
Exploring XML for Data Exchange
in the Context of an Undergraduate Database Curriculum

Suzanne W. Dietrich Susan D. Urban Hua Ma Yang Xiao Shama Patel

Department of Computer Science and Engineering

Arizona State University

Tempe, AZ 85287-8809
dietrich@asu.edu s.urban@asu.edu

ABSTRACT
The relationship between XML and database management
systems has become an important topic for coverage at the
undergraduate level. This paper presents an approach to teaching
the use of XML through the study of data exchange. After a brief
review of XML, the paper provides a tutorial on the different
features that are provided in major relational database products for
the import and export of XML, providing a discussion of how
these features can be used as implementation exercises for
students. In addition to addressing the use of XML for data
exchange in relational systems, the paper also provides an
overview of several teaching tools that are also used in the study
of XML for object-oriented data and also for the exchange of
object-oriented and object-relational data.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – relational databases,
object-oriented databases, textual databases.

General Terms
Languages

Keywords
XML, data exchange, undergraduate database curriculum,
relational databases, object-oriented databases, object-relational
databases.

1. INTRODUCTION
The Extensible Markup Language (XML) [13] is an important
topic to address when teaching database concepts to
undergraduates. The SQL:2003 standard [8] includes a new part
on XML-related specifications, called SQL/XML [6]. Further
advancements to SQL/XML can be found in [7]. However, there
is varying support in database products for features described in
the standard. Database educators are now faced with the challenge
of upgrading course content based on the evolving SQL/XML
standards and understanding how to use XML-enabled database
products as a teaching tool in the classroom.

At Arizona State University, we have developed an advanced
database concepts course (http://www.eas.asu.edu/~cse494db) for
undergraduates that assumes a prerequisite course on relational
database systems (e.g., http://www.eas.asu.edu/~cse412). A recent
textbook [5] provides detailed coverage of the advanced database
topics addressed in this course. A companion Web site
(http://www.eas.asu.edu/~advdb) gives curriculum examples that
support the concepts covered in the book. One module of the
course includes coverage of XML and its relationship to data
management. The standard for XML is introduced, including
Document Type Definitions (DTDs) and XML Schema for
representing the valid content of an XML document. The use of
XML is addressed in the context of both object-oriented and
relational data, with a specific focus on how XML can be used to
support data exchange between different applications and
database systems. Related work on the use of XML in the
classroom has been reported in [12], describing the use of XML
for exercises involving data modeling, converting an XML
schema to a relational schema, using XPath to query an Oracle
XMLType, and parsing XML documents.

This paper provides an overview of our approach to using XML
for data exchange as a means for teaching students the
relationship between XML and databases. The paper is presented
in a tutorial style, outlining the XML features of several different
relational database products that we have explored for use in the
classroom, including Microsoft Access, Oracle, SQL Server 2000,
and the new SQL Server 2005 Express [9]. In addition to
discussing how these features can be used for exercises involving
relational data exchange, we also provide an overview of several
teaching tools that are also used in the study of XML for object-
oriented data (using Objectivity/DB) and for the exchange of
object-oriented and object-relational data between Objectivity/DB
and Oracle implementations of the same conceptual design.
Students therefore experience the use of XML with several
different database paradigms.

The remainder of this paper is structured as follows. Section 2
provides a brief overview of XML. Section 3 then describes the
data exchange support for XML in the four relational systems
mentioned above, providing a discussion of how these features
can be used as a teaching tool. Section 4 addresses our experience
with the use of XML in an object-oriented database, whereas
Section 5 focuses on a tool that we have developed for using
XML for data exchange between object-relational and object-
oriented databases. Section 6 concludes the paper with a
discussion of our exploration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002...$5.00.

