
Filtering Features for a Composite Event Definition Language

Susan D. Urban, Ingrid Biswas, Suzanne W. Dietrich
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-8809

susan.urban@asu.edu, ibiswas@asu.edu

Abstract

This research has enhanced a distributed, rule-based
application integration environment with a composite
event definition language (CEDL) and detection system.
CEDL builds on existing composite event operators and
selection modes, adding features to support the filtering
of primitive and composite events. The filtering features
include basic parameter filtering on primitive and
composite events, aggregate and quantifier filters on
cumulative event parameters, and time filters for defining
the lifetime of the composite event detection process. This
paper presents examples of CEDL, illustrating the
expression of application-oriented events through the
aggregation and correlation of distributed events.

1. Introduction
Composite events are increasingly being used as a
communication mechanism to achieve enterprise
application and business-to-business integration. As an
example, a credit card company may need to keep track of
the customers who don’t make payments on monthly
statements. The company can monitor the total amount of
consecutive non-payments of a customer on continuous
late payments and take appropriate action against the
customers’ credit rating. A banking application could
restrict the number of automatic teller machine (ATM)
withdrawals and total amount on the withdrawals that can
be done over the period of a working day. In an online
shopping application, a company may want to be notified
if the collective purchases of a customer are over a certain
amount within a given period of time so that it can offer
free shipping for further purchases. A common theme
among all of these examples is that the generation of
composite events often involves monitoring related
events, such as late payments by the same customer or
aggregate ATM withdrawals with an accumulated total
from the same account.

The primary objective of this research has been to
investigate the development of a composite event
specification language and processing environment with
filtering capabilities for the Integration Rules (IRules) [3,
8, 9] project. The IRules project is a distributed

integration environment that integrates software black-
box components using active rules known as integration
rules. IRules events provide the means for independent,
distributed components to communicate with each other
through the triggering of integration rules that invoke
services provided by distributed components or global
application transactions.

The event processing capabilities of the IRules
environment were originally developed in [6, 10], which
included a language for the specification of primitive
events, event generating capabilities for distributed
components, event synchronization capabilities for
synchronizing the execution of events, rules, and
transactions, and an event handler for communicating the
occurrence of primitive events to the integration rule
processor. This research has enhanced the event
processing capabilities of the IRules environment with the
Composite Event Definition Language (CEDL) and
corresponding composite event detection environment [1].
CEDL was developed by adopting existing event algebra
operators and selection modes from past research [2, 4, 5]
on composite events. The unique aspect of CEDL is the
support it provides for filtering of primitive events as well
as filtering of composite events and their associated
aggregate values and timelines. The filtering capabilities
are based on features initially explored in [11]. Filtering
of events reduces the rule-processing load on the IRules
rule manager by checking conditions on event parameters
before rules are triggered. The primary advantage,
however, is that filtered composite events enhance
integration activities with a more meaningful approach to
the expression of the types of complex, application-
oriented events that are needed in the construction of
distributed, event-driven applications.

2. IRules Primitive Events
The IRules environment supports the definition of several
different type of events. The event type that is the most
relevant to this research is the method event, which
represents a call to a method of a component. Event
modifiers can be used with method events to specify if the
event is raised before or after the execution of the
method. An example of the specification of a primitive

method event is shown in Figure 1. The name
afterUpdatePurchaseStatus is the name of the method event.
The event is declared to occur after the execution of the
method updatePurchaseStatus.

