
Biweekly Report # 5 1

CSE593 – Capstone Project
Name

Biweekly Report #5

Intro

 The primary goal of this milestone is the application of static software
complexity analysis algorithms to the code base of the Mobile Agent and our SIF toolkit
(ultra-core) and to elaborate on its overall meaningfulness.

Algorithm

 For this exercise, the selected algorithm was McCabe’s Cyclomatic complexity,
which is the most widely accepted static software metric and has been applied to
millions of lines of code in both academia and commercial applications (Edmond
VanDoren)

 Originally developed by Thomas McCabe in 1976, this algorithm has continued to
evolve and it is based upon directly measuring the number of linearly independent
paths through a program’s source code (Wikipedia) and it is formally described as:

M = E – N + P

Where,

M = the McCabe metric
E = the number of edges of the graph of the program
N = the number of nodes of the graph
P = the number of connect components

Cyclomatic complexity can be used in several areas of software engineering

including code development risk analysis, test planning as well as reengineering and its
wide usage is primarily due to its ability to generate a discrete and simple numerical
representation of the overall complexity of a software system. A generally accepted rule
dictates that a Cyclomatic complexity score greater than 10 represents a moderate
complexity level while a score greater than 20 represents a complex, high risk program.

Results

 For sake of this report, the Cyclomatic analysis was performed using the Metrics
plug-in of the Eclipse IDE and the results were (on a per method basis): Mobile 1.127
and ultra-core 1.667, as seen on the graph below.

Biweekly Report # 5 2

Findings

At a first glance, it is very clear that based upon McCabe’s algorithm neither one
of the applications is inherently complex. However, at closer inspection, one can begin
to perceive that it is crucial to understand that normalization can be playing a role in
obscuring certain problematic classes, especially in the case of ultra-core due to its
significant size of 36,194 LOC and 5,495 methods.

Moreover, because the overall complexity estimate is normalized on a per
method basis, a code structure, which is unbalanced between simple and complex
methods and possesses a method count significantly larger than the variance between
simple and complex scores, would unequivocally drawn the overly complex methods
and would, on the surface, appear to not need further decomposition.

A meaningful example of the scenario described above is method addObjectData
of class SIFResponse1(part of ultra-core) that carries – by itself – a Cyclomatic complexity
of value 88 and is, consequently, an overly complex method that should be marked for
further refactoring and decomposition but does not get brought to light under the
overall Cyclomatic score.

Many ways to improve how system engineers utilize McCabe’s complexity
algorithm has been proposed in the last decades,including assessing scores on a per
class or n lines of code basis as the means to circumvent an unbalanced class structure
(Narayan). Unfortunately, all of those have found no overwhelming success.

Furthermore, as software systems become increasingly more distributed, and
conspicuous, gauging code complexity based solely on the number of logical paths will
fail to take into consideration the inherited complexity of a service oriented architecture
and will, ultimately, drive computer scientists to research better ways to assess
complexity for the next century.

Works Cited

Edmond VanDoren, Kaman Sciences, Colorado Springs. Carnegie Mellon Software
Engineering Institute. 12 July 2000. 01 04 2008
<http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html>.

Narayan, Sriram. Using Cyclomatic Complexity effectively. 2 5 2006. 1 4 2008
<http://sriramnarayan.blogspot.com/2006/05/using-cyclomatic-complexity.html>.

Wikipedia, The Free Encyclopedia. Cyclomatic Complexity. 01 03 2008. 01 04 2008
<http://en.wikipedia.org/wiki/Cyclomatic_complexity>.