53

2. A BRIEF INTRODUCTION TO XML
XML is widely used for representing textual knowledge. The
markup language allows for user-defined tags to provide the
semantics of the data contained in the document. Consider the
schema of a simple employee table [3]:

employee(eID, eLast, eFirst, eTitle, eSalary)
Figure 1 shows a sample XML document representing a canonical
table-based mapping of the employee relational table in XML
based on the format discussed in [6]. A tag is a label that is
contained within a < and >. A label is case sensitive in XML and
cannot contain white space. Each opening tag must be matched
with a closing tag that has the same label except that the label is
preceded by a / character. The term element refers to an opening
tag, the enclosed text, and the corresponding ending tag. A well-
formed XML document must contain a distinguished root
element, which is employee in the example shown in Figure 1.
Additionally, a well-formed XML document must contain a
proper nesting of all elements. As shown in Figure 1, each tuple
of the table is enclosed within a row element, which has elements
corresponding to each column in the employee table.

Figure 1 illustrates an element-based representation of the XML
data. The opening tags of elements may contain attributes, which
have a name and a value that is enclosed in quotes. The following
is an alternative attribute-based representation of a table row in
XML:
<row eID="456" eLast="Last456" eFirst="First456"

eTitle="Software Engineer" eSalary="45456" />

3. RELATIONAL SYSTEMS
This section provides an overview of the support for XML in the
four relational systems that we have explored: Access, SQL
Server 2000, Oracle and the recently announced SQL Server 2005
Express. Initial support for representing XML in relational
database products used CLOBs (Character Large OBjects) or
varying length character strings (varchar), while more recent
releases have introduced an explicit type for XML.

3.1 Access
Access has the capability to export and import XML data. To
export the XML representation of data in a relational table, select
the table in Access and then select the Export item from the File
menu. (Another alternative is to use the shortcut of a right-mouse
click on the table to open a pop-up window that shows the Export
option.) Choose the “Save as Type XML Documents” option. Access
generates several files on the export of a table:

• xml: The xml data corresponding to the table, where
the XML distinguished root element is dataroot and each
tuple of the table is enclosed by an element given by the
table name.

• xsd: The XML Schema Definition for the generated
XML data.

• xsl: An Extensible Stylesheet Language file that
provides a transformation of the XML to HTML for
viewing in a browser.

There are several options for importing XML data into Access.
From the File menu, select Get External Data and then Import. There
is an Options button that allows one of the following choices:

• structure and data: The structure of the XML document
and its corresponding data is imported into a table,
given by the name of the element enclosing each row.
By default, the fields corresponding to imported XML
data are defined in Access as text with maximum length
of 255.

• structure only: Only the structure of the XML document
is used to define a table.

• append to an existing table: By defining a table with the
appropriate field types first, the import of XML data can
be appended into the table and the textual data will be
imported as the predefined type.

3.2 SQL Server 2000
SQL Server 2000 uses strings (varchar) for representing XML
data. The FOR XML clause of the SELECT statement provides the
capability to return XML data. The Transact-SQL (T-SQL)
programming language provides programmatic support with the
OPENXML function for importing XML data into a relational table.

The SELECT statement allows a FOR XML clause to return the
result of a query in XML format:

SELECT … FROM … FOR XML mode [,ELEMENTS]
The mode specification indicates the structure of the resulting
XML. By default, an attribute-based XML representation for the
data is provided, where the columns of the table are represented as
attributes in XML. The use of the ELEMENTS option changes the
XML representation to be element-based, where each column of
the table is represented as an XML element. The choices for the
mode specification are: RAW, AUTO and EXPLICIT. The following
query will be used to illustrate the XML result based on the mode:

SELECT * FROM employee WHERE eID='456' FOR XML
The RAW mode returns each tuple of the resulting query in a
generic row element:
 <row eID="456" eLast="Last456" eFirst="First456"

eTitle="Software Engineer" eSalary="45456" />
The AUTO mode returns each tuple in an element named by the
table name:
<employee eID="456" eLast="Last456" eFirst="First456"

eTitle="Software Engineer" eSalary="45456" />

<employee>
 <row>

<eID>456</eID>
<eLast>Last456</eLast>
<eFirst>First456</eFirst>
<eTitle>Software Engineer</eTitle>
<eSalary>45456</eSalary>

