punishment experiments. However, though any experiment 

that uses a punishment mechanism implies a value of M under which the experiment 

operates, explanations of how researchers set this parameter are largely absent. To my 

knowledge, even those studies in which researchers explicitly state their value of M, the 

authors rarely offer an explanation of the choice or demonstrate the effects of altering the 

parameter (e.g. Fehr and Gächter 2000, 2002, Andreoni et al. 2003, Boyd et al. 2003, 

Brandt et al. 2003, Gürerk et al. 2006). 

For example, in their influential paper on altruistic punishment, Fehr and Gächter 

(2000) demonstrate that humans in anonymous, one-shot interactions will punish low 

contributors in a public-goods game. In their experiment M = 3.0 yet the authors offer no 

explanation for this choice. Likewise, Andreoni et al. (2003) set M = 5.0 in their 

experimental ultimatum games using punishment and rewards, but state only that they 

chose their ratio so as to ensure that punishment would take place.  
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Table 5.1 lists a number of recent studies on altruistic punishment and the values 

of M used in each study. Two of these studies, Fehr and Gächter (2000) and Masclet et al 

(2003), did not use a fixed value of M but instead used a non-linear function of the 

amount paid by the punisher to determine the amount deducted from the punishee. This 

leads to further confounding issues which are addressed in detail by Casari (2005).  

Despite the fact that researchers often neglect discussion of their selections of M, 

policy-makers who choose to implement punishment mechanisms must include some 

definition of costs incurred by punisher and punishee. Even if polices are unable to 

directly set a common value of M for a crafted punishment institution, they may still be 

able to influence its value. Before researchers promote the application of such 

mechanisms to social dilemmas, a better understanding is warranted of how cooperative 

outcomes respond to punishment mechanisms under varying values of M. This is 

especially true since researchers have shown that if punishment is excessive, it can lead 

to worse outcomes, in terms of total payoffs, than if no punishment were present (Fehr 

and Rockenbach 2003). 

To test the ability of altruistic punishment to elicit fair allocations simulations of 

the ultimatum game were conducted on a variety of network structures while 

systematically varying the parameter M. Perhaps for its sheer simplicity, the ultimatum 

game has grown in popularity until it has come to rival the prisoners dilemma as the 

preferred game-theoretical framework for studying cooperative phenomena (Nowak et al. 

2000). The game is played by two agents i and j that must decide how to split an 

endowment. The proposer i initiates the game by offering a percentage of the endowment 

to the responder j. j then either accepts the division, in which case each agent collects its 
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agreed upon share, or j rejects the division, in which case both agents receive 0. In either 

event the game ends. Economic theory predicts that, given rational agents, j will accept 

the smallest positive amount possible and that i, knowing this, will therefore offer the 

smallest amount possible. Tests of this economic expectation among non-humans have 

been inconclusive, with evidence both rejecting (Silk et al. 2005, Jensen et al. 2007) and 

supporting (Brosnan and de Waal 2003, Burkart et al. 2007) the existence of fairness 

behavior among unrelated primates. However, fairness behavior among humans is well-

established and subjects across many cultures have shown a strong propensity to offer 

fair allocations (i.e. ~ 40-50% of the endowment) and reject unfair offers in experimental 

ultimatum games (Roth et al. 1991, Nowak et al. 2000, Henrich et al. 2001). 

 

The Simulation Model 

In simplest terms this model simulates a population of agents in a torroidal space 

playing the ultimatum game against one another. Under various parameter settings, 

agents are endowed with the ability to altruistically punish a neighbor after assessing the 

neighbor’s game-play behavior. This punishment is accomplished through introduction of 

a third party to the game - the observer k. When in the role of k an agent observes a game 

being played by two other agents and may reduce its own fitness in order to punish what 

it perceives to be a low offer. 

Each agent consists of a strategy (x, α, t, c) where x = the amount that an agent in 

the role of i will offer; α = the offer threshold above which an agent acting as j will accept 

an offer; t = the offer below which an agent acting as k will punish i in a game under 

observation; and c = the cost that an agent acting as k is willing to incur to punish i for 
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offering too little (Table 5.2). Each of the four strategy components holds a value on the 

continuous interval [0,1] and is generated randomly from a uniform distribution at the 

beginning of each simulation. To control for other factors that might contribute to the 

maintenance of cooperation, such as interaction history or reputation, the model does not 

allow recognition of or memory of other agents within the population (though repeated 

interactions are possible since interactions are restricted to a small local neighborhood). 

Following initialization a simulation proceeds through a number of generations, 

each of which consisted of three routines – game play, observation & punishment, and 

selection & reproduction. In each routine an agent interacts only with its immediate 

neighbors as defined by the network type (Table 5.3) and all interactions take place in 

parallel. In addition to its strategy, each agent is described by a fitness variable p, which 

is simply an accumulation of the costs and payoffs an agent experiences during a 

generation. Because only relative fitness is considered during selection and because this 

model uses the elementary case in which parents do not differentially provision resources 

for their offspring, p = 0 for each agent at the beginning of a new generation. 

The present model most closely resembles the model of Page et al. (2000) who 

also demonstrated that a simulated population playing the ultimatum game could evolve 

fair allocations under a linear population structure (or what the authors refer to as a one-

dimensional spatial ultimatum game). The authors did briefly discuss implications of a 

von Neumann neighborhood but the focus of the work was on the effect of varying the 

population size and the radius of an agent’s neighborhood. 

Another closely related model by Killingback and Struder (2001) produced results 

not in agreement with those of the current simulation. The authors simulated a modified 
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ultimatum game in which fair allocations evolved when the population was structured on 

a hexagonal lattice. However, in an effort to model a “collaborator’s dilemma,” their 

modifications to the ultimatum game were extensive enough that it is unreasonable to 

expect outcomes similar to those from the standard ultimatum game. 

During the game play routine, each agent i plays the role of proposer and 

randomly selects, with replacement, three responders from its neighborhood with which 

to play a game. After receiving a standardized endowment of 1 per game, i initiates each 

game by making its offer of xi to j who then evaluates the offer. If the offer is above j’s 

acceptance threshold the offer is accepted and pj increases by xi while pi increases by 1 – 

xi. If the offer is below the threshold it is rejected and both pi and pj remained unchanged. 

After making offers to three neighbors, i selects three neighbors k to observe each 

of those games. These observers, chosen from the same neighborhood as responders, are 

selected with replacement and evaluate xi in the observed game. Provided that the offer is 

not below k’s punishment threshold, pi and pk do not change. However, if the offer falls 

below k’s punishment threshold k punishes i. In so doing pk is reduced by ck while pi is 

reduced by ckM, where M is the punishment multiplier described above. Punishment of i 

is independent of whether xi is actually accepted by j in the observed game. Payoffs for 

the ultimatum game are listed in Table 5.4. 

Finally, each generation ends with a selection & reproduction routine during 

which each agent i randomly selects a neighbor j with which to compare payoffs. If pi > 

pj the strategy occupying i’s node remains and passes to the next generation. If pj is 

greater, j’s strategy is copied to i’s node. In the event that pi = pj a coin toss determines 

which strategy occupies i’s node in the next generation. Once agents of the next 
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generation are determined, each strategy component of every agent is subjected 

independently to mutation with a probability of m = 0.1. If selected for mutation a 

number randomly drawn from a Gaussian distribution with mean = 0 and standard 

deviation = 0.01 is added to the mutated trait. In the event that mutation causes the value 

of a trait to fall outside the interval [0,1] the trait is set to the closer endpoint (either 0 or 

1). A single run continues in this manner for 30,000 generations and, as the model is not 

deterministic, is replicated 100 times to complete a single simulation. 

For each network type, simulations were run starting with M = 0 and thereafter at 

increments of 0.5 until M = 6.0, by which point simulations that converged to a 

population-wide offer value had all done so. Model parameters are summarized in Table 

5.5. The dependent variables of interest are the mean offer and the mean payoff which 

evolve in a population after 30,000 generations. The mean offer represents the 

population’s level of fairness while the mean payoff represents the population’s social 

welfare. 

 

Results and Discussion 

Results revealed three major trends worthy of discussion: (1) even without 

punishment, a negative correlation exists between the number of neighbors per agent and 

the mean offer rate to which a population evolves, (2) in simulations with some social 

structure an abrupt transition occurs from relatively low mean offers to offers of nearly 

100% as M increases, and (3) a correlation exists between the number of neighbors per 

agent and the value of M at which the transition from low to high offers occurs. 
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Offer rates in the absence of punishment 

It has been well demonstrated that spatial explicitness in computer simulations 

can lead to outcomes significantly different than when populations are unstructured or 

well-mixed (Nowak and May 1992, Nowak et al. 1994, Killingback and Doebeli 1996, 

Killingback and Studer 2001). However, there are a number of ways in which a 

population can be spatially explicit and it is important for researchers to show how 

different social structures can lead to different results. In this experiment care was taken 

to show not only the effect of introducing punishment but also to show how that effect 

differed among different spatial structures of the agent population. These spatial 

structures included a complete network in which every agent is a neighbor to every other 

agent in the population (see for example Riolo et al. 2001). 

Initial simulations were conducted without any ability to punish by third-party 

observers. Agents simply played a standard ultimatum game under a number of different 

neighborhood structures (Table 5.6). Under these conditions the offer rate to which a 

population evolved was correlated with the neighborhood structure of that population. In 

particular, ending mean offers increased as the number of neighbors per agent decreased 

(Figure 5.1). Only under a linear population structure did offers approach fair allocations. 

This result is in agreement with Page et al. (2000) who found that agents playing the 

ultimatum game in a linearly structured population evolved approximately fair 

allocations. 

However, though mean offers fell in response to increasing numbers of neighbors, 

offers remained significantly greater than the economic expectation of ~ 0. Only when 

populations lacked social structure (complete network), and agents could interact with 
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any other agent in the population with equal probability, did ending offers approximate 

the Nash equilibrium. In fact, when additional simulation were run on a complete 

network with M as high as 5,000, offers did not deviate from the Nash equilibrium. 

This result indicates that the structure of local interactions may matter more for 

cooperation than the overall population size and may be as important, if not more so, than 

punishment. More importantly it suggests that cooperative outcomes are possible even in 

a large anonymous population provided that local small-size clustering is allowed. This 

conclusion concurs with similar research highlighting the importance of small group or 

neighborhood size (Olson 1965, Page et al. 2000, Ifti et al. 2004). 

 

Response of offer rates as M increases 

By increasing M above 0 agents became endowed with the ability to punish one 

another. Following this introduction of punishment, agents initially evolved offer rates 

equal to those in the absence of punishment. In other words at relatively low values of M, 

punishment had no discernable effect on simulation outcomes. However, as M continued 

to increase populations on each network type, other than a complete network, eventually 

encountered a threshold value of M at which a rapid transition occurred in offer rates. In 

these transitions agents went from offering relatively low percentages to offering 

approximately 99% of their endowments in an attempt to be reproductively successful 

(Figure 5.2). Other than in the case of a linearly structured population discussed above, 

neither offers before nor after these transitions fell into a range that could be considered 

fair allocations. Instead those offers before the transition were below fair offers and those 

after were well above fair offers. 
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Despite several studies in which strong reciprocity is shown to induce 

cooperation, third-party punishment failed to lead to fair allocations in these simulations 

(Figure 5.2). This outcome is contrary to the experimental results of Fehr and 

Fischbacher (2003) in which anonymous human observers routinely paid to punish those 

who offered below 50% in a laboratory ultimatum game. A likely explanation for this 

difference is that cultural factors, which were explicitly excluded in the present 

simulation model, played a significant role in outcome of the Fehr and Fischbacher 

experiment. This concurs with conclusions drawn from ultimatum games played between 

chimpanzees that considerations of fairness are limited to humans (Jensen et al. 2007). 

An important aspect of these transitions in mean ending offers is that it appears to 

flip between only two basins of attraction – those offers which evolve when M = 0 or 

relatively low and those offers of ~ 99% when M is relatively high. A possible 

explanation of this rapid transition is through consideration of agents’ relative fitness. 

Because reproductive success is explicitly a function of payoffs in this model, a 

consideration of relative fitness means a consideration of relative payoffs. For a given 

agent i let pi equal the agent's absolute payoff and let p equal the mean payoff of i’s n 

neighbors. pn is then equal to the sum payoffs of agent i's neighbors. i’s relative payoff 

before punishing another might be represented as 

[5.1]    
pn

pi . 

 

Using previous definitions of the punishment multiplier M and the cost of punishment c, 

the agent’s relative payoff after a single instance of punishment can then be described as 
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[5.2]   
cMpn
cpi

−
−

. 

 

In order for punishment to be evolutionarily beneficial, it is expected that i’s relative 

payoff will be greater after an act of punishment so that 

[5.3]   
pn

p
cMpn
cp ii >

−
−

 

 

which simplifies to 

[5.4]   
Mpn

pi 1
> . 

 

From [5.4] it is clear that as M increases there should be some threshold value at which 

punishment switches from being a detrimental strategy to one that is beneficial. Once this 

condition is met an observer actually benefits, in terms of relative payoff, from punishing 

its neighbor and there is no reason mathematically to limit the amount of punishment. 

Therefore, as M increases the observed transitions in offer rates is not unexpected. 

In general this result suggests that the ratio of costs between punisher and 

punishee can dramatically affect experimental outcomes and that researchers should be 

conscientious about the selection of M in both experiments and simulations. Because of 

cost constraints it is perhaps expected that laboratory experiments with punishment 

would not undertake a broader exploration of the parameter M. However, this is less of a 

concern with computer models and future studies that make use of simulations could 

easily include a sensitivity analysis of punisher/punishee cost ratios. 
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Furthermore, it is unlikely that such a punishment mechanism as that 

implemented in this simulation would be well-received as an institutional solution to 

promote cooperation among humans. Instead, this result supports the notion that 

punishment – taken too far – can be counterproductive (see Molm 1994). 

 

Network type and the transition value of M 

A further result of this experiment is that the approximate value of M at which a 

rapid transition in offers occurred was dependant on the neighborhood type. Transitions 

occurred at higher values of M as the number of neighbors per agent, or average degree, 

increased. Approximate values of these transitions are presented in Table 5.7. 

A possible explanation for this trend is provided by extending the relative fitness 

model described in equation [5.4] to demonstrate not only that a transition is expected, 

but also at what value of M such a transition might occur. Given that the expected payoff 

of any agent drawn randomly from the population = E(p), the expected relative payoff 

[5.1] for any agent with n neighbors can be simplified as 

[5.5]   
npnE

pE 1
)(
)(
= . 

 

Substituting the expected relative payoff of any agent [5.5] into equation [5.4] reveals 

that punishment is expected to become an evolutionarily beneficial strategy when 

[5.6]   nM >  , 
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and that as punishment becomes a preferred strategy it will drive a rapid transition from 

low offers to high offers. 

A cursory inspection of the approximate transition points from low offers to high 

offers under different neighborhood types (Table 5.7) indicates that equation [5.6] likely 

presents a highly oversimplified model. It is more likely that the term pn , the part of 

relative payoff describing exactly to what an agent’s payoff is relative, is much more 

complex than a simple sum of immediate neighbors’ payoffs. A more general 

representation of the relative payoff of agent i would be 

[5.7]   )(; ji
p

p

jj

i ≠
∑θ

 

 

whereθ  is a weight indicating the degree to which the payoff of every other agent in the 

population affects agent i. For immediate neighbors this weight may be relatively high 

and for distant members in the population it may be 0. However, a benefit of this more 

general formulation of relative payoff is that it considers complex interactions such as the 

possibility that distant members of the population may also influence an agent or the 

possibility that immediate neighbors, despite their proximity, have negligible impact. 

 

Future Directions 

The different neighborhood structures used in this experiment (Table 5.3) were 

chosen because they have been used frequently in similar simulations for many decades. 

However, it is often overlooked that these symmetric and convenient neighborhood types 

are but a tiny subset of the vast number of possible ways that agents may be connected in 
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a population. It is therefore prudent to embed research such as this in social network 

theory, with its many tools for analyzing a vast number of possible structures. This paper 

has merely explored possible relationships between the number of neighbors per agent 

and mean ending offers. However it is probable that a better explanation for observed 

correlations is much more complex and that results are driven by subtler elements of the 

network structure. 

A prime candidate for extending this work into social network theory is a better 

determination of what constitutes P in the equation for relative fitness [5.1], or 

alternatively how each agent in a population is weighted in [5.7]. With a more accurate 

description of what exactly it is that an agent’s fitness is relative to, the current model can 

better explain and predict the effects of altruistic punishment on fair allocations and 

cooperation. 

This study also suggests questions for experimentalists. Though costs may be an 

inhibitive factor, it would be worthwhile to study the effects of systematically varying the 

punishment multiplier M in a controlled laboratory setting. A replication of this 

simulation with live subjects may isolate cultural or other factors that allow third-party 

punishment to induce fair allocations and may better guide policy makers in designing 

institutional solutions to social dilemmas. 

In addition, laboratory ultimatum games may be designed to further explore the 

role of neighborhood structure on offer rates. Like the current simulation, this may be 

done without including 3rd party punishment. Participants may remain anonymous with 

the experimenter controlling the array of possible interactions between participants. 