Figure 1. A Primitive Method Event Definition

3. Overview of Composite Events in CEDL
The event operators of CEDL were chosen from those of
past research on composite events in active database
systems [2, 4]. The composite event AND(A, B) is triggered
on the occurrences of event A and event B, where event A
and event B represent primitive and/or composite events.
The event OR(A, B) is triggered on the occurrence of either
event A or event B. Event SEQ(A, B) is triggered on the
occurrence of event A followed by event B. The order of
events is important in SEQ(A, B), where the timestamp for
the start of event A is older than the timestamp of event B.
The event TIMES(A, n) is raised on n occurrences of event
A, where n can be a constant integer value or ‘*’ to
represent any number of occurrences within a specified
time period. TIMES(A, n) generates only one event but
creates a collection of parameter values for each
occurrence of A.
 CEDL has adopted the recent (latest) and continuous
event selection modes from [2] for use with the AND, OR,
and SEQ event operators, where recent indicates that the
most recent occurrence of an event is used in the
construction of a composite event, and continuous
indicates that every occurrence of an event generates the
detection process for a new composite event. The
cumulative selection mode is automatically provided with
the use of the TIMES event, where all parameter values of
the same event types are formed into a collection
associated with a single occurrence of the TIMES event. A
more detailed discussion of the semantics of selection
modes with all of the CEDL operators appears in [1].
 The third aspect of the CEDL language design involved
the design of three different types of filters for primitive
and composite events. The time filter is used to specify
how long a composite event should wait for additional
events after detecting the first event that it is listening for.
The parameter filter is used to filter events based on the
parameter values that are part of the event instance. The
third type of filtering is specific to the cumulative
parameter values of the TIMES operator. Filtering with the
TIMES operator can be done in one of three ways: the
indexing filter, the aggregate filter, and the quantification
filter. Specific examples of filtering over cumulative
parameter values are provided in the next section.

 With respect to related work, ODE [4] and COBEA [7]
have had the most influence on the design of CEDL. Both
ODE and COBEA support filtering, but CEDL extends
filtering functionality by allowing comparisons between
parameters of different events. The indexed, aggregate,
and quantifier filters of CEDL are a unique feature
provided on cumulative event parameters that have not
been adequately addressed in past research on composite
event specification languages.

4. CEDL Filtering Features
This section describes the filtering features of CEDL in
the context of composite events. For simplicity, all
examples assume the use of the latest selection mode.

4.1. Filters for AND, OR, and SEQ
Figure 2 illustrates the most basic form of the AND
operator. The composite keyword is used to specify the
start of the composite event specification. The name
freeShipping is the name of the event, while loginName is
the event parameter value that will be returned with the
instance of the composite event. Composite event
parameters are a projection of the event parameters of the
events used to detect this event. In Figure 2, the event
freeShipping is triggered to offer free shipping to
customers on their next order for those who have placed
two orders, indicated by a conjunction of different
completeOrder events for the same customer within a one
day period, with order amounts more than $99 each.
 In Figure 2, there is an implicit parameter filter on the
loginName of the events, indicated by the use of the same
name (i.e., loginName) for the first parameter of each
completeOrder event. The implicit parameter filter implies
that the orders are associated with the same customer. The
time filter, within 1 day, adds a restriction on the amount of
time the composite event will remain active in the system.
The event handler will wait for 1 day after the occurrence
of the first event, before it discards the event instance. OR
events are specified in a manner similar to AND events
except that 1) parameter filters are not supported with an
OR event since the system is not aware of the event that
will trigger the composite event until runtime, and 2) time
filters are also not used with OR events, since the first
event that occurs triggers the OR event after satisfying the
composite freeShipping(loginName)
{completeOrder(String loginName, String orderId1,
 float amount1) AND
 completeOrder(String loginName, String orderId2,
 float amount2)
 where orderId1 != orderId2 and
 amount1 >= 99 and amount2 >= 99
 within 1 day;}

Figure 2. An AND Event with Parameter and
Time Filters

event afterUpdatePurchaseStatus(poNo,status)
{method after updatePurchaseStatus
 (String poNo,String status)};

conditions in the parameter filter.
 Figure 3 is an example of a SEQ event. This event is
defined to complete an order for a customer. When the
afterCreditCheck event occurs for the same loginName and
orderId as the afterCheckOut event, the composite event
handler will test the parameter filter and trigger the
completeOrder event, as long as the afterCheckCredit event
occurs within 3 hours of the occurrence of the
afterCheckOut event.

4.2. Basic Use of TIMES
In Figure 4, a TIMES event updateCustomerHistory is
defined that listens for the occurrence of afterCancelOrder
events two times within the time period of eight weeks.
This event can be used to monitor the shopping habits of
customers. A ‘*’ can be specified instead of the constant 2
to listen for an unlimited number of occurrences of a
particular event in the given time span. The composite
event that is listening for ‘*’ event occurrences is
triggered at the end of the time period defined in the time
filter. The loginName in the for clause is the key for the
TIMES event. The key implies that for all occurrences of
the events that are being consumed, the key values are the
same for all the event occurrences. In the case of a TIMES
composite event, the output parameters that can be sent
with the composite event are a projection of the key
parameter values specified on the event.