 </row>
<!-- This is an XML comment: other rows are not shown -->
 <row>

<eID>999</eID>
<eLast>Last999</eLast>
<eFirst>First999</eFirst>
<eTitle>Manager</eTitle>
<eSalary>100999</eSalary>

 </row>
</employee>

Figure 1. XML Data for an employee Table

54

The EXPLICIT mode provides the capability to specify the structure
of the resulting XML. Due to space limitations, the full details of
the EXPLICIT specification are beyond the scope of this paper. The
ELEMENTS option returns an element-based XML representation:
<employee>

<eID>456</eID>
<eLast>Last456</eLast>
<eFirst>First456</eFirst>
<eTitle>Software Engineer</eTitle>
<eSalary>45456</eSalary>

</employee>
Figure 2 illustrates the population of the employee table in SQL
Server 2000. The OPENXML function parses and queries an XML
document to return values in the form of rows and columns. The
sp_xml_preparedocument and sp_xml_removedocument are two
system procedures that are associated with the OPENXML function.
The sp_xml_preparedocument procedure takes an XML string as a
parameter and parses it to build an XML internal tree
representation (pointed to by @iTree). Once the document is
prepared, OPENXML can be used to query the document and return
a result set. The sp_xml_removedocument procedure should be
executed after XML processing to release the allocated memory.

3.3 Oracle
Oracle (Version 9) introduced a data type for XML, called
XMLType. The attributes of a table can be defined to be of type
XMLType, allowing the storage of XML within a table. Oracle
provides two packages for supporting XML: DBMS_XMLGEN and
DBMS_XMLSave.

DBMS_XMLGEN is a PL/SQL package that supports the creation of
XML from an SQL query. To generate an XML document, first
create a context handle by passing the query to the parameter of
the newContext method, where employeeCtx is declared to be of
type DBMS_XMLGEN.ctxhandle:
employeeCtx :=
 DBMS_XMLGEN.newContext('SELECT * FROM employee');

By default, Oracle uses an element-based representation of the
table having the element ROWSET as the distinguished root and
each tuple of the table is enclosed in a ROW element. The
setRowSetTag and setRowTag methods allow for changing the
defaults to the second parameter, where the first parameter is the
XML context handle:

 DBMS_XMLGEN.setRowSetTag(employeeCtx, ‘employees’);
 DBMS_XMLGEN.setRowTag(employeeCtx, ‘employee’);
The XML results can be stored in either a CLOB or an XMLTYPE,
using the getXML or getXMLType methods, respectively:
 empXMLclob := DBMS_XMLGEN.getXML(employeeCtx);
or
 empXMLtype := DBMS_XMLGEN.getXMLType(employeeCtx);
where empXMLclob is defined to be of type CLOB and empXMLtype
is defined to be of type XMLType. A procedure can then be written
to store the result in a file.

The import of XML data to be stored as a relational table requires
calling the methods provided by the DBMS_XMLSave package in
Oracle. Assuming that the table employee is already defined (but
not populated), a context named empCtx is defined as type
DBMS_XMLSave.ctxType and assigned as the context for the save of
the XML data to the employee table:

empCtx := DBMS_XMLSave.newContext(employee);

The setRowTag method allows for the specification of the row tag
that encloses each tuple. In this example, it is assumed to be
called employeeRow:

DBMS_XMLSave.setRowTag(empCtx, ‘employeeRow’);

The following call to the setIgnoreCase method tells Oracle to
ignore any case differences in matching XML element names to
database attribute names, since the database convention is to
ignore case sensitivity in attribute names:

DBMS_XMLSave.setIgnoreCase(empCtx, 1);

