Decision Support for Stroke Rehabilitation Therapy via Describable Attribute-based Decision Trees

V. Venkataraman1,2, P. Turaga1,2, N. Lehrer2, M. Baran2, T. Rikakis3, and S. L. Wolf4,5

1School of Electrical, Computer and Energy Engineering, Arizona State University
2School of Arts, Media, and Engineering, Arizona State University
3School of Design, Carnegie Mellon University
4Emory University School of Medicine
5Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center

\textit{International Conference of the IEEE Engineering in Medicine and Biological Society}
Chicago, August 28th 2014
What is Stroke?

• Most common neurological disorder

• Rapid loss of brain function due to disturbance in blood supply
 – Inability to move limbs
 – Inability to formulate speech
 – Visual impairments

• WHO study reveals 15 million people suffer a stroke every year
Repetitive task therapy is the standard protocol for treatment.

Validated Clinical Scales
- Wolf Motor Function Test (WMFT)
- Fugl Meyer Assessment (FMA)
- Motor Activity Log (MAL)

Insufficient support by insurance for long-term therapy

What is the way forward?
- Have low cost portable systems at home supplementing the therapist
Towards Early Hospital Discharge

• A study\(^1\) on 1277 stroke survivors has reported
 – Reduced length of stay by 13 days
 – Reduced overall mean costs being 15% lower than traditional care
 – No significant difference in effect in mortality or other clinical outcomes

• Another long-term study\(^2\) on 86 stroke survivors:
 – 42 patients received early-hospital discharge and home-based rehabilitation therapy
 – 44 patients received traditional rehabilitation therapy at the hospital
 – No significant difference in clinical outcomes between the two groups after 6 months
 – Reduced length of hospital stay and hence lower costs

The HAMRR system\(^3\) is used to monitor wrist and torso movements of a stroke survivor during rehabilitation therapy.

- The system uses four optitrack cameras, a computer and speakers to provide audio and visual feedback during therapy treatment.
- One reflective marker on the wrist
- A torso rigid plate (with four reflective markers on the corners)
- The table can house a variety of objects to provide personalized therapy

What is the paper about?

- Develop a new therapist rating protocol for component-level assessment
 - Individual aspect of movement described by kinematic features
 - Preliminary exercise is to investigate the relationship between kinematic evaluation and therapist rating of performance

- Learn a kinematics-based decision tree model for movement quality assessment
Traditional clinical measures do not provide information on impairment on a component-level.

A score of 3 on WMFT does not necessarily indicate the type of impairment.

A component-level rating protocol allows for focused rehabilitation therapy.

Proposed therapist rating protocol allows training our kinematic evaluation module.

TABLE I: The Rating Rubric for Movement Quality Assessment Provided to Therapists

<table>
<thead>
<tr>
<th>Score</th>
<th>Trajectory</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Does not ever reach the target</td>
<td>Demonstrates compensatory shoulder movement with compensatory torso movement in more than one plane</td>
</tr>
<tr>
<td>2</td>
<td>Demonstrates profound deviation from a direct path during the reaching phase, which may be affected by but is not limited to one or more of the following secondary factors: Synergy, Ataxia and Spasticity</td>
<td>Demonstrates compensatory shoulder movement with trunk compensatory movement mainly in one plane</td>
</tr>
<tr>
<td>3</td>
<td>Demonstrates slight deviation (relative to how the rater would perform the task) from a direct path during the reaching phase</td>
<td>Demonstrates noticeable compensatory shoulder or trunk movement</td>
</tr>
<tr>
<td>4</td>
<td>The trajectory appears to be similar to that of the rater if he/she were performing the task</td>
<td>The shoulder and trunk are positioned in a manner similar to the rater if he/she were performing the task</td>
</tr>
</tbody>
</table>

Kinematic Features: Wrist Trajectory

- **Trajectory Error**
 \[E_{hor}(i) = x(i) - x_{ref}(i), \quad i = 0, \ldots, N - 1 \]
 \[\hat{E}_{hor} = \max_{0<i<N-1} (E_{hor}) \]

- **Jerkiness**
 \[J = \int_{t_{som}}^{t_{eom}} \sqrt{\left(\frac{d^3x}{dt^3} \right)^2 + \left(\frac{d^3y}{dt^3} \right)^2 + \left(\frac{d^3z}{dt^3} \right)^2} \, dt \]

- **Velocity Bellness**
 \[B_{NA} = \frac{\int_{t_{1st}}^{t_{eom}} v(t) \, dt}{\int_{t_{vmax}}^{t_{eom}} v(t) \, dt} \]

- **Peak Speed**
 \[V_{max} = \max_{t_{som}<t<t_{eom}} [v(t)] \]
Kinematic Features: Torso Analysis

- Torso Compensation Score

\[
\hat{R}_x(i) = \begin{cases}
 R_x(i) & \text{if } R_x(i) > T_1 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
C_x = \frac{\sum_{i} \hat{R}_x(i)}{\sum_{i} R_x(i)}
\]
Decision Tree Model

- Simplest and Intuitive way to use features
Comparison between impairment level (with 4 being least impaired and 1 being most impaired) given by component-level score for wrist trajectory and decision tree predictions. The Pearson correlation coefficient was found to be 0.8049.

Comparison between impairment level (with 4 being least impaired and 1 being most impaired) given by component-level rating for compensation by therapist and decision tree predictions. The Pearson correlation coefficient was found to be 0.9129.
In this work we have developed

- A component-level therapist rating protocol to assess the quality of wrist and torso movements.
- A computational framework
Thank You

Questions?