4.3. Parameter Filters for the TIMES Event
An example of the use of the TIMES indexed parameter
filter is given in Figure 5. As seen in the example,
amount(1) is an event parameter that represents the amount
value in the first event instance of the composite event.
Similarly, amount(2) represents the amount value in the
second event instance. The example shows that the
individual event parameters can be compared to other
event parameters as well as to constants. In the example
given in Figure 5, the parameter filter checks that

orderId(1) is not equal to orderId(2) and that the value of
amount(1) and amount(2) is more than $100.

The second type of filter provided to the TIMES event
is an aggregate filter that can be applied on the event
parameters. An example of an aggregate filter is given in
Figure 6, where the sum function is used to determine if
the sum of the cancelled orders is greater than $3000. The
various aggregate functions supported by CEDL are sum,
count, min, max, and avg, where each function provides the
obvious meaning. All of the aggregate functions are
applied to arithmetic values, except for the count function,
which can be applied to any parameter.

The third type of TIMES filter is the quantifier filter
that is applied to the cumulative parameter values. The
system provides both universal and existential
quantification. An example of the universal quantifier
filter is given in Figure 7. In this example the filter
determines if the amount for each order is greater than
$100.

4.4. Use of Nested Composite Events
Composite events can be composed in a nested fashion to
create more complex composite events. Figure 8
illustrates a complex composite event that is created as a
result of nesting other composite and/or primitive events.
The nested composite event is monitoring possible
nuisance shoppers who place orders and then either return
items, register complaints on the items purchased, or

composite updateCustomerHistory(loginName)
{TIMES(afterCancelOrder(String loginName, String orderId,
 float amount), 2)
 for loginName
 within 8 weeks ;}

Figure 4. A TIMES Event with a Time Filter

composite updateCustomerHistory(loginName)
{TIMES(afterCancelOrder(String loginName, String orderId,
 float amount), 2)
 for loginName
 where orderId (1) != orderId (2)
 and amount(1) > 100 and amount(2) > 100
 within 8 weeks ;}

Figure 5. A TIMES event with Parameter Filter

composite updateCustomerHistory(loginName)
{TIMES(afterCancelOrder(String loginName, String orderId,
 float amount), 2)
 for loginName
 where sum(amount) > 3000 and orderId(1) != orderId (2)
 within 8 weeks;}
Figure 6. A TIMES Event with Aggregate Filter

composite completeOrder(loginName, orderId, amount)
{afterCheckout(String loginName, String orderId) SEQ
 afterCheckCredit(String loginName, String orderId,
 float amount, String status)
 where amount > 0 and status == “OK”
 within 3 hours;}

Figure 3. A SEQ Event with Parameter and
Time Filters

composite updateCustomerHistory(loginName)
{TIMES(afterCancelOrder(String loginName, String orderId,
 float amount), 2)
 for loginName
 where orderId(1) != orderId(2)
 and for all a in amount: a >= 100
 within 8 weeks ;}

Figure 7. Universal Quantifier Filter in a
TIMES Event

cancel the order within a period of twelve weeks. The
possibleNuisanceShopper composite event is defined as a
SEQ event, with completeOrder followed by a disjunction
of three different events (i.e., a TIMES event on returnItems,
a TIMES event on registerComplaint, or a cancelOrder event).
In this example, there is an implicit filter on the
customer’s loginName and orderId to ensure that all events
are associated with the same customer and order.

Figure 9 shows an example of detecting multiple
instances of a complex composite event, where
nuisanceShopper is defined on multiple occurrences of the
composite event possibleNuisanceShopper over a period of
24 weeks. The complex events in Figures 8 and 9
demonstrate the strength of the CEDL composite event
operators together with the filtering capabilities for
defining meaningful, application-oriented events.