A call to the insertXML method inserts the employee data
represented in XML as a CLOB into the employee table, returning
the number of rows inserted into the table:

numberOfRows :=
DBMS_XMLSave.insertXML(empCtx, empXMLclob);

The closeContext method releases the resources associated with the
context:

DBMS_XMLSave.closeContext(empCtx);

The new XMLType in Oracle allows for storing XML directly in
the database. Consider the following table definition:

CREATE TABLE sampleXMLtable
(xmlColumn XMLType);

Assume that the variable myXMLclob contains a CLOB
representation of XML data, the following code snippet shows
how to create an instance myXMLdata of an XMLType from a CLOB
and insert the XML into the table:

myXMLdata := XMLType.createXML(myXMLclob);
INSERT INTO sampleXMLtable VALUES (myXMLdata);

3.4 SQL Server 2005 Express
The recently announced SQL Server 2005 Express [9] also
supports a new type called XML, extending the features discussed
for SQL Server 2000 with inherent support for XML. The stored
procedure sp_xml_preparedocument has been extended to support a
parameter of type XML rather than a string (varchar) and the FOR
XML clause has been extended with several new features.

The FOR XML clause of the select statement allows a TYPE option,
returning an instance of type XML, which is assigned to the myxml
variable:

CREATE PROCEDURE insertEmployeeXML
 @myxml varchar(2000)
AS
DECLARE
 @iTree int
 EXEC sp_xml_preparedocument @iTree OUTPUT, @myxml
 INSERT employee(eID, eLast, eFirst, eTitle, eSalary)
 SELECT * FROM OPENXML(@iTree,'/dataroot/employee',2)
 WITH (eID varchar(5) 'eID',

 eLast varchar(20) 'eLast',
 eFirst varchar(20) 'eLast',
 eTitle varchar(50) 'eTitle',
eSalary float 'eSalary')

 EXEC sp_xml_removedocument @iTree

Figure 2. Inserting XML Data in SQL Server 2000

55

DECLARE @myxml XML
SET @myxml =

(SELECT * FROM employee WHERE eID='456'
 FOR XML, ELEMENTS, TYPE)

The FOR XML clause of the select statement has also been
extended to allow a PATH mode and ROOT directive for specifying
a more complex XML structure. Consider as a motivational
example, the creation of an XML representation of the employee
data that

• returns the eID as an id attribute in XML,

• encloses the eLast and eFirst attributes within a name
element,

• encloses each tuple within an element named
employeeTuple, and

• names the distinguished root of the XML document as
employeeDataRoot.

The following select statement illustrates the query specification:
SELECT eID AS '@id',
 eLast AS 'name/eLast',

eFirst AS 'name/eFirst',
 eTitle,
 eSalary

FROM employee
FOR XML PATH(‘employeeTuple’),

ROOT(‘employeeDataRoot’)
The following indicates the resulting XML (with only one
employee tuple shown for brevity of presentation):
 <employeeDataRoot>

<employeeTuple id="456">
 <name>
 <eLast>Last456</eLast>
 <eFirst>First456</eFirst>
 </name>
 <eTitle>Software Engineer</eTitle>
 <eSalary>45456</eSalary>
 </employeeTuple>

 …
 </ employeeDataRoot >

SQL Server 2005 Express also has the capability to store XML
data as an attribute value. Consider the following table definition:

CREATE TABLE sampleXMLtable
(xmlColumn XML);

The INSERT statement can be used to populate a column of type
XML:

 INSERT INTO sampleXMLtable VALUES (@xmlColumnValue);
where the variable @xmlColumnValue can be declared either as
type XML or varchar, and is assumed to have the value of an XML
document. The system automatically converts a varchar argument
to type XML for inserting the values.