Again, this would compliment the current study by helping to separate the effect that 
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culture has on offer rates from effects due strictly to the way in which the population is 

structured. 
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Table 5.1 

Some commonly-cited experiments using altruistic punishment and their values of the 

punishment multiplier M 

Laboratory experiments  M  Simulations and models  M   

Dreber et al. (2008)  4.0  Brandt et al. (2006)  1.2 

Herrmann et al. (2008) 3.0  Fowler (2005)   2.0, 3.0 

Gürerk et al. (2006)  3.0  Gardner and West (2004) 30.0 

Fehr and Fischbacher (2004) 3.0  Jaffe (2004)   1.0 

Shinada et al. (2004)  3.0  Brandt et al. (2003)  1.5 

Andreoni et al. (2003)  5.0  Boyd et al. (2003)  4.0 

Fehr and Fischbacher (2003) 3.0   

Masclet et al. (2003)  function  

Fehr and Gächter (2002) 3.0   

Fehr and Gächter (2000) function  

Ostrom et al. (1992)  2.0, 4.0  
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Table 5.2 

Strategy components used by agents in the ultimatum game 

Component Description 

   x  amount offered to a responder 

   α  amount below which an offer is rejected 

   t  amount below which to punish an observed offer 

   c  amount to spend on punishment 

 

Note: x, α, t, c ∈ [0, 1].
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Table 5.3 

Network types used in the ultimatum game 

Network type  Description of neighbors   Number of neighbors 

Linear   left, right     2 

von Neumann  left, right ,up, down     4 

Hexagonal  up, down, diagonals    6 

Moore   left, right, up, down, diagonals  8 

Complete  every other agent    N – 1 
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Table 5.4 

Payoff matrix of the ultimatum game with 3rd party punishment 

    xi ≥ αj     xi < αj 

   xi ≥ tk  xi < tk   xi ≥ tk  xi < tk  

Proposer i  1 - xi  1 - xi - ckM  0  - ckM 

Responder j  xi  0   0  0 

Observer k  0  - ck   0  - ck 

 

Note: see Table 5.3 for an explanation of variables used in the payoff functions. 
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Table 5.5 

Simulation parameters used in the ultimatum game 

Parameter       Values     

The population size (N)     625a 

The number of generations a single simulation run  30,000 

The number of runs       100 

The number of games initiated by each agent  

       in one generation      3 

The range for trait values (x, α, t, c)    [0,1] 

The probability of trait mutation    0.1 

The (mean, standard deviation) of Gaussian noise  

      added to a mutated trait     (0, 0.01) 

The network type      see Table 5.2 

The punishment multiplier (M) 0.0 to 6.0b 

 

a When using a hexagonal lattice, N = 676. 

b In increments of 0.5. 
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Table 5.6 

Response of offers to network type in the ultimatum game without 3rd party punishment 

Network type  Number of neighbors n Mean ending offera Std. dev. 

Linear    2    0.395  0.008 

von Neumann   4    0.292  0.018 

Hexagonal   6    0.253  0.024 

Moore    8    0.160  0.028 

Complete   N – 1    0.008  0.001 

 

a Though customary to present ultimatum game offers as percentages of the initial 

endowments, absolute offer rates are presented here to be consistent with results of the 

continuous prisoners dilemma presented in Chapters 3, 4, and 6. 
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Table 5.7 

Approximate value of M at which populations transitioned from low to high offers in the 

ultimatum game. 

Network type  Number of neighbors  Approx. transition value of M a  

Linear    2     1.6 

von Neumann   4     2.1 

Hexagonal   6     2.2 

Moore    8     3.2 

Complete   N – 1     N/Ab 

 

a See Appendix A for method of approximating transition values. 

b A transition never occurred on the complete graph with increasing M. This was true 

even at values as high as M = 5,000. 



105 
 

  

Linear von Neumann Hexagonal Moore Complete

M
ea

n 
En

di
ng

 O
ff

er

0.00

0.25

0.50

2

4
6

8

N - 1

 

 

Figure 5.1. Response to regular networks of offers in an ultimatum game without 3rd 

party punishment. Bars represent +1 standard deviation. Numbers above bars indicate the 

number of neighbors each agent has in that network type. 
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Figure 5.2. Response of ultimatum game offers to increasing M under regular network. 

All structures other that a complete network experience a rapid transition to offers of ~1.0 

with increasing M. For networks exhibiting this transition from low to high offers, 

approximate transition values are listed in Table 5.7.



CHAPTER 6 
 

 

PUNISHMENT, RATIONAL EXPECTATIONS, AND REGARD FOR OTHERS10 

Previous chapters of this dissertation have synthesized original empirical data 

with a survey of relevant research by others. In this chapter I reanalyze those results, 

particularly from Chapter 3, to answer a separate set of questions and formulate a 

hypothesis to explain observed behavior, primarily in humans. 

 

Introduction 

Experimental economics has consistently revealed human behavior at odds with 

theoretically derived expectations of behavior by rational agents. This is especially true in 

laboratory games with costly punishment where humans routinely pay to punish others 

for selfish behavior even though the punisher receives no material benefit in return (Fehr 

and Gächter 2002). This phenomenon occurs even when interactions are anonymous and 

the punisher will never interact with the punishee again. However, costly punishment 

may not be inconsistent with Darwinian notions of relative fitness. This chapter presents 

an attempt to reconcile standard economic and evolutionary expectations of behavior and 

to evaluate the idea that when individuals make choices they do so with regard to 

behavior and status of others.  

Agent-based modelling is used to simulate networked populations whose 

members play the prisoners dilemma while having the ability to altruistically punish one 

another. Results show that behavior evolving in structured populations does not conform 

to economic expectations of evolution driven by absolute utility maximization. Instead 

results better match behavior expected from a Darwinian perspective in which evolution 

                                                 
10 This chapter is based on work presented in (Shutters 2009). 
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is driven by relative fitness maximization. Results further suggest subtle effects of 

network structure must be considered in theories addressing individual economic 

behavior. 

 

Interdependent Preferences and Utility 

Chapter 2 presented a review of the assumptions of standard rational choice 

theory, which stipulates that an individual’s utility is a function of his consumption and 

only his consumption u(c). Few scientists now believe in a strict interpretation of rational 

choice theory (Gould 1993) and a wide body of experimental evidence indicates that an 

individual’s preferences change based on the consumption behavior of others (Pollak 

1976, McAdams 1992, Oswald 1997, Solnick and Hemenway 1998, Easterlin 2001, 

Alpizar et al. 2005). This phenomenon, known as interdependent preferences (or other-

regarding preferences), is addressed by theories asserting that an individual’s utility 

function is based, at least in part, on the consumption behavior of others. These theories 

are especially concerned with explanations beyond the well-understood case of regard for 

kin, which is an extension of biological theories of kin selection. 

The idea that individual choices are based in part on the behavior of others may 

seem obvious in our modern world of constant product promotion and may seem 

especially intuitive with regard to social creatures. But economists have been slow to 

incorporate the idea into theory. Though the concept of interdependent preferences was 

widely publicized by Veblen in 1899, it was for many decades largely ignored by 

mainstream economics. In 1949 Duesenberry complained that even though the 

phenomenon of interdependent preferences was empirically well-established, the field of 



109 
 

  

economics had suffered a glaring failure by not incorporating the idea into new theories 

(Duesenberry 1949). This aversion, he believed, was due largely to analytical 

intractability of formal models attempting to incorporate interdependent preferences. 

Even simple two-person simulation models of interdependent preferences lead to chaotic 

behavior and inhibit prediction of aggregate demand (Rauscher 1992). And so still today, 

many economists take as their first approximation of rational behavior the assumption 

that an individual’s utility is a function solely of the individual’s absolute consumption 

(Hopkins and Kornienko 2004). 

Duesenberry (1949) nevertheless attempted to formalize utility as a function of 

individual income (consumption potential) relative to income of others in society. 

Though there are virtually limitless ways in which preferences may be interlinked,  

Duesenberry’s particular utility function may be represented in simple terms as  

[6.1]  ( )cccuu ,=   

 

where c  is the average consumption in a society and utility u is increasing in both c and 

cc (Pollak 1976, Harbaugh 1996, Bastani 2007), though there is currently much debate 

regarding the relative importance of each argument (Alpizar et al. 2005). In any case, this 

formulation implies that any consumption by others in society will decrease the utility of 

individuals not partaking in the same consumption (Frank 2005b, Luttmer 2005). 
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Explanations of interdependent preferences 

Despite difficulty formalizing interdependent preference models, several 

hypotheses exist to explain observations of the phenomenon. Following are some 

commonly cited explanations of interdependent preferences.  

 

Conspicuous consumption – The concept of conspicuous consumption asserts that 

humans are concerned with their status in a social hierarchy and they consume certain 

goods to signal others in society that they are part of a specific social group (Knell 1999, 

Hopkins and Kornienko 2004, Johansson-Stenman and Martinsson 2006). Selecting 

which goods will send the intended signal depends on an assessment of the goods that 

others in the target status group are consuming. Thus, this explanation requires that a 

consumer’s utility is a function of the visible consumption of others. Conspicuous 

consumption is normally limited to a class of goods known as “positional goods” (Knell 

1999, Alpizar et al. 2005), which are those goods capable of signaling status.  

 

The demonstration effect – In contrast to conspicuous consumption, the demonstration 

effect is not explicitly concerned with notions of status, nor does it require the 

consumption of a particular class of goods. Instead it argues that when a consumer is 

exposed to superior goods he is made aware that his own consumption choices are 

inferior (Duesenberry 1949, McCormick 1983). For instance, after viewing a program on 

a neighbor’s high-definition television, a consumer may realize that his own analog 

television delivers an inferior signal. This realization that one is choosing inferior goods 

leads to a decrease in utility that can only be restored through a shift in consumption to 
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the superior good. In this manner, consumption by others in society affects a person’s 

utility without any necessary changes in the person’s individual consumption. 

 

Bounded rationality and heuristics – A similar idea to the demonstration effect is a 

byproduct of the concept of bounded rationality. Theories of bounded rationality assert 

that it is doubtful living entities have the unlimited cognitive capability to rank all choices 

they face by preference and to perform the utility maximization calculations required of 

standard rational agents. Instead, living agents weigh the cost of assessing available 

choices against the risk of making an inferior choice (Selten 2001). At a point when 

cognitive costs becomes too great, agents with bounded rationality dispense with further 

calculation and make choices based on incomplete information (Frank 2005a, Camerer 

and Fehr 2006). One method of increasing the likelihood of positive outcomes when 

making decisions with limited information is through the use of simple heuristics. 

Common heuristics include not only one’s use of previously successful strategies, but 

also imitation of strategies that have been observed to result favorably for others (Boyd 

and Richerson 1985, Todd 2001, Richerson and Boyd 2005). In the latter case individual 

preferences are again influenced by the choices of others and the results of their choices.  

 

Inequity aversion – the previous three explanations of interdependent preferences are 

simply redefined representations of self-interest. They all assume that in [6.1] u is 

increasing in cc . However, this is only one possible form of an interdependent utility 

function. There is ample evidence that in some circumstances humans also display a form 

of other-regarding preferences in which u decreases as cc deviates further from 1. In 
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other words humans exhibit an aversion to inequity or unfair consumption (Nowak et al. 

2000, Fehr and Fischbacher 2003, Abbink et al. 2004, Fowler et al. 2005). Though 

controversial, there is evidence of the phenomenon in non-human primates as well 

(Brosnan and de Waal 2003, Vogel 2004). 

 

These explanations have in common that an individual’s utility depends at least in 

part on consumption choices of others in a society. While theories in this brief review 

attempt to explain apparent empirical instances of interdependent preferences, 

explanations should also be framed in a meaningful evolutionary context (Veblen 1898, 

Cordes 2007, Poirot 2007). To address this concern, scientists must explain how a 

mechanism of relative comparisons evolved in the first place. For this purpose we turn to 

evolutionary biology and a discussion of fitness. 

 

Biological fitness and relativity 

Organic evolution is driven by a number of processes, the most important of 

which arguably is natural selection. Natural selection acts on a quality of organic entities 

known as fitness – a composite of survivability, fecundity, mating ability, and other 

factors that determine the extent to which the entities’ genes will be passed to future 

generations (Hedrick 2005). However, fitness drives selection only as it relates to the 

fitness of others in the same environment. In other words relative fitness, the differential 

ability to populate future generations, is the underlying quality upon which natural 

selection acts. Yet selection based on relative fitness is simply another way of stating that 
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future representation depends on absolute fitness among a local neighborhood of 

competitors – precisely the situation facing agents embedded in a social network. 

Consider a simplistic thought experiment in which the ultimatum game is played 

between the only two members of a society. If each is concerned only with maximizing 

consumption via payoffs then the expectation is that any offer greater than 0 will be 

accepted by the responding individual. Knowing this, the offering agent will offer the 

smallest positive fraction possible (Osborne 2004). But what if the agents are playing for 

a finite resource directly related to fecundity? In other words, what if the payoffs are 

measured in terms of fitness in an environment with finite carrying capacity? As selection 

favors those with higher relative fitness each agent will seek to win more fitness than the 

other leading to two possible equilibria – a 50/50 split or a refused offer resulting in 0 

fitness for both players. Clearly the expectations are different when the prize is fitness 

instead of absolute wealth. Thus there is an inherent tendency towards outperforming 

others in game and conflict situations – strategies are interdependent. 

 

Utility, payoffs and fitness: confusion in behavioral experiments 

To an economist, behavior is driven by a desire of rational agents to maximize 

utility. To an evolutionary biologist, behavior is driven by natural selection of strategies 

that maximize relative fitness. However, in behavioral experiments, both economists and 

biologists customarily use payoffs as a surrogate for the variable they believe their agents 

are attempting to maximize. Yet if payoffs are truly equivalent to both utility and fitness, 

utility and fitness should also be equivalent to each other and behavior that maximizes 

utility should be the same behavior that maximizes relative fitness. But is this conclusion 
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supported by empirical evidence? At least in modern humans, the answer is no. Several 

studies have revealed a significant inverse relationship between a society’s per capita 

income and birth rate (Mulder 1998). In terms of biological fitness, maximization of 

payoffs, measured as income, would appear to be maladaptive in today’s industrial world. 

At the same time, laboratory experiments have demonstrated that humans make utility 

maximizing decisions that do not necessarily maximize monetary payoffs (Minas et al. 

1960, Henrich et al. 2001). It would appear that financial payoffs are an inadequate 

surrogate both for fitness and for utility. 

In chapters 3-5 reproductive rate is directly and explicitly tied to strategic game 

behavior, demonstrating a possible genetic basis for cooperative behavior. Though some 

behaviors are thought to have evolved as an expression of genetic coding, at some point 

in evolutionary history, humans attained the ability to learn and imitate behaviors of 

others. At that point, behavioral strategies became, at least to some degree, divorced from 

genetic programming with the result that much social behavior was free to follow its own 

evolutionary trajectory via cultural selection (Boyd and Richerson 1985). As shown by 

evidence above, this trajectory may become biologically maladaptive. This is primarily 

true of humans where cultural evolution may favor strategies that maximize utility or 

income instead of biological fitness (Mulder 1998). In the context of simulations used in 

this study, agents are abstract to the degree that they could be considered not only 

biological agents but also cultural strategies that propagate via non-genetic means11. 

 
                                                 
11 Though not a perfect analogy, future research may benefit from modelling the propagation of human 
decision strategies as a coevolutionry host-parasite system. Strategies are dependent on human hosts and 
may exhibit periodic episodes of increased virulence (e.g. overconsumption) that have detrimental effects 
on host populations. 
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Relativity and Localized Interactions in Complex Networks 

Regarding interdependent preferences it is important to note that when humans 

assess their status they do not use an entire society as a reference frame. Instead, concern 

with status is local - humans address their standing only among others of similar wealth 

and consumption comparisons are made only to a reference subset of the population 

(Harbaugh 1996). In other words, for purposes of utility calculations, humans are 

embedded in a social network where the local neighborhood consists of others of similar 

status. Depicting such comparison patterns is well-suited to the methodology of social 

network modelling. 

Here we return to results from Chapters 3-5, in which social structure offers a 

plausible evolutionary explanation for interdependent preferences. Results presented in 

these chapters demonstrate that simulated agents rewarded with fecundity for the highest 

payoffs nonetheless evolve behavior that is inconsistent with maximizing payoffs in one-

shot games. This behavior evolved only in societies structured in social networks. The 

limitation of interactions to a local neighborhood effectively creates the basis for an 

emphasis on relative comparisons. Regardless of the explanation one accepts as a 

proximate mechanism for the existence of relative considerations and interdependent 

preferences, behavior evolved in the context of social networks may provide an ultimate 

mechanism. 

 

Altruistic Punishment and Rational Expectations 

The mechanism of altruistic punishment is a leading candidate for explaining the 

evolution of cooperation. Altruistic punishment occurs when an individual incurs a cost 
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to punish another but receives no material benefit in return (Boyd et al. 2003, Bowles and 

Gintis 2004, Fowler et al. 2005). It has been shown to induce cooperative behavior in 

numerous studies (Andreoni et al. 2003, Fehr and Fischbacher 2004, Gürerk et al. 2006). 

However, controversy regarding altruistic punishment lingers because, while it may 

explain many instances of cooperative behavior, the mechanism itself is seemingly 

irrational. Why should an individual expend fitness or wealth to punish someone with 

whom they will never again interact and when they receive no benefit from doing so? Yet 

despite the economic prediction that a rational agent will not pay to punish others, 

humans repeatedly do so in laboratory experiments (Ostrom et al. 1992, Fehr and Gächter 

2000, 2002). 

This economic expectation is based on the widely held premise that agents with 

independent preferences act to maximize their absolute payoffs. Previously a framework 

was presented for expectations when the evolution of punishment behavior is driven by 

relative payoffs instead of absolute payoffs (Shutters 2008). In this study, computer 

simulations were conducted to test this framework and to determine whether agents 

evolved behavior reflective of absolute payoff maximization or relative payoff 

maximization. 