5. Summary
This research has enhanced a distributed event-based
integration environment with a composite event definition
language and detection system that enables users to make
use of filter conditions, aggregation, and correlation in the
definition of events. Although not described in this paper,
an event detection and handling module has also been
implemented that composes primitive and composite
events into complex composite events [1] and implements
the filtering features of CEDL.
 Our current research is focused on a service-oriented
architecture known as the DeltaGrid. The DeltaGrid
involves the integration of Grid Services with notification
capabilities. The research presented in this paper is being
integrated into the DeltaGrid system to enable a

composite event handling feature over Grid Services. The
event handler and detection unit are being redesigned for
greater compatibility with Grid Services technology. The
event handler is also being extended to function as a
distributed event handler. Performance issues related to
operating within a distributed environment, such as time
lag, network delays, and point of failure still need to be
addressed.

6. References
[1] I. Biswas, A Composite Event Definition Language and
Detection System for the Integration Rules Environment, M.S.
Thesis, Computer Sci. and Eng., Arizona State Univ., 2005.

[2] S. Chakravarthy and D. Mishra, “Snoop: An Expressive
Event Specification Language for Active Databases,”
Knowledge & Data Eng., vol. 14, no. 10, 2004, pp. 1-26.

[3] S. W. Dietrich, S. D. Urban, A. Sundermier, Y. Na, Y. Jin,
and S. Kambhampati, “A Language and Framework for
Supporting an Active Approach to Component-Based Software
Integration,” Informatica, vol. 25, no. 4, 2001, pp. 443-454.

[4] S. Gatziu and K. Dittrich, “Events in an Active Object-
Oriented Database System,” Proc. of the 1st Int. Workshop on
Rules in Database Sys., Springer, 1993.

[5] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Event
Specification in an Active Object-Oriented Database,” Proc. of
the ACM SIGMOD Int. Conf. on Management of Data,
California, 1992, pp. 81-90.

[6] S. Kambhampati, An Event Service for a Rule-Based
Approach to Component Integration, M.S. Thesis, Dept. of
Computer Sci. and Eng., Arizona State Univ., April 2003.

[7] C. Ma, and J. Bacon, “COBEA: A CORBA-Based Event
Architecture,” Proc. of the 4th USENIX Conf. on Object-
Oriented Technologies and Sys., 1998, pp. 117-131.

[8] S. D. Urban, S. W. Dietrich, Y. Na, Y. Jin, A. Sundermier
and A. Saxena, “The IRules Project: Using Active Rules for the
Integration of Distributed Software Components,” Proc. of the
9th IFIP 2.6 Working Conf. on Database Semantics: Semantic
Issues in E-Commerce Sys., Hong Kong, 2001, pp. 265-286.

[9] S. D. Urban, S. W. Dietrich, A. Sundermier, Y. Jin, S.
Kambhampati, and Y. Na, “Distributed Software Component
Integration: A Framework for a Rule-Based Approach,”
Handbook of Electronic Commerce in Business and Society, R.
Watson, P. Lowery, and J. Cherrington (eds), 2002, pp. 395-421.

[10] S. D. Urban, S. Kambhampati, S. W. Dietrich, Y. Jin, and
A. Sundermier, “An Event Processing System for Rule-Based
Component Integration,” Proc. of the Int. Conf. on Enterprise
Information Sys., Porto, Portugal, 2004, pp. 312-319.

[11] S. D. Urban, A. Unruh, G. Martin, and M. Modine,
Expressing Composite Events in InfoSleuth, MCC Corporation,
Tech. Report #MCCINSL, 1998, pp. 131-98.

composite nuisanceShopper(loginName)
{TIMES (possibleNuisanceShopper (String loginName), *)
 for loginName
 where count (loginName) > 3
 within 24 weeks ;}

Figure 9. Detecting Multiple Occurrences of
a Complex Composite Event

composite possibleNuisanceShopper(loginName)
 { completeOrder(String loginName, String orderId,
 float amount) SEQ
 ((TIMES (returnItems(String loginName, String orderId,
 String itemNo1), 2)
 for loginName, orderId
 within 4 weeks; OR
 TIMES (registerComplaint(String loginName,
 String orderId, String itemNo2), 2)
 for loginName, orderId
 within 4 weeks; ;) OR
 cancelOrder(String loginName, String orderId) ;)
 within 12 weeks;}

Figure 8. A Nested Composite Event