3.5 Relational Data Exchange
The features described in the previous subsections provide useful
tools that can be used in exercises to explore XML through data
exchange between different database products. Exercises can be
designed to use the export/generation feature of one product and

then use the import/loading feature of the other product.
Depending on the products available, exercises can either focus
on the transfer of data between a relational table and XML format
or the storage of an XML file as an XML type in a relational
table. For example, the use of the FOR XML, ELEMENTS option of
the SELECT statement in SQL Server (2000 or 2005 Express)
results in an element-based representation of the table, with the
table name as the element enclosing each tuple. The Oracle
DBMS_XMLSave package can then be used to load the XML data
into a table, specifying the table name as the row tag in the
setRowTag method.

4. AN OBJECT-ORIENTED EXPLORATION
Our exploration of XML in the classroom includes the use of
XML with object-oriented and object-relational database systems
so that students also have an understanding of how to use XML to
represent object-oriented data. The study of XML with the use of
object-oriented databases makes use of the Object Manager tool
developed at ASU and presented in [4]. The Object Manager is a
graphical user interface tool for interacting with object-oriented
databases such as Objectivity/DB. An XML file is used to
communicate the schema of an object-oriented database to the
Object Manager, allowing students to define the classes in the
database, the attributes and keys of each class, inverse
relationships between classes, and method names for getting and
setting attributes and relationships. The Object Manager uses this
schema information in the XML file to generate a generic user
interface that allows students to create objects, delete objects, and
manage relationships between objects. The Object Manager also
supports importing of XML data into an object-oriented database
as well as exporting of data to an XML file. Specific XML
examples of schema and data files used with the Object Manager
can be found in [4].

Our most current use of the Object Manager is integrated with a
tool that we have developed known as the Object Database
Generator [10]. The Object Database Generator, outlined in the
following section on object-relational exploration, allows students
to use XML to study similarities and differences between object-
oriented and object-relational representations of data.

5. AN OBJECT-RELATIONAL EXPLORATION
XML for the representation of object-relational data is explored
through the use of the Object Database Generator (ODG) [10].
The ODG was developed to support the portability of data
between an Oracle object-relational database system and the
Objectivity/DB object-oriented database system. Figure 3 shows
the architecture of the ODG. Beginning with a database schema
described using the Object Definition Language (ODL) of the
Object Data Management Group (ODMG) standard [1], the ODG
supports the creation of Objectivity and Oracle database
implementations from the same ODL schema. For Objectivity, the
ODG compiles an ODL schema to generate an XML file that
conforms to the schema description required by the Object
Manager tool. Students then implement the Java classes for the
object-oriented database implementation. For Oracle, the ODG
gives students a choice of bidirectional or unidirectional
relationships for all inverse relationships in the ODL schema
based on an object-relational mapping approach described in [5].
Furthermore, for the many side of a 1:N or a M:N relationship, the
user must specify the implementation to be either a varray or a
nested table, which are the choices for representing collections in
Oracle. The ODG then generates the appropriate object type,

56

object table, varray, and nested table definitions for the creation of
an object-relational database. Students complete the
implementation with the creation of the appropriate stored
procedures and functions.

A subcomponent of the ODG is the Oracle-to-Objectivity
Converter (OOC), originally developed in [11] and modified in
[10] for use as part of the ODG. The OOC transforms data in the
object-relational implementation of the ODL schema into an
XML data file that conforms to the data format used by the Object
Manager. As part of the transformation, the OOC generates the
inverse data for unidirectional relationships. Students then
experiment with exporting data from the Oracle object-relational
implementation into the corresponding Objectivity database
through the XML data import feature of the Object Manager. The
ODG together with the OOC allows students to study the
similarities and differences between the object-oriented and
object-relational implementations, using XML to transfer data
from one implementation to the other.

Figure 3. Architecture of the Object Database Generator

6. DISCUSSION
This paper has explored the use of XML for data exchange
between relational systems as well as data exchange between
object-oriented and object-relational database systems. It is
important to note that many existing relational database systems
also provide the capability to export a database in a format
compatible for another product. For example, SQL Server 2000
has a tool, known as the Data Transformation Service, which
transforms data from SQL Server to Oracle without the use of
XML. Also, some products may also provide separate tools for
mapping tables and views to XML documents, such as Oracle’s
XML SQL Utility. We have found, however, that an XML-based
approach to data exchange is a useful learning tool, where
students are exposed to the universal nature of XML as a means
for representing data and its corresponding description, together
with relevant database tools that support the import and export of
XML data.