 

The Simulation12 

In a series of agent-based computer simulations, social networks comprised of 

regular lattices were populated with agents that played the continuous prisoners dilemma 

                                                 
12 The simulation model described here is also described similarly in Chapter 3 but repeated here so that 
dissertation chapters are self-contained for potential publications.  
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against one another. After each game, a 3rd party observer had the opportunity to pay to 

punish agents in the game if a player’s contribution was deemed too low. Each 

component of an agent’s strategy – how much to contribute in a game, when to punish, 

and how much to spend on punishment – were all independently evolving attributes of an 

agent. 

 

The continuous prisoners dilemma 

The prisoners dilemma is a commonly used framework for studying social 

dilemmas and consists of a two-player game with payoffs structured so that social goals 

and individual goals are at odds. Total social welfare is maximized when both players 

cooperate but a player’s individual payoff is always maximized by cheating.  

In the classic prisoners dilemma players are limited to two choices – cooperate or defect. 

In this study agents select a level of cooperation x at any point on a standardized 

continuum between full defection (x = 0) and full cooperation (x = 1). This is known as 

the continuous prisoners dilemma (CPD) and presents an arguably more realistic picture 

of the complexity of true social dilemmas (Killingback and Doebeli 2002). In a game 

between agents i and j, i’s payoff p is 

 [6.2]   pi = 1 – xi + r(xi + xj)/2; x ∈ [0,1] ,  r ∈ (1,2) 

 

where r represents the synergistic effect of cooperating. In this chapter r = 1.5 in all 

cases. Total social welfare pi + pj is maximized when xi = xj = 1, yet i’s payoff is 

maximized when xi = 0 regardless of the contribution made by j. 
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Introduction of altruistic punishment 

The introduction of punishment to the CPD adds a 3rd party to the game – the 

observer. The decision of whether to punish or not is controlled by an attribute of the 

observer, the observer’s punishment threshold, which is compared to a player’s 

contribution in an observed game. If the player’s contribution falls below the observer’s 

threshold, the observer punishes the player. The amount the observer spends to punish c 

is also an agent attribute but is only invoked when the agent acts as a 3rd party observer of 

a neighboring game. 

Letting c = the cost to the observer to punish, the amount deducted from the 

punished player is cM, where M is the punishment multiplier, a simulation parameter 

controlling the relative strength of punishment. 

In agreement with many recent experiments, the introduction of punishment in 

structured populations led to cooperative behavior. However, the focus of this study is 

not on the cooperative outcomes of the prisoners dilemma but on the mechanism of 

altruistic punishment that induces those outcomes. 

 

Social structure 

Testing predictions of the relative payoff model required simulations in which 

agents had different numbers of neighbors. For this purpose social networks were used to 

structure populations so that interactions, both game play and observation, were restricted 

to a fixed number of immediate neighbors. To control for confounding effects due to 

variance in the number of neighbors among agents, networks were limited to regular 
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lattice structures (Table 6.1) so that variance in number of neighbors = 0 in all 

simulations.  

 In addition to regular lattices, simulations were run on a complete network. In a 

complete network every agent is linked to every other agent and, like a regular lattice, has 

no variance in number of neighbors per agent. A complete network represents the social 

network version of a homogeneous well-mixed system. 

 

The simulation algorithm 

A single simulation initiates with the creation of the appropriate lattice network. 

At each of 400 nodes is placed an agent i consisting of strategy (xi, ti, ci) where xi = the 

contribution i makes to the public good when playing against j, ti = the contribution limit 

below which i will punish another agent in a game being observed by i, and ci = the cost 

that i incurs to punish the observed agent when the observed agent’s contribution is too 

low. In other words ti determines if agent i will inflict punishment and ci determines how 

much punishment agent i will inflict. Each of the three strategy components holds a value 

on the continuous interval [0,1] and is generated randomly from a uniform distribution at 

the beginning of a simulation. To control for other factors that might contribute to the 

maintenance of cooperation, such as interaction history or reputation, agents have no 

recognition of or memory of other agents. 

The simulation proceeds for 10,000 generations, each consisting of a game play 

routine, including observation & punishment, and a reproduction routine. During a single 

CPD game an agent i initiates a game by randomly selecting j from its neighborhood. 

Both agents are then endowed with one arbitrary unit from which they contribute xi and xj 
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respectively to a public good. Players’ choices are made simultaneously without 

knowledge of the others’ contribution. i then randomly selects a second neighbor k, 

which is tasked with observing i’s contribution. If k judges the contribution to be too low, 

k pays to punish i. After each game, running payoffs for i, j, and k are calculated as 

shown in Table 6.2. Each agent initiates 3 games during a single generation and all games 

in a generation are played simultaneously. 

Following game play the reproduction routine runs in which each agent i 

randomly selects a neighbor j with which to compare payoffs for the generation. If pi > pj, 

i’s strategy remains at i’s node in the next generation. However, if pi < pj, j’s strategy is 

copied onto i’s node for the next generation. In the event that pi = pj, a coin toss 

determines which strategy prevails. As strategies are copied to the next generation each 

strategy component of every agent is subject to mutation with a probability m = 0.10. If a 

component is selected for mutation, Gaussian noise is added to the component with mean 

= 0 and std. dev. = 0.01. Should mutation drive a component’s value outside [0,1], the 

value is adjusted to the closer boundary value. 

 

The Model of Relative Payoff Maximization 

Because evolution is driven by relative fitness as opposed to absolute fitness, it is 

important to consider the possibility that evolution of economic behavior is driven by 

relative payoffs. In other words, letting p = the payoff of agent i and P = the sum payoffs 

of the n neighbors of i, we should compare evolved behavior when i’s survival is driven 

by maximization of p (absolute payoff) versus maximization of p/P (relative payoff). At 
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the risk of oversimplification, we can think of these two approaches as the standard 

economic and evolutionary economic viewpoints respectively. 

 Letting time step 0 be a point in time prior to an act of punishment and time step 1 

be a point after punishment, the following describe the effects of a single punishment act: 

[6.3a]   p1 = p0 – c  

[6.3b]   P1 = P0 – cM.  

 

For an act of punishment to be evolutionarily beneficial it should lead to an increase in i’s 

relative payoff such that the following is true: 

[6.4]    
0

0
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When simplified and restated (see Chapter 5), this evolutionary economic model predicts 

that for an agent with n neighbors, punishment becomes an evolutionarily beneficial 

strategy when  

[6.5]   M > n 

 

(compare to Ohtsuki et al. 2006). 

 In contrast, the standard economic expectation of behavior evolved through 

maximization of p is that i will never punish. As [6.3a] shows, p1 < p0 for any positive 

amount of punishment. Punishment is never a beneficial strategy when absolute payoff 

motivates strategic behavior. 
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 To compare these predictions, the simulation described above was run while 

systematically varying the punishment parameter M, and were conducted on the lattices 

listed in Table 6.1 to vary the number of neighbors n. 100 replications of the simulation 

were run for each value of M starting at M = 0.0 and subsequently at increments of 0.5 

until M = 6.0. 

 

Experimental Results and Discussion 

Results were mixed but generally favor the Darwinian perspective that the 

evolution of agent behavior is driven by maximizing relative payoffs. 

 

Occurrence of punishment 

Experimental results are presented in Table 6.3. As M increased, simulations run 

on all lattice networks eventually reached a value of M at which the population 

underwent a rapid transition from defectors to cooperators. Results from this dissertation 

previously demonstrated that punishment is the mechanism driving this flip to 

cooperative behavior and that the transition value of M indicates the point at which 

punishment becomes a beneficial strategy (Chapter 3). Only in simulations run on a 

complete network did cooperative behavior never evolve. This was true for complete 

networks even at M = 5,000. 

 This result suggests that the simple standard economic premise that agents 

maximize absolute payoff is not valid for populations embedded in discrete social 

structures (see also Granovetter 1985). Only in a complete network, which is analogous 

to a well-mixed, homogeneous system, did simulation results match predictions of the 
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standard model. Instead results support an evolutionary model and the Darwinian notion 

that when sufficiently strong, punishment may become evolutionarily beneficial and, in 

turn, induce cooperative behavior in a population. 

 This result is especially significant given that human populations are not 

homogeneous and well-mixed, but are structured by complex interaction networks (Watts 

and Strogatz 1998). 

 

Punishment and number of neighbors 

On lattices where punishment behavior did evolve, the biological expectation was 

that punishment would proliferate when M > n [6.5], where n is the number of neighbors 

an agent has. Table 6.3 shows that for each lattice type, the value of M at which 

punishment actually became prevalent was lower than predicted by this model. 

This result indicates that subtle effects of the network structure are likely missing 

from the simplistic prediction of [6.5]. If researchers and policy makers are to better 

predict behavior of rational agents in structured populations, they must not only re-

evaluate their assumptions of rationality, they must also begin to understand and quantify 

these network effects. 

Among plausible reasons that punishment emerges at a lower value of M than 

expected is that a cheater in agent i’s neighborhood is also a member of other 

neighborhoods and may be incurring punishment from agents other than i. In addition, 

neighbors of i may be lowering their payoffs by engaging in their own altruistic 

punishment. Both of these events decrease P1 in equation [6.4], leading to a lower 

transition value of M. 
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Summary 

Many problems facing policy makers today require tools that facilitate the 

prediction of human behavior. Since models of human behavior are typically premised on 

concepts of economic rationality, it is critical to evaluate the standard assumptions of 

rationality. Results of this study suggest that relaxing standard assumptions to include 

more a evolutionary perspective may lead to higher predictive accuracy. In particular, 

they suggest the roles of relative and absolute payoff maximization should be reviewed 

when making assumptions about the preferences of rational agents. 

Over 100 years ago economist Thorstein Veblen bluntly asked, “Why is 

economics not an evolutionary science?” (Veblen 1898). The intent of this chapter is to 

continue Veblen’s quest by contributing to an ongoing dialog between evolutionary 

biologists and behavioral economists. The ultimate goal of such a dialog is, by modifying 

assumptions of rationality to incorporate Darwinian theory, to improve both 

understanding and prediction of social behavior.
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Table 6.1 

Lattice networks used for the continuous prisoners dilemma in this chapter 

Network Type  Description of Neighbors  Number of Neighbors 

Ring   Left, right    2 

Von Neumann  Left, right, up, down   4 

Hexagonal  Left, right, diagonals   6 

Moore   Left, right, up, down, diagonals 8 

Complete  All other agents   N – 1 
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Table 6.2 

Payoffs p in the continuous prisoners dilemma between i and j with possible punishment 

of i by k  

   xi ≥ tk    xi < tk 

k punishes i?  no    yes 

pi   1 – xi + r(xi + xj)/2  1 – xi + r(xi + xj)/2 – ckM 

pj   1 – xj + r(xi + xj)/2  1 – xj + r(xi + xj)/2 

pk   0    – ck 

 

Note: see Tables 3.1 and 3.3 for description of variables. 
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Table 6.3 

Simulation results versus both standard economic and evolutionary economic predictions 

Network Type         Value of M at which punishment becomes beneficial 

   Standard   Evolutionary   Simulation 

   Prediction   Prediction  Result 

Ring   Never   2   1.5 

Von Neumann  Never   4   1.8 

Hexagonal  Never   6   2.2 

Moore   Never   8   2.8 

Complete  Never   N – 1   Never 

 

Note: N = 400 in all cases



CHAPTER 7 
 

 

INTERDEPENDENT PREFERENCES AND THE EFFICACY OF  

INTERNATIONAL ENVIRONMENTAL AGREEMENTS 

We now return to real-world applications described in Chapter 1. Regardless of 

one’s definition of sustainability, there is customarily a requirement of those acting 

sustainably to subordinate their self-interest to that of some collective goal. This 

requirement often takes the form of restraint in the exploitation of some natural resource. 

In this sense, sustainable management of natural resources resembles a public good and 

its provisioning at a global level can be represented as an international public goods 

game. However, at this hierarchical level of society, where interactions take place 

between nations, there is no central authority that might implement a “command-and-

control” policy to enforce sustainable practices (Sandler 1992, Dietz et al. 2003). Without 

a central enforcer, cooperative outcomes depend on the complex interactions of multiple, 

heterogeneous nations that play out this international game through the crafting of 

agreements. Of particular interest to this dissertation are the policy instruments known as 

international environmental agreements (IEAs). 

Nations attempting to implement IEAs face the same dilemmas and incentives to 

cheat as participants in experimental economic games (Barrett 2005), particularly when 

agreements are multilateral. Laboratory experiments using public-goods games therefore 

have a clear application to the decision-making process in which nations engage when 

crafting IEAs. These interactions might be modelled as a cooperative game, in which the 

participants can form binding agreements and coalitions prior to executing their strategies 

(Binmore 1992). However, cooperative game theory assumes the existence of an external 

enforcement mechanism that allows for binding pre-choice agreements and, as previously 
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stated, national actors at the global scale have no such exogenous enforcement. 

Therefore, international environmental dilemmas are more properly modelled as non-

cooperative games (Wagner 2001, Barrett 2005) in which binding agreements prior to 

execution of strategies are not permissible (see Chander and Tulkens 2006 for a critique 

of this assertion). 

 

A Model of International Conflict: The Standard Prisoners Dilemma 

In contrast to the continuous prisoners dilemma (CPD) used in chapters 3 and 4, 

let us consider now the simpler, standard version of the prisoners dilemma (PD) in which 

two players each have but two options – cooperate or defect. Figure 7.1a displays the 

customary shorthand for each of the four possible combinations of strategies by players A 

and B: cooperate-cooperate = R (reciprocity), defect-cooperate = T (temptation), 

cooperate-defect = S (sucker’s bet), and defect-defect = P (punishment). The standard PD 

is then defined as having the following two conditions: 

[7.1a]   T > R > P > S 

[7.1b]   2R > (T+S) 

 

Typical payoffs of this simple game are often represented in a 2x2 payoff matrix 

as shown in Figure 7.1b. These variables are defined from Player A’s viewpoint so that in 

the example PD of Figure 7.1(c) R = 5, T = 8, P = 1, and S = 0. Player B faces 

symmetrical outcomes. A dilemma arises because while T leads to the highest individual 

payoff for Player A, R leads to the highest joint payoffs and is therefore socially optimal. 
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As self-interested players attempt to effect outcome T, their joint defection instead results 

in the Nash equilibrium P, the least socially desirable outcome. 

The standard PD sufficiently represents the most important aspects of 

international conflict and is often used as a framework to analyze global dilemmas 

(Sandler 1999). When modeling international conflict through the PD, resolution 

remedies typically call for the use of diplomatic tools to alter the payoffs such that 

socially optimal R is the new Nash equilibrium (Barrett 1999), or as Wagner (2001, p. 

385) says, “an IEA must change the rules of the game”. This may be done through a 

number of mechanisms used in IEAs such as side payments (Sandler 1999, Wagner 

2001), trade and other forms of issue linkage (Wagner 2001, Barrett 2003b, Barrett and 

Stavins 2003, Ward 2006), and cost sharing (Boyle 1991, Sandler 2004). It may also 

include negative incentives such as trade restrictions and punitive financial policies 

(Barrett and Stavins 2003). A detailed discussion of each of these methods is not as 

important as the fact that their common intent is to restructure payoffs so that  

[7.2]   R > T > P > S. 

 

Note the ordinality of R and T is reversed compared to [7.1]. This removes the dilemma 

so that the cooperative strategy leads to both the social and an individual optimum13. 

 

 

 
                                                 
13 In this particular case the game is converted to the Stag Hunt game which has two Nash equilibria, one of 
which is the socially optimal outcome. The Stag Hunt addresses another interesting set of questions, though 
these relate primarily to risk aversion instead of social dilemmas. See (Skyrms 2001, 2004) for further 
discussion on the Stag Hunt game. 
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Distinguishing Between Payoffs and Utility 

Recall here that standard rational choice theory predicts a rational agent will make 

choices that maximize utility – not payoffs. This is a subtle but critical distinction and it 

implies that an unstated utility matrix is the true representation of predicted outcomes. 

Implicit in diplomatic strategies that restructure a dilemma’s payoffs is an assumption 

that utility of outcomes will conform to the same ordinality as payoffs of outcomes so 

that presentation of both a payoff matrix and a utility matrix is redundant. In other words, 

it is generally assumed that reordering payoffs automatically reorders utilities so that 

when a game having T > R and u(T) > u(R) is restructured such that R > T, a result will be 

u(R) > u(T). This is valid when utility is a simple linear transformation of payoffs. 

Figure 7.1c shows how PD payoffs might be restructured to achieve this desired 

outcome. In this case the PD in Figure 7.1b has been restructured so that social and 

individual goals are aligned. If nations achieve satisfaction only from maximizing their 

own payoffs so that uA = u(pA), the dilemma is solved and we would expect both nations 

in this example to cooperate.  

But what if nations are motivated by their payoffs relative to those of their 

opponents so that uA = u(pA, pB)? One possible form of such an interdependent utility 

function is structured so that satisfaction is derived solely from relative payoffs 

[7.3]   )/( AA ppuu =  

 

where p is the mean payoff of all parties to the dilemma. In the case of a 2-player 

prisoners dilemma this becomes 



132 
 

  

[7.4]   )]/(2[ BAAA pppuu += , 

 

creating a matrix of utilities that is not a simple linear transformation of the payoff 

matrix. Using [7.4] to transform the payoff matrix in Figure 7.1c gives the utility matrix 

in Figure 7.1d. Despite restructuring the order of payoffs the ordinal utilities remain 

unchanged, u(T) > u(R) > u(P) > u(S). Expected behavior is unaffected by techniques of 

statecraft in this case and the dilemma persists. One oversimplification of [7.4] is that it 

does not take into account the starting position of each player. It is assumed in this and 

similar models that players start from symmetric positions. This would indeed be a rare 

occurrence in real world situations (Hadjimichalis and Hudson 2006). It is intuitive that 

nations enter a dilemma with existing relative positions in terms of previously 

accumulated payoffs – relative not only to other nations engaged in the dilemma but to 

countries not affected by the current game. Sandler (1992) asserts that such asymmetry is 

related to further failure of collective action. 

The examples above represent the two extremes of utility with regard to 

interdependent preferences: one in which only absolute payoffs matter and the other in 

which only relative payoffs matter. Let us now explore the area between these extremes 

beginning with the general interdependent utility function [6.1] and assuming that payoffs 

p and consumption c are interchangeable (Chapter 2). The general utility function can 

now be written 

[7.5]   ( ) )()1(, ppppppu ωω +−=  
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where ω is a weight factor determining the relative importance of absolute and relative 

payoffs so that utility is a function only of absolute payoff when ω = 0 and only of 

relative payoff when ω = 1. Although quite rudimentary this model allows us to examine, 

under a range of intermediate values of ,ω the expected behavior of participants in a 

dilemma both before and after payoffs have been altered through IEAs. 

Of particular importance are outcomes R and T in Figures 7.1b and 7.1c and the 

ordinal rank of their utilities using [7.5]. To compare the utility of each of these game 

outcomes let 

[7.6]   u∆ = u(R) – u(T) . 

 

The cooperative strategy C is expected when uΔ > 0 while defection D is expected when 

uΔ < 0.  Substituting payoffs of outcomes R and T into [7.5], [7.6] can be expanded to 

   u∆ ))]/(2()1[(])1[( STTTR ++−−+−= ωωωω . 

 

When rearranged and simplified this gives 

[7.7]   u∆ )])(/[())(1( TSTSTR −++−−= ωω  

 

where (R – T) is the component influenced by absolute payoff and (S – T) is the 

component influenced by relative payoff. The absolute component (R – T) is negative in 

the PD but becomes positive when the game is restructured as in Figure 7.1c. Therefore, a 

player motivated only by absolute payoff (ω = 0) will defect in the PD but cooperate in 

the restructured game. However, since T > S in both the PD and the restructured game, 
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the component influenced by relative payoffs is always negative and a player driven only 

by considerations of relative payoffs (ω = 1) will defect even in a restructured game. 

These conditions are summarized in Table 7.1. For the more realistic case of a player that 

is motivated partly by absolute payoff and partly by relative payoff (0 < ω < 1), it 

becomes impossible in this model to predict whether a dilemma restructured to promote 

cooperation will actually achieve its goal (Table 7.1). 

Figure 7.2 plots u∆ as a function of ω to demonstrate that when a player is at least 

partly motivated by relative payoffs, there will be a range of ω under which the expected 

outcome is joint defection even when a PD has been restructured specifically to promote 

cooperation. At some intermediate value i=ω , a player in a restructured game is 

indifferent between cooperating and defecting. When ),0[ i∈ω both players are expected 

to cooperate, but when ]1,(i∈ω  the expectation is joint defection. The threshold value 

i=ω  depends on attributes of the specific game and the players involved.  

 

Nations As Agents 

Chapter 3 and 6 showed that populations of agents embedded in complex social 

networks can evolve strategic behavior for the PD that is consistent with behavior 

motivated by interdependent preferences. In addition, this dissertation has shown that 

agents in networked populations can evolve an array of complex behaviors not predicted 

by standard economic theory, including not only cooperation and punishment, but also 

failure to respond positively to restructuring of dilemma payoffs (see also Gould 1993, 

Pacheco and Santos 2005, Santos and Pacheco 2006, Santos et al. 2006b, Chen et al. 

2007, Hui et al. 2007, Tomassini et al. 2007). While this is an interesting academic 
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exercise any attempt to apply these findings to real world global problems would be 

merely speculative without demonstrating that nation-states are similar to agents used in 

this study’s simulations. 

To validate the analogy it must first be shown that nations of the world interact 

through complex networks of connections and do not comprise a homogeneous, well-

mixed system. This network of interactions may reflect trade linkage, geographical 

proximity, competition for a distant resource (e.g. Antarctica), military alliances, or any 

other number of factors that structure interactions between nations. Second, it must be 

demonstrated that nations, like individual humans, base strategic decisions, at least in 

part, on the behavior or status of other actors with which they interact. 

Regarding the first requirement we turn to several recent studies of the ways in 

which countries are linked. Careful analysis of the pattern of international trade reveals 

that between-nation interactions are neither random nor well-mixed interaction networks, 

but instead match parameters of complex small-world networks (Castillo and Baeza-

Yates 2003, Serrano and Boguna 2003, Freyberg-Inan 2006). Others have since shown 

that such international networks are not limited to trade relationships but extend to 

global-scale interactions of “groups of nations, NGOs and international agencies”(Ward 

2006, p. 149), and even international terrorist networks (Moon and Carley 2007), and 

they have also shown that these network structures are instrumental in global cooperation 

(Bernauer et al. 2008). 

Regarding the second requirement that national strategies depend in part on the 

behavior of other nations, the existence of such behavior has been acknowledged since at 

least David Ricardo’s treatise on national comparative advantage (Ricardo 2001 [1817]), 
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and has been well-established through numerous studies of the international 

demonstration effect (James 1987, 2000, Liu and Sun 2005). 

 

Relative Payoffs and Implications for Successful IEAs 

If we accept the empirical evidence that nations are embedded in complex 

interaction networks and act strategically based in part on interdependent preferences, we 

may conclude that the possibility exists that IEA remedies based on restructuring payoffs 

may bear little fruit in practice. 

The possible ineffectiveness of restructured payoffs was long ago demonstrated in 

laboratory experiments between human subjects. In late 1950’s Scodel and Minas 

conducted some of the first controlled laboratory experiments using the PD with 

monetary incentives. These experiments were extraordinary, not only for the implications 

their results have on the current topic, but also for the lack of subsequent notice they 

received in mainstream economics literature. Results were first gathered using the 

standard PD, adhering to the requirements of [7.1]. Not surprisingly defection occurred in 

nearly 86% of all games, agreeing well with expectations of rational choice theory 

(Scodel et al. 1959). However, in the second phase of experiments payoffs were altered to 

match [7.2] so that cooperate-cooperate offered the highest individual payoff to both 

players as well as the highest total payoff. The PD was effectively restructured into a 

game in which individual goals and social goals were supposedly aligned. Much to the 

surprise of the researchers, defection still occurred in a staggering 72% of the restructured 

games (Minas et al. 1960). The best conclusion the authors could make was that subjects 

viewed the game as a competition and received more utility from “the psychological need 



137 
 

  

to outdo the other person” than they did from the money they could have earned (Minas 

et al. 1960, p. 107). In other words, the pay-off matrix and utility matrix were not linear 

transformations of each other and the maximum payoff did not deliver the maximum 

utility. 

The potential ineffectiveness of restructuring a dilemma’s payoffs has also been 

demonstrated in actual IEAs. The Montreal protocol is often heralded as an example of 

the ability of multilateral IEAs to induce cooperative outcomes between nations (Barrett 

2003b), with former United Nations General Secretary, Kofi Anan proclaiming it “the 

single most successful international agreement to date” (UNEP 2007). Taking effect in 

1987, the treaty called for eventual phase out of the production of ozone-destroying 

chlorofluorocarbons (CFCs). Claims of treaty’s success are based largely on the fact that 

countries substantially fulfilled their reduction obligations under the agreement. 

However, analysis of national behavior before and after the treaty went into effect reveals 

that the treaty had no true effect on national strategies – nations had intended to phase out 

CFCs regardless of whether they ratified the protocol or not (Murdoch and Sandler 

1997b). The same phenomenon was described among nations ratifying the Helsinki 

Protocol calling for reductions in sulfur emissions – participating nations did nothing 

more than what they had intended to do regardless of the treaty (Murdoch and Sandler 

1997a). The possible ineffectiveness of restructured dilemmas is not restricted to 

laboratory experiments but appears to be present in even the most acclaimed multilateral 

IEAs. 
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Enhancing the Ability of IEAs to Restructure Dilemmas 

If we assume that national strategic behavior is truly affected by considerations of 

relative payoffs, and that such considerations can decrease the efficacy of IEAs, then we 

should explore parameters that will increase the probability of IEAs achieving their 

intended outcomes. Returning to [7.7] and Figure 7.2, we may determine changes that 

increase i, the value at which a player is indifferent between cooperation and defection. In 

other words enhancing the efficacy of IEAs requires increasing the range of [0, i) and 

may be accomplished through the following mechanisms:   

1) Increasing the absolute component of utility (R – T), 

2) Decreasing the relative component of utility (T – S), or 

3) Decreasing a nation’s value ofω . 

 

Both methods 1 and 2 may be accomplished through a decrease in T, or in other 

words, by decreasing the payoff earned from cheating on a cooperative partner. Likewise 

both may be accomplished through supplementing the payoffs of a cooperative player 

through rewards. In either case mechanisms for sanctions and rewards have been widely 

investigated, used in practice, and advocated among policy makers (Oliver 1980, Wagner 

2001, Sefton et al. 2002, Andreoni et al. 2003, Fehr and Fischbacher 2004, Barrett 2005, 

Gürerk et al. 2006). 

However, mechanisms that would influence the degree to which a nation’s 

behavior is influenced by relative payoffs ω  are far less obvious, as it is likely an 

intrinsic component of national culture. An extension of the simplistic model in [7.7] to 

incorporate the fact that nations are heterogeneous with respect to their relative standing 
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or status (Sacks et al. 2001) would likely help elucidate such mechanisms and should 

enhance the ability to predict behavior under IEAs. Nations ranked near the bottom in 

some measure of comparative status will likely be influenced by even the most trivial 

relative payoff so that the incentive to cheat is great. Likewise, nations that already enjoy 

a high relative standing will likely be concerned primarily with absolute payoffs and so 

will be more amenable to any restructuring where R > T. 

 

Conclusion 

 The phenomenon of interdependent preferences is well documented among 

humans in laboratory settings. This chapter demonstrates that if nations too are motivated 

by considerations of relative standing then much of the prevailing wisdom regarding 

solutions to global environmental problems may be inadequate. Use of diplomacy to 

restructure dilemmas may give the appearance of so-called win-win situations but in 

reality may have little effect on national strategies. This effect may be mitigated to the 

extent that nations are motivated by absolute payoffs instead of relative payoffs, but it is 

also complicated by a nation’s pre-existing standing in the global community. If 

multilateral IEAs are to truly address global dilemmas such concerns for relative position 

must be better understood and incorporated into diplomatic theory and remedies, and 

weights that nations place on relative and absolute payoffs should be empirically 

determined to the extent possible. 
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Table 7.1 

Expected strategies before and after restructuring a prisoners dilemma. 

Game   Ordinal payoffs ω = 0  0 < ω < 1 ω = 1 

Prisoners Dilemma T > R > P > S  D  D  D 

Restructured Game R > T > P > S  C  ?  D 

 

Note: ω = the relative importance of absolute and relative payoffs to a player’s utility. 

When ω = 0 only absolute payoff affects utility. When ω = 1 only relative payoff 

affects utility. 
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Figure 7.1. Payoff matrices for the standard prisoners dilemma (PD). C = cooperate, D = 

defect, the first number in each payoff square equals the payoff to Player A, and the 

second number is the payoff to Player B. (a) Customary shorthand variables used to label 

all possible PD outcomes; (b) Typical payoff values of a PD; (c) the PD restructured by 

side payments or similar diplomatic tools so that joint cooperation is the equilibrium 

outcome; (d) the utility matrix of the restructured game in 7.1c if player satisfaction is 

derived from maximization of relative payoffs [7.4]. 
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Figure 7.2. Weighted effect of relative vs. absolute payoffs in a restructured prisoners 

dilemma. When 0=ω only absolute payoffs affect decision making and when 1=ω  only 

relative payoffs matter. Plotting [7.5] using the values in Figures 7.1b and 7.1c, the y-axis 

u∆ represents the difference between the utility of the cooperative outcome u(R) and the 

defection outcome u(T). When ),0[ i∈ω both players are expected to cooperate, but when 

]1,(i∈ω  the expectation is joint defection. When i=ω , a player is indifferent between 

cooperating and defecting. Cooperation is never predicted in the standard PD.



CHAPTER 8 
 

 

SUMMARY AND FUTURE DIRECTIONS 

In producing this dissertation I have attempted to contribute to a new paradigm in 

social research - one that embraces the contributions of many disciplines while exploiting 

the massive computational power of today’s computers (Harrison 2006). One realization 

accepted by those that embrace this paradigm is that the world is much more complex 

than can be represented in elegant, yet limited, mathematical models (North 2005). If 

scientists are to contribute to solving the array of complex problems facing the world 

today they must move beyond those methods with which they have traditionally been 

most comfortable. 

This study has used the relatively new methodology of computational social 

simulation, or agent-based modelling, to first address some of the fundamental questions 

facing evolutionary biologists, and secondly, to explore corollaries to those biological 

questions in the global policy realm. 

 

Summary of Findings 

1) Systems dynamics and other atomistic models are inadequate to describe and 

predict the behavior of structured societies comprised of heterogeneous agents. 

2) When structure, especially a complex network, is incorporated into social models, 

punishment becomes a viable mechanism for the evolution and maintenance of 

cooperation. 

3) The ability of punishment to induce cooperation in a population diminishes as the 

population becomes more densely connected. 
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4) Though punishment may induce cooperation in computer simulations, its 

byproducts, such as retaliation, may limit its efficacy in real world situations. 

5) Unlike cooperation, fairness did not evolve in simulations with social structure 

and punishment, indicating that it likely evolved and persists through cultural 

factors. 

6) Agents evolving in structured populations necessarily evolve strategies attuned to 

their local environment. This leads to an awareness and assessment of 

surrounding neighbors and may provide a basis for understanding origins of the 

phenomenon of interdependent preferences. 

7) Suggested remedies for international environmental dilemmas based on standard 

assumptions of economic game theory may be inadequate without considering 

network structure, other-regarding preferences, and cultural influences on 

national decision-making behavior. 

 

Future Directions 

Dynamic networks 

Throughout this dissertation, populations are embedded in static networks. 

Relationship links between population members are fixed, making the network 

essentially exogenous to the system under study. However, it is widely recognized that 

social networks, institutions, and other forms of social capital are not static, but coevolve 

with the populations with which they are associated (Takács et al. 2008). Therefore, it is 

prudent to extend these types of simulations to dynamic networks. Social network 

scientists are just beginning to develop the tools necessary to address this need and results 
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have thus far shown that simulations similar to those of this dissertation may have 

qualitatively different outcomes when networks themselves are allowed to evolve 

(Skyrms and Pemantle 2000, Santos et al. 2006a, Shutters and Cutts 2008). 

 

Mixed models 

 In this dissertation I have asserted a benefit of agent-based computer simulations 

is the ability they give researchers to move beyond limited systems dynamics models. 

However, it is likely that a combination of models will allow an even broader set of 

conditions to be explored. Simulations in this dissertation began by placing a single agent 

at each node of a complex network. A simple implementation of mixed systems/agent-

based models would be to expand the simulations used herein so that at each node resides 

an entire well-mixed populations instead of a single agent. This would allow 

phenomenon specific to well-mixed subpopulations to evolve and then further evolve 

through structured interactions with other well-mixed subpopulations. This type of model 

has a clear analogy in human and biological metapopulation models. 

 

Getting the game right 

The primary game theoretical framework used in this study is the prisoners 

dilemma, arguably the most widely used framework for the study of social dilemmas and 

cooperation in particular. However, the PD best describes dilemmas involving pure 

public goods and may have limited applicability to real world situations (Sandler 1999, 

Sandler 2004). Recently much interest has turned to the snowdrift game (SDG, also 

known as the chicken game or hawk-dove game), which differs formally from the PD 
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with respect to [7.1b] while retaining the same preference ranking of outcomes (Hauert 

2001, Kummerli et al. 2007). Specifically the inequality is reversed so that 

[8.1]   2R < (T+S). 

 

In more qualitative terms the snowdrift game acknowledges the gains made from 

cooperation may not benefit everyone in society equally but may preferentially benefit 

the agent performing a cooperative act. It is therefore important to reassess numerous 

studies utilizing the prisoners dilemma with this alternate model to determine if general 

conclusions regarding social dilemmas are consistent. Results have already begun to 

demonstrate significant differences in outcomes when dilemmas are modelled as SDGs 

instead of PDs (Hauert and Doebeli 2004, Hui et al. 2007, Kummerli et al. 2007, Lee et 

al. 2008). In addition, any number of other games, such as the stag hunt game (Skyrms 

2004), may better describe specific instances of social conflict and should not be ignored 

if simulations studies such as this are to continue making substantial contributions to the 

understanding of cooperation and social dilemmas.
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Let x = a population’s mean ending contribution (or offer when using the 

Ultimatum Game) at the end of a simulation. Approximate transition values in Figures 

3.2 and 5.2 (Tables 3.5 and 5.7) were calculated using simple linear interpolation 

between the last M value at which 0≈x  and the first M value at which 1≈x , and 

assuming that the transition takes place at the midpoint between full cooperation and full 

defection ( 5.0=x ). Accordingly, the point-slope formula for a line is used and solved 

for y = 0.5 
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Using simulation notation of independent variable M (punishment multiplier), response 

variable x (mean ending contribution), and letting t = the transition value of M, [A.1] is 

rewritten as 
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and solving for t yields 
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The program for simulations used for this dissertation was developed over several 

years using Java within the Eclipse software development kit (SDK). Though written in 

an object-oriented language, anyone experienced in object-oriented programming will 

likely be appalled at the code, which is written almost entirely in procedural style. 