As the support for XML in commercial database products
continues to grow, so will our approach to the incorporation of
XML into the database curriculum. For example, some of the
products discussed in this paper already have some form of
support for querying XML [2]. We anticipate the expression of
queries over XML data as the next module in our approach to
teaching XML within an advanced database curriculum for
undergraduates.

7. ACKNOWLEDGMENTS
We would like to thank Ingrid Biswas and Alexey Ushakov who
supported earlier versions of this exploration. This research was
supported by NSF Grant No. DUE-9980417 and the Microsoft
Research Content and Curriculum Program.

8. REFERENCES
[1] Cattell, R. G. G. et al. (eds.) The Object Database Standard:

ODMG 3.0. Morgan Kaufmann, San Franciso, 2000.
[2] Chaudhri, A. B., Rashid, A., and Zicari, R. (eds.) XML Data

Management: Native XML and XML-Enabled Database
Systems. Addison-Wesley, Boston, 2003.

[3] Dietrich, S. W. Understanding Relational Database Query
Languages. Prentice Hall, Upper Saddle River, NJ, 2001.

[4] Dietrich, S. W., Suceava, D., Cherekuri, C., and Urban, S. D.
A Reusable Graphical Interface for Manipulating Object-
Oriented Databases Using Java and XML. In Proceedings of
the ACM Technical Symposium on Computer Science
Education (SIGCSE ’01) (North Carolina, Feb. 2001). ACM
Press, New York, NY, 2001, 362-366.

[5] Dietrich, S. W. and Urban, S. D. An Advanced Course in
Database Systems: Beyond Relational Databases. Prentice
Hall, Upper Saddle River, NJ, 2005.

[6] Eisenberg, A. and Melton, J. SQL/XML is making good
progress. ACM SIGMOD Record, 31, 2 (Jun. 2002), 101-
108.

[7] Eisenberg, A. and Melton, J. Advancements in SQL/XML.
ACM SIGMOD Record, 33, 3 (Sep. 2004), 79-86.

[8] Eisenberg, A., Melton, J., Kulkarni, K., Michels, J., and
Zemke, F. SQL:2003 has been published. ACM SIGMOD
Record, 33, 1 (Mar. 2004), 119-126.

[9] Microsoft Corporation. SQL Server 2005 Express Edition,
2004. http://lab.msdn.microsoft.com/express/sql/

[10] Patel, S. The Object Database Generator. M.C.S. Project,
Department of Computer Science and Engineering, Arizona
State University, 2003.

[11] Ushakov, A. Oracle_to_Objectivity Converter.
Undergraduate Independent Study Report, Department of
Computer Science and Engineering, Arizona State
University, Fall 2002.

[12] Wagner, P. and Moore, T. Integrating XML into a Database
Systems Course. In Proceedings of the ACM Technical
Symposium on Computer Science Education (SIGCSE ‘03),
(Nevada, Feb. 2003). ACM Press, New York, NY, 2001, 26-
60.

[13] World Web Wide Consortium. XML.
http://www.w3.org/XML/

ODL SCHEMA

SCHEMA COMPILATION
USING JAVACC

ORACLE RELATIONSHIPS
SPECIFICATION

ORACLE_TO_
OBJECTIVITY
CONVERTER

ORACLE OBJECTIVITY

XML SCHEMA
SPECIFICATION

(.XML FILE)

XML DATA
(.XML FILE)

OBJECT MANAGER
TABLE,TYPE,VARRAY,
AND NESTED TABLE

DEFINITIONS (.SQL FILES)

Oracle Objectivity

57