However, while it does not take full advantage of Java’s object-oriented capabilities, the 

program has been completely adequate for the purposes of this research. The program, 

including its many subroutines, is reproduced here in its entirety so that others my 

scrutinize its validity or reproduce its results.  

The program is presented in three parts or packages: code specific to the 

simulated CPD used in chapters 3, 4, and 6, code specific to the simulated ultimatum 

game used in chapter 5, and a large set of utilities used in both simulations (and designed 

for use in future simulations). A table of contents is provided below to help navigate the 

lengthy program. For the sake of clarity and brevity the program is presented in 

landscape format and with smaller font than the rest of the dissertation. 
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package prisonersDilemma; 
 
import java.util.*; 
 
/* 
By Shade T. Shutters, School of Life Sciences, Arizona State University. 
Based on a previous model by the author in which a spatially explicit population played 
the ultimatum game. 
 
Trait array elements of an agent p (Trait[p][element]): 
1 = contribution 
2 = publicGoodMultiplier (in this dissertation this is constant for the population) 
3 = punishLimit 
4 = punishAmount 
5 = rewardLimit 
6 = rewardAmount / retaliationAmount when used with punishment 
 
for stats, the following elements are included: 
7 = payoff 
8 = number of contributions in a generation that were punished by the 3rd party observer 
 
Neighbors array: 
the element neighbor[p][0] stores the total number of neighbors connected to agent p (degree of p) 
*/ 
 
import java.io.BufferedWriter; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.text.DecimalFormat; 
import java.util.Arrays; 
import simulationTools.MatrixTools; 
import simulationTools.NetworkTools; 
 
public class PDGame implements PDGameParameters { 
 
 public static void main(String[] args) { 
  double[] simSum = new double[9]; 
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  double[] simAvg = new double[9]; 
  double[] genSum = new double[9]; 
  double[] genAvg = new double[9]; 
  DecimalFormat dataOut = new DecimalFormat("#0.0000"); 
//  Random rnd = new Random(); 
 
  try { 
   BufferedWriter genData = new BufferedWriter(new FileWriter("output\\Game_data_gens.txt")); 
   genData.write("Network,RecFactor,PGMultiplier,Run,Generation,Offer,RewLimit,PunLimit,Payoff,PunishRate\r\n"); 
   BufferedWriter runData = new BufferedWriter(new FileWriter("output\\Game_data_runs.txt")); 
   runData.write("Network,NetworkDegree,NetworkDegreeVariance,RecFactor,Run,Offer,RewLimit,PunLimit,Payoff,PunishRate\r\n"); 
   BufferedWriter simData = new BufferedWriter(new FileWriter("output\\Game_data_sims.txt")); 
   simData.write("Network,RecFactor,PGMultiplier,Offer,RewLimit,PunLimit,Payoff,PunishRate\r\n"); 
   BufferedWriter popData = new BufferedWriter(new FileWriter("output\\Population_data_runs.txt")); 
   popData.write("Network,RecFactor,Run,Generation,Agent,Neighbors,Offer,PGMultiplier,PunishLimit,PunishAmount,Payoff,TimesPunished\r\n"); 
 
// Increment parameter of interest=======      
   for (int networkType=BEGIN_NEIGHBORHOOD; networkType<=END_NEIGHBORHOOD; networkType++){ 
    int population = NetworkTools.getPopulationSize(networkType, THREED_ROWS, THREED_COLS, DEPTH, ROWS, COLS, NODES);         
    double[][] trait = new double [population+1][9]; 
    double[][] childTrait = new double [population+1][9]; 
// Begin a new simulation==== 
        for (double multiplier=BEGIN_RM; multiplier<=END_RM; multiplier += RM_INCREMENT){ 
         Arrays.fill(simSum,0); 
//Generate a new network=========== 
                for (int r=1; r<=RUNS; r++){ 
                 int[][] adjMatrix = NetworkTools.getAdjacencyMatrix(population, networkType,  
                 THREED_ROWS, THREED_COLS, DEPTH, ROWS, COLS, NODES, RANGE, GRAPH_DENSITY, 
        PROB_REWIRE, SEED_NODES, LINKS_PER_NODE, SMALL_WORLD_RADIUS, FIXED_DEGREE); 
                 int[][] neighbors = NetworkTools.getNeighbors(adjMatrix); 
                 double networkDegree = NetworkTools.getNetworkDegree(neighbors); 
                 double networkDegreeVariance = NetworkTools.getNetworkDegreeVariance(neighbors); 
                
// Begin a new run================= 
                 trait = MatrixTools.fillRandom(trait); 
                 for (int a=1; a<=population; a++){ 
                  trait[a][2]=PG_MULTIPLIER;   // symmetric agents, all have same multiplier 
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                 }  
 
// Begin a new generation==== 
                 for (int g=0; g<GENERATIONS; g++){ 
                  Arrays.fill(genSum,0); 
                  Arrays.fill(genAvg,0); 
                  for (int a=1; a<=population; a++){ 
                   trait[a][8] = 0; 
                   if (RESET_FITNESS){ 
                    trait[a][7] = 0; 
                   } 
                  } 
                  childTrait = MatrixTools.fillConstant(childTrait, 0); 
// Game-play Routine========= 
                  trait = PDGameRoutines.getGamePayoffs(population, trait, neighbors, multiplier); 
// Reproduction Routine====== 
                  childTrait = PDGameRoutines.getChildren(population, trait, neighbors); 
// Generation Stats========== 
                  for (int a=1; a<=population; a++){ 
                   for (int t=1; t<=8; t++){ 
                    genSum[t] += trait[a][t]; 
                   } 
                  } 
                  for (int t=1; t<=7; t++){ 
                   genAvg[t] = genSum[t] / (population); 
                  } 
                  genAvg[8] = genSum[8] / (population * PAIRINGS);  // punishment rate 
                  if (DETAILTOSCREEN){ 

System.out.println("Network: " + networkType + ", Generation: " + g + ", RM: " + multiplier + ", Pairings: " + 
dataOut.format(population * PAIRINGS) + ", Punishments: " + dataOut.format(genSum[8]) + ", Punish Pct: " + 
dataOut.format(genAvg[8])); 

                  } 
                  if (REPORT_LEVEL == 3){ 
                      if (TEXT_FILE_OUT){ 

genData.write(networkType + "," + multiplier + "," + PG_MULTIPLIER + "," + r + "," + g + "," + 
dataOut.format(genAvg[1]) + "," +  dataOut.format(genAvg[5]) + "," + dataOut.format(genAvg[3]) + "," + 
dataOut.format(genAvg[7]) + "," + dataOut.format(genAvg[8]) + "\r\n"); 
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                if (AGENT_DATA_ALL_GENS){ 
                 for (int a=1; a<=population; a++){ 

popData.write(networkType + "," + multiplier + "," + r + "," + g + "," + a + "," + neighbors[a][0] + "," + 
dataOut.format(trait[a][1]) + "," + dataOut.format(trait[a][2])  + "," + dataOut.format(trait[a][3])  + "," + 
dataOut.format(trait[a][4])  + "," + dataOut.format(trait[a][7])  + "," + dataOut.format(trait[a][8]) + "\r\n"); 

                 } 
                } 
                      } 
                  } 
// Run Stats (Final Generation stats) 
                  if (g == GENERATIONS-1 && REPORT_LEVEL >1){ 

runData.write(networkType + "," + networkDegree + "," + networkDegreeVariance + "," + multiplier + "," + r + "," + 
dataOut.format(genAvg[1]) + "," + dataOut.format(genAvg[5]) + "," + dataOut.format(genAvg[3]) + "," + 
dataOut.format(genAvg[7]) + "," + dataOut.format(genAvg[8]) + "\r\n"); 

               
                   if (AGENT_DATA_ALL_GENS == false){ 
                    for (int a=1; a<=population; a++){ 

popData.write(networkType + "," + multiplier + "," + r + "," + g + "," + a + "," + neighbors[a][0] + "," + 
dataOut.format(trait[a][1]) + "," + dataOut.format(trait[a][2])  + "," + dataOut.format(trait[a][3])  + "," + 
dataOut.format(trait[a][4])  + "," + dataOut.format(trait[a][7])  + "," + dataOut.format(trait[a][8]) + "\r\n"); 

                    } 
                   } 
                  } 
// Birth Routine============= 
                  for (int a=1; a<=population; a++){ 
                   for (int t=1; t<=6; t++){    
                    trait[a][t] = childTrait[a][t]; 
                   } 
                   for (int t=7; t<=8; t++){    
                    trait[a][t] = 0; 
                   } 
                  trait[a][2] = PG_MULTIPLIER; 
                  } 
                 } 
// Simulation Stats========= 
                 for (int t=1; t<=8; t++){ 
                  simSum[t] += genAvg[t]; 
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                 } 
                } 
                for (int t=1; t<=8; t++){ 
                 simAvg[t] = simSum[t] / RUNS; 
                } 
            if (TEXT_FILE_OUT){ 

simData.write(networkType + "," + multiplier + "," + PG_MULTIPLIER + "," + dataOut.format(simAvg[1]) + "," + 
dataOut.format(simAvg[5]) + "," + dataOut.format(simAvg[3]) + "," + dataOut.format(simAvg[7]) + dataOut.format(simAvg[8]) + 
"\r\n"); 

            } 
         } 
   } 
// Shutdown================= 
   genData.close(); 
       runData.close(); 
       simData.close(); 
       popData.close(); 
      } catch (IOException ioe){ 
       System.out.println("Houston, we have a read/write problem.\n"); 
  } catch (Exception e){ 
   System.out.println("Houston, we have a database problem.\n"); 
  } 
 } 
} 
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package prisonersDilemma; 
import java.util.*; 
public class PDGameRoutines implements PDGameParameters{ 
 
 public static double[][] getChildren(int population, double[][] trait, int[][] neighbors){ 
  double[][] childTrait = new double[population+1][7]; 
  switch (REPRODUCTION_METHOD){ 
   
   case 1: 
    childTrait = compareRandomNeighbor(population, trait, neighbors);  
    break; 
     
   case 2: 
    childTrait = compareBestNeighbor(population, trait, neighbors);  
    break; 
  } 
  return childTrait; 
 } 
  
 public static double[][] compareRandomNeighbor(int population, double[][] trait, int[][] neighbors){ 
   
  double[][] childTrait = new double[population+1][7]; 
  Random rnd = new Random(); 
  for (int a=1; a<=population; a++){ 
   int mate = 0; 
   if (LOCAL_MATING){ 
    mate = neighbors[a][rnd.nextInt(neighbors[a][0])+1]; 
   } else { 
    while (mate == a){ 
     mate = rnd.nextInt(population+1); 
    } 
   } 
   if (trait[a][7] < trait[mate][7]){ 
    for (int t=1; t<=6; t++){childTrait[a][t] = trait[mate][t];} 
   } else if (trait[a][7] > trait[mate][7]){ 
    for (int t=1; t<=6; t++){childTrait[a][t] = trait[a][t];} 
   } else if (rnd.nextBoolean() == true){ 
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    for (int t=1; t<=6; t++){childTrait[a][t] = trait[mate][t];} 
   } else { 
    for (int t=1; t<=6; t++){childTrait[a][t] = trait[a][t];} 
   } 
   for (int t=1; t<=6; t++){ 
    if (rnd.nextDouble() <= MUTATION_RATE){ 
     childTrait[a][t] = childTrait[a][t] + (rnd.nextGaussian() / 100.); 
     if (childTrait[a][t] < 0.){ 
      childTrait[a][t] = 0.; 
     } 
     if (childTrait[a][t] > 1.){ 
      childTrait[a][t] = 1.; 
     } 
    } 
   } 
  } 
  return childTrait; 
 } 
  
 public static double[][] compareBestNeighbor(int population, double[][] trait, int[][] neighbors){ 
   
  double[][] childTrait = new double[population+1][7]; 
  Random rnd = new Random(); 
  for (int a=1; a<=population; a++){ 
   int mate = 0; 
   double maxPayoff = -10000; 
   for (int n=1; n<= neighbors[a][0]; n++){ 
    if (trait[n][7] > maxPayoff){ 
     maxPayoff = trait[n][7]; 
     mate = n; 
    } 
   } 
   if (trait[a][7] < trait[mate][7]){ 
    for (int t=1; t<=6; t++){childTrait[a][t] = trait[mate][t];} 
   } else if (trait[a][7] > trait[mate][7]){ 
    for (int t=1; t<=6; t++){childTrait[a][t] = trait[a][t];} 
   } else if (rnd.nextBoolean() == true){ 
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    for (int t=1; t<=6; t++){childTrait[a][t] = trait[mate][t];} 
   } else { 
    for (int t=1; t<=6; t++){childTrait[a][t] = trait[a][t];} 
   } 
   for (int t=1; t<=6; t++){ 
    if (rnd.nextDouble() <= MUTATION_RATE){ 
     childTrait[a][t] = childTrait[a][t] + (rnd.nextGaussian() / 100.); 
     if (childTrait[a][t] < 0.){childTrait[a][t] = 0.;} 
     if (childTrait[a][t] > 1.){childTrait[a][t] = 1.;} 
    } 
   } 
  } 
  return childTrait; 
 } 
  
 public static double[][] getGamePayoffs(int population, double[][] trait, int[][] neighbors, double multiplier){ 
   
  switch (INTERACTION_METHOD){ 
   
   case 1: 
    trait = playRandomNeighbors(population, trait, neighbors, multiplier);  
    break; 
     
   case 2: 
    trait = playAllNeighborsSequentially(population, trait, neighbors, multiplier); 
    break; 
     
   case 3: 
    trait = playAllNeighborsSimultaneously(population, trait, neighbors, multiplier); 
    break; 
  } 
  return trait; 
 } 
  
 public static double[][] playRandomNeighbors(int population, double[][] trait, int[][] neighbors, double multiplier){ 
   
  Random rnd = new Random(); 
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  for (int initiator=1; initiator<=population; initiator++){ 
   for (int p=1; p<=PAIRINGS; p++){ 
    int partner = neighbors[initiator][rnd.nextInt(neighbors[initiator][0])+1]; 
    int initiatorObserver = neighbors[initiator][rnd.nextInt(neighbors[initiator][0])+1]; 
    int partnerObserver = neighbors[partner][rnd.nextInt(neighbors[partner][0])+1]; 
    int observerObserver = neighbors[initiatorObserver][rnd.nextInt(neighbors[initiatorObserver][0])+1]; 
     
    // play CPD 
    double pool = trait[initiator][1] + trait[partner][1]; 
    trait[initiator][7] += (1 - trait[initiator][1]) + (pool * trait[initiator][2]); 
    trait[partner][7] += (1 - trait[partner][1]) + (pool * trait[partner][2]); 
     
    // do reciprocity 
    if (multiplier != 0){ 
     doReciprocity(trait, multiplier, initiator, initiatorObserver); 
     if (OBSERVE_ALL){ 
      doReciprocity(trait, multiplier, partner, partnerObserver); 
     } 
     if (PUNISH_OBSERVER){ 
      doSecondOrderReciprocity(trait, multiplier, initiatorObserver, observerObserver); 
     } 
    } 
   } 
  } 
  return trait; 
 } 
  
 public static double[][] playAllNeighborsSequentially(int population, double[][] trait, int[][] neighbors, double multiplier){ 
   
  for (int initiator=1; initiator<=population; initiator++){ 
   for (int p=1; p<=neighbors[initiator][0]; p++){ 
    int partner = neighbors[initiator][p]; 
 //   int initiatorObserver = neighbors[initiator][rnd.nextInt(neighbors[initiator][0])+1]; 
 //   int observerObserver = neighbors[initiatorObserver][rnd.nextInt(neighbors[initiatorObserver][0])+1]; 
     
    // play CPD 
    double pool = trait[initiator][1] + trait[partner][1]; 
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    trait[initiator][7] += (1 - trait[initiator][1]) + (pool * trait[initiator][2]); 
    trait[partner][7] += (1 - trait[partner][1]) + (pool * trait[partner][2]); 
     
    // do reciprocity 
    if (multiplier != 0){ 
     doReciprocity(trait, multiplier, initiator, partner); 
     if (OBSERVE_ALL){ 
      doReciprocity(trait, multiplier, partner, initiator); 
     } 
    } 
   } 
  } 
  return trait; 
 } 
  
 public static double[][] playAllNeighborsSimultaneously(int population, double[][] trait, int[][] neighbors, double multiplier){ 
   
  for (int a=1; a<=population; a++){ 
   double pool = trait[a][1]; 
   for (int p=1; p<=neighbors[a][0]; p++){ 
    int partner = neighbors[a][p]; 
    pool += trait[partner][1]; 
   } 
   trait[a][7] += (1 - trait[a][1]) + (pool * trait[a][2]); 
   for (int p=1; p<=neighbors[a][0]; p++){ 
    int partner = neighbors[a][p]; 
    trait[partner][7] += (1 - trait[partner][1]) + (pool * trait[partner][2]); 
   } 
    
   // do reciprocity 
   for (int p=1; p<=neighbors[a][0]; p++){ 
    int partner = neighbors[a][p]; 
    trait = doReciprocity(trait, multiplier, a, partner); 
   } 
   if (OBSERVE_ALL){ 
    for (int p=1; p<=neighbors[a][0]; p++){ 
     int partner = neighbors[a][p]; 
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     for (int n=1; n<=neighbors[partner][0]; n++){ 
      int partnersPartner = neighbors[partner][n]; 
      trait = doReciprocity(trait, multiplier, partner, partnersPartner); 
     } 
    } 
   } 
  } 
  return trait; 
 } 
 
 public static double[][] doReciprocity(double[][] trait, double multiplier, int player, int observer){ 
   
  if (INSTITUTION == 1 || INSTITUTION == 3){ 
   if (trait[player][1] < trait[observer][3]){ 
    trait[player][7] -= (multiplier * trait[observer][4]); 
               trait[observer][7] -= trait[observer][4]; 
              trait[player][8]++; 
               if (RETALIATE){ 
                trait = doRetaliation(trait, multiplier, player, observer); 
               } 
   } 
  } 
 
  if (INSTITUTION == 2 || INSTITUTION == 3){ 
   if (trait[player][1] > trait[observer][5]){ 
    trait[player][7] += (multiplier * trait[observer][6]); 
    trait[observer][7] -= trait[observer][6]; 
   } 
  } 
  return trait; 
 } 
  
 public static double[][] doSecondOrderReciprocity(double[][] trait, double multiplier, int observer, int observersObserver){ 
   
  if (INSTITUTION == 1 || INSTITUTION == 3){ 
   if (trait[observer][3] < trait[observersObserver][3]){ 
    trait[observer][7] -= (multiplier * trait[observersObserver][4]); 
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               trait[observersObserver][7] -= trait[observersObserver][4]; 
//              trait[observer][8]++; 
               if (RETALIATE){ 
                trait = doRetaliation(trait, multiplier, observer, observersObserver); 
               } 
   } 
  } 
 
  if (INSTITUTION == 2 || INSTITUTION == 3){ 
   if (trait[observer][5] > trait[observersObserver][5]){ 
    trait[observer][7] += (multiplier * trait[observersObserver][6]); 
    trait[observersObserver][7] -= trait[observersObserver][6]; 
   } 
  } 
  return trait; 
 } 
 
 public static double[][] doRetaliation(double[][] trait, double multiplier, int originalPunishee, int originalPunisher){ 
   
  switch (RETALIATE_METHOD){ 
   
   case 1: // the amount an agent retaliates is taken from the agent's punish_amount trait 
    trait[originalPunisher][7] -= (multiplier * trait[originalPunishee][4]); 
               trait[originalPunishee][7] -= trait[originalPunishee][4]; 
               break; 
              
   case 2: // the amount an agent retaliates is taken from an independent retaliate_amount trait 
    trait[originalPunisher][7] -= (multiplier * trait[originalPunishee][6]); 
               trait[originalPunishee][7] -= trait[originalPunishee][6]; 
   
  } 
  return trait; 
 } 
} 
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package prisonersDilemma; 
 
interface PDGameParameters{ 
 
// general parameters 
 static final double PG_MULTIPLIER = 0.75;  // must be 1/n < PGM < 1, where n = number of participants per game (2 in PD) 
     static final int INSTITUTION = 1;     // 1 = punish only, 2 = reward only, 3 = punish & reward, not (1, 2 or 3) = no institution 
     static final int RUNS = 1;       // number of replications per parameter set 
     static final int GENERATIONS = 10000;   // number of generations of game play per run 
     static final double MUTATION_RATE = 0.1;  // prob of adding gaussian noise with mean = 0 stdv = 0.01 to a trait during reproduction 
 
// parameters covering general game play 
     static final int PAIRINGS = 3;      // number of interactions per generation (with interaction method 1) 
     static final int INTERACTION_METHOD = 1;  // 1 = pair with randome neighbors sequentially 
                 // 2 = pair with all neighbors sequentially 
                 // 3 = play all neighbors simultaneously (public good game) 
     
// parameters covering punishment behavior 
     static final boolean OBSERVE_ALL = true;   // only the initiator subject to observation or all players contributing to the pool? 
     static final boolean PUNISH_OBSERVER = false; // when false, only player has an observer, A. 
                 // when true, each observer, A, has its own observer, B. If player's contribution was below 
                 // B's punish threshold and A did not punish player, then B punishes A for not punishing player 
 
// parameters covering retaliation 
     static final boolean RETALIATE = false;   // punishee can inflict punishment on the agent which initially sanctioned the punishee? 
     static final int RETALIATE_METHOD = 2;   // 1 = the amount to retaliate is the same as punish amount 
                 // 2 = the amount to retaliate is an independent, evolving amount 
     
// parameters coving reproduction 
     static final boolean RESET_FITNESS = true;  // set fitness to 0 after each generation? 
     static final boolean LOCAL_MATING = true;  // get mate from neighbors (true) or from anywhere (false) 
     static final int REPRODUCTION_METHOD = 1; // 1 = compare to 1 random neighbor 
                 // 2 = compare to best neighbor 
   
// parameter sweeps 
// NEIGHBORHOOD_TYPES:  1 = 3D Moore, 2 = 3D von Neumann, 3 = 2D Moore, 4 = 2D hexagonal,  
//        5 = 2D von Neumann, 6 = linear (1D), 7 = complete graph, 8 = random graph,  



 

183 

 

  

 

//        9 = small-world graph, 10 = scale-free graph, 11 = random regular graph 
 static final int BEGIN_NEIGHBORHOOD = 9;  // starting neighborhood for parameter 
     static final int END_NEIGHBORHOOD = 9;  // ending neighborhood for simulation loop 
     static final double BEGIN_RM = 1.5;    // starting value of reciprocity multiplier 
     static final double END_RM = 1.5;     // ending value of reciprocity multiplier 
    static final double RM_INCREMENT = 1;   // value to increment reciprocity multiplier during sweep 
 
// parameters specific to 2D spatially explicit neighborhoods  
     static final int ROWS = 20;      // rows & cols must be even numbers for hexagonal lattice (neighborhood_type 4) 
     static final int COLS = 20; 
     
// parameters specific to rings 
     static final int RANGE = 2;      // number of links away from an agent to include as neighbors 
 
// parameters specific to 3D spatially explicit neighborhoods     
     static final int THREED_ROWS = 8; 
     static final int THREED_COLS = 8; 
     static final int DEPTH = 8; 
 
// parameters specific to network structures 
     static final int NODES = 400;      // number of agents in non-spacially explict neighborhoods 
    static final double GRAPH_DENSITY = 0.005;   // probability of being connected to a member of population in a random graph 
     static final double PROB_REWIRE = 0.05;   // probability of rewiring an edge of a ring substrate to produce a Watts-Strogatz small-world network 
     static final int SEED_NODES = 3;     // number of initial nodes in scale free network 
     static final int SMALL_WORLD_RADIUS = 2;  // neighbor radius of ring stubstrate for small world networks 
     static final int LINKS_PER_NODE = 2;    // number of links per new node in a scale free network 
     static final int FIXED_DEGREE = 4;    // degree of a random regular graph 
     
// output parameters 
     static final boolean DATABASE_OUT = false;  // export simulation results to database? 
     static final boolean TEXT_FILE_OUT = true;  // export simulation results to text files? 
 static final int REPORT_LEVEL = 3;    // 3 = generation level, 2 = run level, 1 = simulation level 
 static final boolean AGENT_DATA_ALL_GENS = true; // true: output agent data after every generation, false: only after final generation 
     static final boolean DETAILTOSCREEN = false; // print generation detail on screen? 
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package ultimatumGame; 
 
/* 
By Shade T. Shutters, School of Life Sciences, Arizona State University. 
Original Implementation: Feb-2005. 
Included routine to allow altruistic punishment by neighbors: Mar-2005. 
Modified routice to allow either punishment or reward or both: Mar-2006. 
Modified to allow a selection of institutional arrangement: May-2006. 
Modified to play either the ultimatum game or dictator game: June-2006. 
Modified to allow a selection of neighborhood structure: June-2006. 
Modified to do parameter sweeps of multiplier and neighborhoods. Also modified so that 
the reciprocity routine is integrated with the game play routine. This will allow a further 
modification in which an observer may punish the acceptor for receiving a large payoff: Nov-2007. 
 
Trait elements: 
1 = offer 
2 = accept 
3 = punishLimit against offerer 
4 = punishAmount against offerer 
5 = punishLimit against acceptor 
6 = punishAmount against acceptor 
 
for stats, a 7th element is included - Payoffs 
 */ 
 
import java.io.BufferedWriter; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.text.DecimalFormat; 
import java.util.Arrays; 
import java.util.Random; 
 
import simulationTools.*; 
 
public class UltimatumGame implements UltimatumGameParameters { 
 
 public static void main(String[] args) { 
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  double[] simSum = new double[8]; 
  double[] simAvg = new double[8]; 
  double[] genSum = new double[8]; 
  double[] genAvg = new double[8]; 
  Random rnd = new Random(); 
  DecimalFormat dataOut = new DecimalFormat("#0.0000"); 
                  
  try { 
   BufferedWriter genData = new BufferedWriter(new FileWriter("output\\Game_data_gens.txt")); 
       genData.write("Game,Institution,RecFactor,Run,Generation,Offer,RewLimit,PunLimit,Payoff\r\n"); 
       BufferedWriter runData = new BufferedWriter(new FileWriter("output\\Game_data_runs.txt")); 
       runData.write("Game,Institution,RecFactor,Run,Offer,RewLimit,PunLimit,Payoff\r\n"); 
       BufferedWriter simData = new BufferedWriter(new FileWriter("output\\Game_data_sims.txt")); 
       simData.write("Game,Institution,RecFactor,Offer,RewLimit,PunLimit,Payoff\r\n"); 
       
// Increment parameter of interest=======      
   for (int networkType=BEGIN_NEIGHBORHOOD; networkType<=END_NEIGHBORHOOD; networkType++){ 
    int population = NetworkTools.getPopulationSize(networkType, THREEDROWS, THREEDCOLS, DEPTH, ROWS, COLS, NODES); 
    double[][] trait = new double [population+1][7]; 
    double[][] childTrait = new double [population+1][7]; 
    double[] payoff = new double[population+1]; 
    String networkName = NetworkTools.getNetworkName(networkType); 
     
// Begin a new simulation==== 
    for (double multiplier=BEGIN_RM; multiplier<=END_RM; multiplier += RM_INCREMENT){ 
         Arrays.fill(simSum,0); 
   
// Begin a new run=========== 
         int[][] adjMatrix = NetworkTools.getAdjacencyMatrix(population, networkType, THREEDROWS, 
       THREEDCOLS, DEPTH, ROWS, COLS, NODES, RANGE, GRAPH_DENSITY, PROB_REWIRE,  
       SEED_NODES, LINKS_PER_NODE, SMALL_WORLD_RADIUS, FIXED_DEGREE); 
         int[][] neighbors = NetworkTools.getNeighbors(adjMatrix); 
         double networkDegree = NetworkTools.getNetworkDegree(neighbors); 
                for (int r=1; r<=RUNS; r++){ 
                 for (int a=1; a<=population; a++){ 
                  for (int t=1; t<=6; t++){ 
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                   trait[a][t] = rnd.nextDouble(); 
                  } 
                 } 
  
// Begin a new generation==== 
                 for (int g=1; g<=GENERATIONS; g++){ 
                  Arrays.fill(genSum,0); 
                  Arrays.fill(genAvg,0); 
                  Arrays.fill(payoff,0); 
                  for (int a=1; a<=population; a++){ 
                   for (int t=1; t<=6; t++){ 
                    childTrait[a][t] = 0; 
                   } 
                  } 
  
// Game-play & Punishment Routine========= 
                  for (int a=1; a<=population; a++){ 
                   for (int p=1; p<=PAIRINGS; p++){ 
                    int partner = neighbors[a][rnd.nextInt(neighbors[a][0])+1]; 
                    double agentPayoff = 0; 
                    double partnerPayoff = 0; 
                    if ((trait[a][1] >= trait[partner][2]) || (GAMETYPE == 1)){ 
                     agentPayoff = (1 - trait[a][1]); 
                     partnerPayoff = trait[a][1]; 
                     payoff[a] += agentPayoff; 
                     payoff[partner] += partnerPayoff; 
                    } 
                           if (multiplier != 0){ 
                     int observer = neighbors[a][rnd.nextInt(neighbors[a][0])+1]; 
                     if (trait[a][1] < trait[observer][3]){  
                      payoff[a] -= (multiplier * trait[observer][4]); 
                                              payoff[observer] -= trait[observer][4]; 
                     } 
                           } 
                   } 
                  } 
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// Reproduction Routine===== 
                  for (int a=1; a<=population; a++){ 
                   int mate = neighbors[a][rnd.nextInt(neighbors[a][0])+1]; 
                   if (payoff[a] < payoff[mate]){ 
                    for (int t=1; t<=6; t++){childTrait[a][t] = trait[mate][t];} 
                   } else if (payoff[a] > payoff[mate]){ 
                    for (int t=1; t<=6; t++){childTrait[a][t] = trait[a][t];} 
                   } else if (rnd.nextBoolean() == true){ 
                    for (int t=1; t<=6; t++){childTrait[a][t] = trait[mate][t];} 
                   } else { 
                    for (int t=1; t<=6; t++){childTrait[a][t] = trait[a][t];} 
                   } 
                   for (int t=1; t<=6; t++){ 
                    if (rnd.nextDouble() <= MUTATIONRATE){ 
                     childTrait[a][t] = childTrait[a][t] + (rnd.nextGaussian() / 100.); 
                     if (childTrait[a][t] < 0.){childTrait[a][t] = 0.;} 
                     if (childTrait[a][t] > 1.){childTrait[a][t] = 1.;} 
                    } 
                   } 
                  } 
  
// Generation Stats========= 
                  for (int a=1; a<=population; a++){ 
                   for (int t=1; t<=6; t++){ 
                    genSum[t] = genSum[t] + trait[a][t]; 
                   } 
                   genSum[7] = genSum[7] + payoff[a]; 
                  } 
                  for (int t=1; t<=6; t++){ 
                   genAvg[t] = genSum[t] / (population); 
                  } 
                  genAvg[7] = genSum[7] / (population); 
                  if (REPORTLEVEL == 3){ 

genData.write(GAMETYPE + "," + INSTITUTION + "," + multiplier + "," + r + "," + g + "," + genAvg[1] + "," + genAvg[5] 
+ "," + genAvg[3] + "," + genAvg[7] + "\r\n"); 

                  } 
  



 

188 

 

  

 

// Birth Routine============ 
                  for (int a=1; a<=population; a++){ 
                   for (int t=1; t<=6; t++){    
                    trait[a][t] = childTrait[a][t]; 
                   } 
                  } 
                 } 
  
// Run Stats================ 
                 System.out.println("Run: " + r + ", factor: " + multiplier + ", Degree: " + networkDegree + ", Offer: " + dataOut.format(genAvg[1])); 
                 if (REPORTLEVEL == 2 || REPORTLEVEL == 3){ 
                  runData.write(GAMETYPE + "," + INSTITUTION + "," + multiplier + "," + r + "," + genAvg[1] + "," + genAvg[5] + "," + g 
       genAvg[3] + "," + genAvg[7] + "\r\n"); 
                 } 
  
// Simulation Stats========= 
                 for (int t=1; t<=6; t++){ 
                  simSum[t] = simSum[t] + genAvg[t]; 
                 } 
                 simSum[7] = simSum[7] + genAvg[7]; 
                } 
                for (int t=1; t<=6; t++){ 
                 simAvg[t] = simSum[t] / RUNS; 
                } 
                simAvg[7] = simSum[7] / RUNS; 
                System.out.println(networkName + ", degree: " + networkDegree + ", factor: " + multiplier + ", Offer: "+ dataOut.format(simAvg[1])); 

simData.write(GAMETYPE + "," + INSTITUTION + "," + multiplier + "," + simAvg[1] + "," + simAvg[5] + "," + simAvg[3] + "," + 
simAvg[7] + "\r\n"); 

        } 
   } 
// Shutdown================= 
       genData.close(); 
       runData.close(); 
       simData.close(); 
 
      } catch (IOException ioe){ 
       System.out.println("Houston, we have a read/write problem.\n"); 
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      } 
 } 
} 
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package ultimatumGame; 
 
public interface UltimatumGameParameters { 
  
// general parameters 
 static final int GAMETYPE = 1;     // 1 = dictator game, not 1 = ultimatum game 
 static final int INSTITUTION = 1;     // 1 = punish only, 2 = reward only, 3 = punish & reward, not (1, 2 or 3) = no institution 
 static final int RUNS = 1; 
 static final int GENERATIONS = 10000; 
 static final double MUTATIONRATE = 0.1; 
 static final int PAIRINGS = 3; 
 static final int REPORTLEVEL = 2;    // 3 = generation level, 2 = run level, not (2 or 3) = simulation level 
 
// parameter sweeps 
// NEIGHBORHOOD_TYPES:  1 = 3D Moore, 2 = 3D von Neumann, 3 = 2D Moore, 4 = 2D hexagonal,  
//        5 = 2D von Neumann, 6 = linear (1D), 7 = complete graph, 8 = random graph,  
//        9 = small-world graph, 10 = scale-free graph, 11 = random regular graph 
 static final int BEGIN_NEIGHBORHOOD = 3;  // starting neighborhood for parameter 
 static final int END_NEIGHBORHOOD = 11;  // ending neighborhood for simulation loop 
 static final double BEGIN_RM = 3.0;    // starting value of reciprocity multiplier 
 static final double END_RM = 3.0;     // ending value of reciprocity multiplier 
 static final double RM_INCREMENT = 1.0;   // value to increment reciprocity multiplier during sweep 
     
// parameters specific to 2D spatially explicit neighborhoods  
 static final int ROWS = 20;      // rows & cols must be even numbers for hexagonal lattice (neighborhood_type 4) 
 static final int COLS = 20; 
     
// parameters specific to 3D spatially explicit neighborhoods     
     static final int THREEDROWS = 8; 
     static final int THREEDCOLS = 8; 
     static final int DEPTH = 8; 
     
// parameters specific to network structures 
     static final double GRAPH_DENSITY = 0.005;    // probability of being connected to a member of population in a random graph 
     static final double PROB_REWIRE = 0.05;   // probability of rewiring an edge of a ring substrate to produce a Watts-Strogatz small-world 
network 
     static final int NODES = 500;      // number of agents in non-spacially explict neighborhoods 
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     static final int RANGE = 1;      // number of links away from an agent to include as neighbors 
     static final int SEED_NODES = 3;     // number of initial nodes in scale free network 
     static final int LINKS_PER_NODE = 2;    // number of links per new node in a scale free network 
     static final int SMALL_WORLD_RADIUS = 2;  // neighbor radius of ring stubstrate for small world networks 
 static final int FIXED_DEGREE = 4;    // degree of a random regular graph 
} 
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package simulationTools; 
 
import java.io.FileWriter; 
import java.io.IOException; 
import java.util.Arrays; 
import java.util.Calendar; 
import java.util.Random; 
import java.util.TimeZone; 
 
public class NetworkTools { 
  
 public static int[][] getNeighbors(int[][] adjMatrix){ 
 
      int populationSize = adjMatrix.length-1; 
      exportPajek(adjMatrix); 
      exportAdjMatrix(adjMatrix); 
      int neighborMatrix[][] = new int[populationSize+1][populationSize+1]; 
      for (int i=1; i<=populationSize; i++){ 
       int neighbor_count = 0; 
       for (int j=1; j<=populationSize; j++){ 
        if (adjMatrix[i][j] == 1){ 
                       neighbor_count++; 
                      neighborMatrix[i][neighbor_count] = j; 
        } 
        neighborMatrix[i][0] = neighbor_count;       // stores the total neighbor count of each node 
       } 
      } 
      return neighborMatrix; 
 } 
 
     public static int[][] getNonNeighbors(int[][] adjMatrix){ 
 
      int populationSize = adjMatrix.length-1; 
      int nonNeighborMatrix[][] = new int[populationSize+1][populationSize+1]; 
      for (int i=1; i<=populationSize; i++){ 
       int nonNeighbor_count = 0; 
       for (int j=1; j<=populationSize; j++){ 
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        if (i != j){ 
         if (adjMatrix[i][j] == 0){ 
                       nonNeighbor_count++; 
                        nonNeighborMatrix[i][nonNeighbor_count] = j; 
         } 
        } 
        nonNeighborMatrix[i][0] = nonNeighbor_count;       // stores the total non-neighbor count of each node 
       } 
      } 
      return nonNeighborMatrix; 
     } 
     
 public static int[][] getAdjacencyMatrix(int population, int networkType, int threeDRows,  
              int threeDCols, int depth, int rows, int cols, int nodes,  
              int range, double graphDensity, double probRewire, 
              int seedNodes, int linksPerNode, int smallWorldRadius, 
              int fixedDegree){ 
 
      int adjMatrix[][] = new int[population+1][population+1]; 
 
         switch(networkType){ 
 
          case 1: // 3D Moore neighborhood (neighbors N,S,E,W,up,down + diagonals) 
           adjMatrix = make3DMooreNetwork(threeDRows,threeDCols,depth);  
    break; 
             
          case 2: // 3D von Neumann neighborhood (neighbors N,S,E,W,up & down) 
           adjMatrix = make3DVonNeumannNetwork(threeDRows,threeDCols,depth);  
    break; 
 
          case 3: // 2D Moore neighborhood (neighbors N,S,E,W + diagonals) 
           adjMatrix = make2DMooreNetwork(rows,cols);  
    break; 
  
          case 4: // 2D Hexagonal lattice 
           adjMatrix = makeHexagonalNetwork(rows,cols);  
    break; 
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          case 5: // 2D von Neumann neighborhood, (neighbors N,S,E & W) 
           adjMatrix = make2DVonNeumannNetwork(rows,cols);  
    break; 
           
          case 6: // 1D Linear (neighbors E + W in a ring) 
           adjMatrix = makeRingNetwork(nodes,range);  
    break; 
 
              case 7: // Homogenous graph (Fully connected - every agent connected to every other agent) 
               adjMatrix = makeHomogenousNetwork(nodes);  
    break; 
 
              case 8: // Random Erdos-Renyi graph (random links) 
               adjMatrix = makeRandomNetwork(nodes,graphDensity);  
    break; 
             
              case 9: // Random Watts-Strogratz small-world graph 
               adjMatrix = makeWattsStrogatzNetwork(nodes,smallWorldRadius,probRewire);  
    break; 
                 
             case 10: // Random Barabasi-Albert scale-free graph 
               adjMatrix = makeBarabasiAlbertNetwork(nodes,seedNodes,linksPerNode);  
    break; 
              
              case 11: // Random regular graph (every node has same degree but random links) 
               adjMatrix = makeRandomRegularNetwork(nodes,fixedDegree);  
    break; 
      } 
  return adjMatrix; 
     } 
      
 public static int[][] make2DMooreNetwork(int rows, int cols){ 
      
      int[][] adjMatrix = new int[rows*cols+1][rows*cols+1]; 
      int[][] nameMatrix = assign2DSpaceToNodes(rows,cols); 
  for (int x=1; x<=rows; x++){ 
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   for (int y=1; y<=cols; y++){ 
    for (int nr=-1; nr<=1; nr++){ 
     for (int nc=-1; nc<=1; nc++){ 
      if(Math.abs(nr) + Math.abs(nc) !=0){  
       int row = x + nr; 
       if (row < 1){ 
        row += rows; 
       } else if (row > rows){ 
        row -= rows; 
       } 
       int col = y + nc; 
       if (col < 1){ 
        col += cols; 
       } else if (col > cols){ 
        col -= cols; 
       } 
       adjMatrix[nameMatrix[x][y]][nameMatrix[row][col]] = 1; 
      } 
     } 
    } 
   } 
  } 
  return adjMatrix; 
     } 
  
 public static int[][] make3DMooreNetwork(int rows, int cols, int depth){ 
      
      int[][] adjMatrix = new int[rows*cols*depth+1][rows*cols*depth+1]; 
      int[][][] nameMatrix = assign3DSpaceToNodes(rows,cols,depth); 
  for (int x=1; x<=rows; x++){ 
   for (int y=1; y<=cols; y++){ 
    for (int z=1; z<=depth; z++){ 
                      for (int nr=-1; nr<=1; nr++){ 
                          for (int nc=-1; nc<=1; nc++){ 
                                for (int nd=-1; nd<=1; nd++){ 
                                   if(Math.abs(nr) + Math.abs(nc) + Math.abs(nd) !=0){  
                                        int row = x + nr; 
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                                        if (row < 1){ 
          row += rows; 
         } else if  (row > rows){ 
          row -= rows; 
         } 
                                        int col = y + nc; 
                                        if (col < 1){ 
          col += cols; 
         } else if  (col > cols){ 
          col -= cols; 
         } 
                                        int dep = z + nd; 
                                        if (dep < 1){ 
          dep += depth; 
         } 
                                        else if (dep > depth){ 
          dep -= depth; 
         } 
                                        adjMatrix[nameMatrix[x][y][z]][nameMatrix[row][col][dep]] = 1; 
                                    } 
                                } 
                           } 
                      } 
    } 
   } 
  } 
  return adjMatrix; 
     } 
 
 public static int[][] make2DVonNeumannNetwork(int rows, int cols){ 
      
      int[][] adjMatrix = new int[rows*cols+1][rows*cols+1]; 
      int[][] nameMatrix = assign2DSpaceToNodes(rows,cols); 
  for (int x=1; x<=rows; x++){ 
   for (int y=1; y<=cols; y++){ 
    for (int nr=-1; nr<=1; nr++){ 
     for (int nc=-1; nc<=1; nc++){ 
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      if(Math.abs(nr) + Math.abs(nc) == 1){ 
       int row = x + nr; 
       if (row < 1){ 
        row += rows; 
       } 
       if (row > rows){ 
        row -= rows; 
       } 
       int col = y + nc; 
       if (col < 1){ 
        col += cols; 
       } 
       if (col > cols){ 
        col -= cols; 
       } 
       adjMatrix[nameMatrix[x][y]][nameMatrix[row][col]] = 1; 
      } 
     } 
    } 
   } 
  } 
      return adjMatrix; 
 } 
 
 public static int[][] make3DVonNeumannNetwork(int rows, int cols, int depth){ 
      
      int[][] adjMatrix = new int[rows*cols*depth+1][rows*cols*depth+1]; 
      int[][][] nameMatrix = assign3DSpaceToNodes(rows,cols,depth); 
  for (int x=1; x<=rows; x++){ 
   for (int y=1; y<=cols; y++){ 
    for (int z=1; z<=depth; z++){ 
                       for (int nr=-1; nr<=1; nr++){ 
                           for (int nc=-1; nc<=1; nc++){ 
                                for (int nd=-1; nd<=1;nd++){ 
                                    if(Math.abs(nr) + Math.abs(nc) + Math.abs(nd) == 1){ 
                                        int row = x + nr; 
                                        if (row < 1){ 
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          row += rows; 
         } 
                                        if (row > rows){ 
          row -= rows; 
         } 
                                        int col = y + nc; 
                                        if (col < 1){ 
          col += cols; 
         } 
                                        if (col > cols){ 
          col -= cols; 
         } 
                                        int dep = z + nd; 
                                        if (dep < 1){ 
          dep += depth; 
         } 
                                        if (dep > depth){ 
          dep -= depth; 
         } 
                                        adjMatrix[nameMatrix[x][y][z]][nameMatrix[row][col][dep]] = 1; 
                                    } 
                                } 
                           } 
                       } 
    } 
   } 
  } 
      return adjMatrix; 
     } 
  
 public static int[][] makeHexagonalNetwork(int rows, int cols){ // requires even number of rows/columns 
      
      int[][] adjMatrix = new int[rows*cols+1][rows*cols+1]; 
      int[][] nameMatrix = assign2DSpaceToNodes(rows,cols); 
  int rowType = 1; 
  for (int x=1; x<=rows; x++){ 
   for (int y=1; y<=cols; y++){ 
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              for (int nr=-1; nr<=1; nr++){ 
                   for (int nc=-1; nc<=1; nc++){ 
                    if(Math.abs(nr) + Math.abs(nc) !=0){  
                     int row = x + nr; 
                     if (row < 1){ 
        row += rows; 
       } 
                     if (row > rows){ 
        row -= rows; 
       } 
                    int col = y + nc; 
                     if (col < 1){ 
        col += cols; 
       } 
                     if (col > cols){ 
        col -= cols; 
       } 
                     adjMatrix[nameMatrix[x][y]][nameMatrix[row][col]] = 1; 
                     if (nr !=0 && nc == rowType){ 
                      adjMatrix[nameMatrix[x][y]][nameMatrix[row][col]] = 0; 
                     } 
                        } 
                   } 
               } 
   } 
   rowType = rowType * -1; 
  } 
  return adjMatrix; 
 } 
 
 public static int[][] makeRingNetwork(int nodes, int neighborhoodRadius){ 
 
  int[][] ringMatrix = new int[nodes+1][nodes+1]; 
  for (int i=1; i<=nodes; i++){ 
   for (int j=1; j<=nodes; j++){ 
    if (((j > i) && (j <= i+neighborhoodRadius)) || 
       ((j < i) && (j >= i-neighborhoodRadius)) || 
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       ((j > i) && (j >= nodes - neighborhoodRadius + i)) || 
       ((j < i) && (i >= nodes - neighborhoodRadius + j))){ 
     ringMatrix[i][j] = 1; 
    } else { 
     ringMatrix[i][j] = 0; 
    } 
   } 
  } 
  return ringMatrix; 
 } 
  
 public static int[][] makeWattsStrogatzNetwork(int nodes, int smallWorldRadius, double probRewire){ 
   
  int[][] adjMatrix = new int[nodes+1][nodes+1]; 
      Random rnd = new Random(); 
      int totalUnlinked; 
  int[][] tempAdjMatrix = new int[nodes+1][nodes+1]; 
  int[] unlinkedNodes = new int[nodes+1]; 
  
  adjMatrix = makeRingNetwork(nodes, smallWorldRadius); 
 
  for (int i=1; i<=nodes; i++){ 
   for (int j=1; j<=nodes; j++){ 
    tempAdjMatrix[i][j] = adjMatrix[i][j]; 
   } 
  } 
 
  for (int i=2; i<=nodes; i++){ 
   for (int j=1; j<i; j++){ 
    if (adjMatrix[i][j] == 1){ 
     totalUnlinked = 0; 
                Arrays.fill(unlinkedNodes,0); 
     for (int k=1; k<=nodes; k++){ 
      if ((tempAdjMatrix[i][k] == 0) && (i != k)){ 
       unlinkedNodes[totalUnlinked] = k; 
       totalUnlinked++; 
      } 
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     } 
     if (rnd.nextDouble() < probRewire){ 
      int newNode = rnd.nextInt(totalUnlinked)+1; 
      tempAdjMatrix[i][j] = 0; 
      tempAdjMatrix[j][i] = 0; 
      tempAdjMatrix[i][unlinkedNodes[newNode]] = 1; 
      tempAdjMatrix[unlinkedNodes[newNode]][i] = 1; 
     } 
    } 
   } 
  } 
 
  // make sure every node is linked, else add a random link 
  for (int i=1; i<=nodes; i++) { 
   totalUnlinked = 0; 
   for (int j=1; j<=nodes; j++) { 
    if (tempAdjMatrix[i][j] == 0){ 
     totalUnlinked++; 
    } 
   } 
   if (totalUnlinked==nodes){ 
    int newNode = rnd.nextInt(nodes)+1; 
    tempAdjMatrix[i][newNode]=1; 
    tempAdjMatrix[newNode][i]=1; 
   } 
  } 
    
  for (int i=1; i<=nodes; i++) { 
   for (int j=1; j<=nodes; j++) { 
    adjMatrix[i][j] = tempAdjMatrix[i][j]; 
   } 
  } 
 
     return adjMatrix; 
 } 
  
 public static int[][] makeRandomRegularNetwork(int nodes, int linksPerNode){ 
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  Random rnd = new Random(); 
  int[][] adjMatrix = new int[nodes+1][nodes+1]; 
  int[] nodeOrder = new int[nodes+1]; 
  int[] potentialLinks = new int[nodes+1]; 
  int[] currentLinks = new int[nodes+1]; 
  nodeOrder = ArrayTools.getRandPermutation(nodes); 
  for (int a=1; a<=nodes; a++){ 
   int currentNode = nodeOrder[a]; 
   potentialLinks = ArrayTools.getRandPermutation(nodes); 
   int n=1; 
   while (currentLinks[currentNode] < linksPerNode){ 
    if (n == nodes){ 
     int j = currentNode; 
     int i = currentNode; 
     boolean needLink = true; 
     while (needLink){ 
      boolean needJ = true; 
      while (needJ){ 
       j = rnd.nextInt(nodes) + 1; 
       if (j != currentNode){ 
        needJ = false; 
       } 
      } 
      boolean needI = true; 
      while (needI){ 
       i = rnd.nextInt(nodes) + 1; 
       if (i != currentNode){ 
        needI = false; 
       } 
      } 
      if (adjMatrix[i][j]==1){ 
       needLink = false; 
      } 
     } 
     adjMatrix[i][j] = 0; 
     adjMatrix[j][i] = 0; 
     adjMatrix[currentNode][i] = 1; 
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     adjMatrix[i][currentNode] = 1; 
     currentLinks[currentNode]++; 
     adjMatrix[currentNode][j] = 1; 
     adjMatrix[j][currentNode] = 1; 
     currentLinks[currentNode]++; 
    } else { 
     if (currentNode == potentialLinks[n]){ 
      n++; 
     } else { 
      if (adjMatrix[currentNode][potentialLinks[n]]==1){ 
       n++; 
      } else { 
       if (currentLinks[potentialLinks[n]]==linksPerNode){ 
        n++; 
       } else {     
        adjMatrix[currentNode][potentialLinks[n]] = 1; 
        adjMatrix[potentialLinks[n]][currentNode] = 1; 
        currentLinks[currentNode]++; 
        currentLinks[potentialLinks[n]]++; 
        n++; 
       } 
      } 
     } 
    } 
   } 
  } 
  return adjMatrix; 
 } 
  
 public static int[][] makeBarabasiAlbertNetwork(int nodes, int seedNodes, int linksPerNewNode){ 
  // generate a random scale-free network by preferential growth 
   
  int[][] adjMatrix = new int[nodes+1][nodes+1]; 
  int[] linkNumber = new int[nodes*nodes]; 
  Random rnd = new Random(); 
   
  // fully connect the seed nodes 
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  for (int i=1; i<=seedNodes-1; i++){ 
   for (int j=i+1; j<=seedNodes; j++){ 
    adjMatrix[i][j]=1; 
    adjMatrix[j][i]=1; 
   } 
  } 
  for (int i=seedNodes+1; i<=nodes; i++){ 
   int totalLinks = 0; 
   int newConnections = 0; 
    
   // weight existing nodes by number of links each has 
   for (int t=1; t<i; t++){ 
    for (int j=1; j<i; j++){ 
     if (adjMatrix[t][j]==1){ 
      totalLinks++; 
      linkNumber[totalLinks]=t; 
     } 
    } 
   } 
   while (newConnections < linksPerNewNode){ 
    int newLink = rnd.nextInt(totalLinks)+1; 
    if (adjMatrix[i][linkNumber[newLink]] == 0){ 
     adjMatrix[i][linkNumber[newLink]]=1; 
     adjMatrix[linkNumber[newLink]][i]=1; 
     newConnections++; 
    } 
   } 
  } 
  return adjMatrix; 
 } 
  
 public static int[][] makeRandomNetwork(int nodes, double linkProbability){ 
   
      int[][] adjMatrix = new int[nodes+1][nodes+1]; 
  int[][] tempAdjMatrix = new int[nodes+1][nodes+1]; 
      Random rnd = new Random(); 
         for (int i=1; i<=nodes; i++){ 



 

205 

 

  

 

       for (int j=1; j<=nodes; j++){ 
        if (i != j){ 
         if (rnd.nextDouble() <= linkProbability){ 
          tempAdjMatrix[i][j] = 1; 
          tempAdjMatrix[j][i] = 1; 
         } 
        } 
              } 
          } 
  // make sure every node is linked, else add a random link 
  for (int i=1; i<=nodes; i++) { 
   int totalUnlinked = 0; 
   for (int j=1; j<=nodes; j++) { 
    if (tempAdjMatrix[i][j] == 0){ 
     totalUnlinked++; 
    } 
   } 
   if (totalUnlinked==nodes){ 
    int newNode = rnd.nextInt(nodes)+1; 
    tempAdjMatrix[i][newNode]=1; 
    tempAdjMatrix[newNode][i]=1; 
   } 
  } 
    
  for (int i=1; i<=nodes; i++) { 
   for (int j=1; j<=nodes; j++) { 
    adjMatrix[i][j] = tempAdjMatrix[i][j]; 
   } 
  } 
     return adjMatrix; 
 } 
  
 public static int[][] makeHomogenousNetwork(int nodes){ 
   
  int adjMatrix[][] = new int[nodes+1][nodes+1]; 
  for (int i=1; i<=nodes; i++){ 
   for (int j=1; j<=nodes; j++){ 
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    if (i != j){ 
     adjMatrix[i][j] = 1; 
    } else { 
     adjMatrix[i][j] = 0; 
    } 
   } 
  } 
  return adjMatrix; 
 } 
 
 public static int getPopulationSize(int networkType, int threeDRows, int threeDCols, int depth,  
             int rows, int cols, int nodes){ 
      int populationSize = 0; 
         switch(networkType){ 
 
          case 1: populationSize = threeDRows * threeDCols * depth; break; 
          case 2: populationSize = threeDRows * threeDCols * depth; break; 
          case 3: populationSize = rows * cols; break; 
          case 4: populationSize = rows * cols; break; 
          case 5: populationSize = rows * cols; break; 
          case 6: populationSize = nodes; break; 
              case 7: populationSize = nodes; break; 
              case 8: populationSize = nodes; break; 
              case 9: populationSize = nodes; break; 
              case 10: populationSize = nodes; break; 
              case 11: populationSize = nodes; break; 
      } 
         return populationSize; 
     } 
  
 public static double getNetworkDegree(int[][] neighbors){ 
 
      int populationSize = neighbors.length-1; 
      double totalLinks = 0; 
      for (int i=1; i<=populationSize; i++){ 
       totalLinks += neighbors[i][0]; 
      } 
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      double networkDegree = totalLinks / populationSize; 
      return networkDegree; 
     } 
 
 public static double getNetworkDegreeVariance(int[][] neighbors){ 
      int populationSize = neighbors.length-1; 
      double sumOfSquares = 0; 
      double networkDegreeMean = getNetworkDegree(neighbors); 
      for (int i=1; i<=populationSize; i++){ 
       sumOfSquares += Math.pow((networkDegreeMean - neighbors[i][0]), 2); 
      } 
      double networkDegreeVariance = sumOfSquares / populationSize; 
      return networkDegreeVariance; 
     } 
  
 public static void exportPajek(int[][] adjMatrix){ 
   
  int nodes = adjMatrix.length-1; 
  try{ 
   FileWriter pajekOut = new FileWriter("output\\PajekOut.net"); 
   pajekOut.write("*Vertices " + nodes +"\r\n"); 
   pajekOut.write("*Edges\r\n"); 
   for(int i=1; i<=nodes; i++){ 
        for(int j=i; j<=nodes; j++){ 
         if(adjMatrix[i][j]==1){ 
          pajekOut.write(i + " " + j + "\r\n"); 
         } 
        } 
   } 
   pajekOut.close(); 
      } catch (IOException ioe){ 
       System.out.println("Houston, we have a Pajek output problem.\n"); 
      } 
 } 
 
 public static void exportAdjMatrix(int[][] adjMatrix){ 
  int nodes = adjMatrix.length-1; 
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  try{ 
   FileWriter outputMatrix = new FileWriter("output\\adjMatrix.txt"); 
       for(int i=1; i<=nodes; i++){ 
        for(int j=1; j<=nodes; j++){ 
         outputMatrix.write(adjMatrix[i][j] + " "); 
        } 
        outputMatrix.write("\r\n"); 
       } 
       outputMatrix.close(); 
      } catch (IOException ioe){ 
       System.out.println("Houston, we have a problem outputing the adjacency matrix.\n"); 
      } 
 } 
 
 public static int[][] assign2DSpaceToNodes(int rows, int cols){ 
 
      int nameMatrix[][] = new int[rows+1][cols+1]; 
      int agentNumber = 1; 
      for (int x=1; x<=rows; x++){ 
       for (int y=1; y<=cols; y++){ 
        nameMatrix[x][y] = agentNumber; 
        agentNumber++; 
       } 
      } 
      return nameMatrix; 
     } 
     
 public static int[][][] assign3DSpaceToNodes(int rows, int cols, int depth){ 
 
      int nameMatrix[][][] = new int[rows+1][cols+1][depth+1]; 
      int agentNumber = 1; 
      for (int x=1; x<=rows; x++){ 
       for (int y=1; y<=cols; y++){ 
        for (int z=1; z<=depth; z++){ 
         nameMatrix[x][y][z] = agentNumber; 
         agentNumber++; 
        } 
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       } 
      } 
      return nameMatrix; 
     } 
     
 public static String getTimeStamp(){ 
 
      Calendar cal = Calendar.getInstance(TimeZone.getDefault()); 
  java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat("yyyyMMddHHmmssSSS"); 
  String timestamp = sdf.format(cal.getTime()); 
  return timestamp; 
 } 
 
 public static String getNetworkName(int networkType){ 
 
      String networkName = "not defined"; 
  switch(networkType){ 
   case 1: networkName = "3D Moore"; break; 
   case 2: networkName = "3D von Neumann"; break; 
   case 3: networkName = "2D Moore"; break; 
   case 4: networkName = "Hexagonal"; break; 
   case 5: networkName = "2D von Neumann"; break; 
   case 6: networkName = "Linear"; break; 
   case 7: networkName = "Complete"; break; 
   case 8: networkName = "Random"; break; 
   case 9: networkName = "Small-world"; break; 
   case 10: networkName = "Scale-free"; break; 
   case 11: networkName = "Random regular"; break; 
  } 
  return networkName; 
 } 
} 
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package simulationTools; 
 
import java.util.*; 
 
public class MatrixTools { 
 
 public static double getMean(int[][] matrixIn, int indexStart){ 
  int elements = 0; 
  int sum = 0; 
  for (int i=indexStart; i<matrixIn.length; i++){ 
   for (int j=indexStart; j<matrixIn[i].length; j++){ 
    sum += matrixIn[i][j]; 
    elements++; 
   } 
  } 
  double matrixMean = sum/elements; 
  return matrixMean; 
 } 
 
 public static double getMean(double[][] matrixIn, int indexStart){ 
  int elements = 0; 
  double sum = 0; 
  for (int i=indexStart; i<matrixIn.length; i++){ 
   for (int j=indexStart; j<matrixIn[i].length; j++){ 
    sum += matrixIn[i][j]; 
    elements++; 
   } 
  } 
  double matrixMean = sum/elements; 
  return matrixMean; 
 } 
 
 public static double getStdDev(int[][] matrixIn, int indexStart){ 
  int elements = 0; 
  double sumOfSquares = 0; 
  double mean = getMean(matrixIn, indexStart); 
  for (int i=indexStart; i<matrixIn.length; i++){ 
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   for (int j=indexStart; j<matrixIn[i].length;j++){ 
    sumOfSquares += ((matrixIn[i][j] - mean)*(matrixIn[i][j] - mean)); 
    elements++; 
   } 
  } 
  System.out.println(sumOfSquares + " , " + elements); 
  double matrixStdDev = Math.sqrt(sumOfSquares / (elements - 1)); 
  return matrixStdDev; 
 } 
  
 public static double getStdDev(double[][] matrixIn, int indexStart){ 
  int elements = 0; 
  double sumOfSquares = 0; 
  double mean = getMean(matrixIn, indexStart); 
  for (int i=indexStart; i<matrixIn.length; i++){ 
   for (int j=indexStart; j<matrixIn[i].length;j++){ 
    sumOfSquares += ((matrixIn[i][j] - mean)*(matrixIn[i][j] - mean)); 
    elements++; 
   } 
  } 
  System.out.println(sumOfSquares + " , " + elements); 
  double matrixStdDev = Math.sqrt(sumOfSquares / (elements - 1)); 
  return matrixStdDev; 
 } 
 
 public static double[][] fillRandom (double matrixIn[][]){ 
  double rndMatrix[][] = copyMatrix(matrixIn); 
  Random rnd = new Random(); 
  for (int i=0; i<rndMatrix.length; i++){ 
   for (int j=0; j<rndMatrix[i].length;j++){ 
    rndMatrix[i][j] = rnd.nextDouble(); 
   } 
  } 
  return rndMatrix; 
 } 
  
 public static int[][] fillRandom (int matrixIn[][], int minValue, int maxValue){ 
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  int rndMatrix[][] = copyMatrix(matrixIn);; 
  int range = maxValue - minValue; 
  Random rnd = new Random(); 
  for (int i=0; i<rndMatrix.length; i++){ 
   for (int j=0; j<rndMatrix[i].length;j++){ 
    rndMatrix[i][j] = rnd.nextInt(range + 1) + minValue; 
   } 
  } 
  return rndMatrix; 
 } 
  
 public static double[][] fillRandom (double matrixIn[][], double minValue, double maxValue){ 
  double rndMatrix[][] = copyMatrix(matrixIn);; 
  double range = maxValue - minValue; 
  Random rnd = new Random(); 
  for (int i=0; i<rndMatrix.length; i++){ 
   for (int j=0; j<rndMatrix[i].length;j++){ 
    rndMatrix[i][j] = (rnd.nextDouble() * range) + minValue; 
   } 
  } 
  return rndMatrix; 
 } 
 
 public static int[][] fillConstant (int matrixIn[][], int constant){ 
  int filledMatrix[][] = copyMatrix(matrixIn); 
  for (int i=0; i<matrixIn.length; i++){ 
   Arrays.fill(filledMatrix[i], constant); 
  } 
  return filledMatrix; 
 } 
  
 public static double[][] fillConstant (double matrixIn[][], double constant){ 
  double filledMatrix[][] = copyMatrix(matrixIn); 
  for (int i=0; i<matrixIn.length; i++){ 
   Arrays.fill(filledMatrix[i],constant); 
  } 
  return filledMatrix; 



 

213 

 

  

 

 } 
 
 public static int[][] copyMatrix(int matrixIn[][]){ 
  int matrixCopy[][] = new int [matrixIn.length][]; 
      for (int i=0; i<matrixIn.length; i++){ 
       matrixCopy[i] = (int[]) matrixIn[i].clone(); 
      } 
      return matrixCopy; 
     } 
     
 public static double[][] copyMatrix(double matrixIn[][]){ 
  double matrixCopy[][] = new double [matrixIn.length][]; 
      for (int i=0; i<matrixIn.length; i++){ 
       matrixCopy[i] = (double[]) matrixIn[i].clone(); 
      } 
      return matrixCopy; 
     } 
} 
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package simulationTools; 
 
import java.util.Random; 
 
public class ArrayTools { 
 
 public static double getMean(int[] arrayIn, int indexStart){ 
  double sum = 0; 
  for (int i=indexStart; i<arrayIn.length; i++){ 
   sum += arrayIn[i]; 
  } 
  double arrayMean = sum/(arrayIn.length-indexStart); 
  return arrayMean; 
 } 
  
 public static double getMean(double[] arrayIn, int indexStart){ 
  double sum = 0; 
  for (int i=1; i<arrayIn.length; i++){ 
   sum += arrayIn[i]; 
  } 
  double arrayMean = sum/(arrayIn.length-indexStart); 
  return arrayMean; 
 } 
  
 public static double getHarmonicMean(int[] arrayIn, int indexStart){ 
  double sum = 0; 
  for (int i=indexStart; i<arrayIn.length; i++){ 
   sum += (1. / arrayIn[i]); 
  } 
  double arrayHarmonicMean = 1/(sum/(arrayIn.length-indexStart)); 
  return arrayHarmonicMean; 
 } 
  
 public static double getHarmonicMean(double[] arrayIn, int indexStart){ 
  double sum = 0; 
  for (int i=indexStart; i<arrayIn.length; i++){ 
   sum += (1. / arrayIn[i]); 
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  } 
  double arrayHarmonicMean = 1/(sum/(arrayIn.length-indexStart)); 
  return arrayHarmonicMean; 
 } 
  
 public static double getGeoMean(int[] arrayIn, int indexStart){ 
  double product = 1; 
  for (int i=indexStart; i<arrayIn.length; i++){ 
   product *= arrayIn[i]; 
  } 
  double arrayGeoMean = Math.pow(product,(1./(arrayIn.length-indexStart))); 
  return arrayGeoMean; 
 } 
  
 public static double getGeoMean(double[] arrayIn, int indexStart){ 
  double product = 1; 
  for (int i=indexStart; i<arrayIn.length; i++){ 
   product *= arrayIn[i]; 
  } 
  double arrayGeoMean = Math.pow(product,(1./(arrayIn.length-indexStart))); 
  return arrayGeoMean; 
 } 
  
 public static double getStdDev(int[] arrayIn, int indexStart){ 
  double sumOfSquares = 0; 
  double mean = getMean(arrayIn, indexStart); 
  for (int i=1; i<arrayIn.length; i++){ 
   sumOfSquares += ((arrayIn[i] - mean)*(arrayIn[i] - mean)); 
  } 
  double arrayStdDev = Math.sqrt(sumOfSquares / ((arrayIn.length-indexStart) - 1)); 
  return arrayStdDev; 
 } 
  
 public static double getStdDev(double[] arrayIn, int indexStart){ 
  double sumOfSquares = 0; 
  double mean = getMean(arrayIn, indexStart); 
  for (int i=1; i<arrayIn.length; i++){ 
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   sumOfSquares += ((arrayIn[i] - mean)*(arrayIn[i] - mean)); 
  } 
  double arrayStdDev = Math.sqrt(sumOfSquares / ((arrayIn.length-indexStart) - 1)); 
  return arrayStdDev; 
 } 
  
 public static double[] fillRandom (double arrayIn[]){ 
  double rndArray[] = new double [arrayIn.length]; 
  Random rnd = new Random(); 
  for (int i=0; i<arrayIn.length; i++){ 
   rndArray[i] = rnd.nextDouble(); 
  } 
  return rndArray; 
 } 
 
 public static int[] fillRandom (int arrayIn[], int minValue, int maxValue){ 
  int rndArray[] = new int [arrayIn.length]; 
  int range = maxValue - minValue; 
  Random rnd = new Random(); 
  for (int i=0; i<arrayIn.length; i++){ 
   rndArray[i] = rnd.nextInt(range + 1) + minValue; 
  } 
  return rndArray; 
 } 
  
 public static double[] fillRandom (double arrayIn[], double minValue, double maxValue){ 
  double rndArray[] = new double [arrayIn.length]; 
  double range = maxValue - minValue; 
  Random rnd = new Random(); 
  for (int i=0; i<arrayIn.length; i++){ 
   rndArray[i] = (rnd.nextDouble() * range) + minValue; 
  } 
  return rndArray; 
 } 
  
 public static int[] getRandPermutation (int arraySize){ 
      int populationOrder[] = new int[arraySize+1]; 
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         RandPermutation order = new RandPermutation(); 
         order.setPermutation(arraySize); 
      for (int i=1; i<=arraySize; i++){ 
       int nextUp = (int)order.get(i-1); 
       nextUp += 1; 
       populationOrder[i]=nextUp; 
      } 
      return populationOrder; 
 } 
} 
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package simulationTools; 
 
import java.util.NoSuchElementException; 
import java.util.Random; 
 
public class RandPermutation implements IndexIterator{ 
 
 private int[] buffer = null; 
 private int len = 0; 
 private int pointer = 0; 
 private final Random r; 
 
 public RandPermutation(){  
  this.r= new Random();  
 } 
 
 public void setPermutation(int k){ 
  reset(k);  
  for(int i=len; i>1; i--){ 
   int j = r.nextInt(i); 
   int a = buffer[j]; 
   buffer[j] = buffer[i-1]; 
   buffer[i-1] = a; 
  } 
 } 
 
 public int get(int i){ 
  if( i >= len ) throw new IndexOutOfBoundsException(); 
   return buffer[i]; 
  } 
 
 public void reset(int k){ 

 pointer = k; 
  if( len == k ) return; 
  if( buffer == null || buffer.length < k ){ 
   buffer = new int[k]; 
  } 
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 len = k; 
  for( int i=0; i<len; ++i ) buffer[i]=i; 
 } 
 
 public int next(){ 
  
  if( pointer < 1 ) throw new NoSuchElementException(); 
  int j = r.nextInt(pointer); 
  int a = buffer[j]; 
  buffer[j] = buffer[pointer-1]; 
  buffer[pointer-1] = a; 
  return buffer[--pointer]; 
 } 
 
 public boolean hasNext(){  
  return pointer > 0;  
 } 
} 
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package simulationTools; 
 
public interface IndexIterator{ 
 
 public void reset(int k); 
  
 public int next(); 
 
 public boolean hasNext(); 
} 
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