Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects

Yun Kang1, Carlos Castillo-Chavez2

Abstract

A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-induced reductions in reproductive ability, is introduced. The initial focus of this study is on the analyses of the dynamics of Density-Dependent and Frequency-Dependent effects on SI models (SI-DD and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic disease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while the SI-FD model only supports equilibrium dynamics. SI models under “small” horizontal transmission rates may result in susceptible-free dynamics. SI models under with and inefficient reproductive infectious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic solutions that emerge from unstable equilibrium provided that either the Allee threshold and/or the disease transmission rate is large; or when the disease has limited influence on the infectives growth rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration of local populations manage to destabilize them are examples of what is known as diffusive instability. The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of transmission, frequency dependance, and Allee effects are capable of supporting diffusive instability.

Keywords: Allee Effects, Horizontal Transmission, Vertical Transmission, Disease-Driven Extinction, Disease-Free Dynamics, Susceptibles-Free Dynamics, Diffusive Instability.
1. Introduction

Parasitism contributes to the selection of future generations of hosts through their impact on factors that lead to reductions in fitness (Hudson et al. 2002) and as a result, wildlife managers must account for emerging and/or re-emerging diseases. Competition for space and resources (finding mates or food) also impact the reproductive ability and likelihood of survival of individuals, particularly those housing pathogens or parasites. Hosts’ dynamics (survival in particular) often depends on the ability of a population to maintain a critical mass (Kang and Castillo-Chavez 2012). The impact of heterogeneous transmission factors including multiple transmission modes by altering a population’s dynamics may lessen the plausibility of conservation goals or the economic viability of selected management policies (Potapov et al. 2012). Hence, it is not surprising that the pressure which parasites or pathogens place on their hosts and the relation of such interactions to community and/or ecosystem structure has been the subject of continuous empirical and theoretical studies. Some of the theoretical consequences associated to host-pathogen dynamics when factors like: i) multiple modes of disease transmission; (ii) host population density; and (iii) the presence or absence of critical host population thresholds, are addressed in this manuscript.

Modes of disease transmission, like horizontal and vertical, differentially facilitate the colonization of host populations by bacteria, fungi, or viruses. Colonization (horizontal transmission) is sometimes seen as the result of close interactions (contacts) between disease-free host and infected individuals. A contact process that implicitly assumes the sharing of a common, local habitat. The passage of a disease-causing agent from a mother to offspring during the “birth” process is also sometimes possible (vertical transmission). Feline leukemia (FeLV) and feline immunodeficiency (FIV) viruses are transmitted horizontally and vertically. Leishmaniasis, a disease caused by the protozoan parasite *Leishmania infantum*, is transmitted horizontally and vertically. Domesticated dog populations are presumed to be a reservoir for *Leishmania infantum*; a reservoir maintained by the differential contributions of multiple modes of transmission (Santaella et al. 2011). The deadly *septicaemia*, which manages to kill 80% of *septicaemia*-infected birds, gets lodged in the ovary of surviving birds; passed later to the birds eggs (vertical transmission); spreading horizontally within the hatcher and brooder.

Teasing out the roles of density- and frequency-dependent transmission (DDT versus FDT) on the dynamics of host-parasite systems is carried out for theoretical and policy reasons. FDT is the result of density-independent contact rates between susceptible and infected individuals. DDT assumes that infection risks increase with host density. Density-dependent transmission (DDT) may require a minimal number of available susceptible hosts, that is, a threshold density, for transmission to occur. Density-dependent parasitic disease transmission plays a role in regulating host population size (Anderson and May 1978 & 1991) while frequency-dependent parasitic transmission does not require host density thresholds or regulatory host population constraints on the birth or death rates to "work" (Getz and Pickering 1983).

In population biology we often lack absolutes. And so, vector- and sexually-transmitted diseases have been seen to thrive in frequency-dependent transmission settings while density-dependent infections that lead to pathogens being shed by infected hosts into common environments may sometimes need a critical mass of susceptible individuals to thrive (Anderson and May 1991; Antonovics et al. 1995). Pathogens can be spread via “direct” contacts (kissing can spread herpes viruses), aerosol (sneezing can spread influenza viruses), or via indirect contacts (ingesting water contaminated with fecal material can cause result in cholera infections), or through vectors (ticks and mosquitoes often spread viruses and bacteria to their hosts), or via some combination of direct and indirect modes, sometimes mediated by a vector. Empirical work on mice, voles, lady bird beetles, frogs, and plants has shown that pathogen transmission often involve DD and FD transmission modes, with one predominant mode (Hudson et al. 2002). The negative impact of deliberate releases of pathogens via aerosol or in water systems tends to increase
with host density. On the other hand, sexually transmitted pathogens seem to thrive equally well or
bad in small or large population settings while some vector-borne diseases have been shown to support
frequency-dependent transmission patterns (Anderson and May 1991; Antonovics and Alexander 1992;
Ferrari et al. 2011). Antonovics and Alexander (1992) manipulated the density and frequency of infected
hosts Silene latifolia and in the process they found out that deposition of the anther smut fungus Mi-
crobotryum violaceum by pollinating insects managed to increase with the frequency of infection.

A pathogen may or may not be deleterious enough to regulate the dynamics of host populations
and so it is not surprising that the impact of pathogens on hosts is tied in to virulence. Pathogen’s
levels of virulence differentially impacts host’s fitness. Often, increases in virulence result in a reduced
probability survival or a diminished ability of a host to reproduce successfully, or both (Anderson and
with host density seem to have managed to select for variants capable of regulating a host population.
Dwyer et al. (1990) studied a host-pathogen system where a detailed account of virus titer on infected
hosts could be estimated. Their study focused on studying the ability of the Myxoma virus to control
an exploding rabbit populations over a long window in time. Empirical evidence from systems involving
conjunctivitis in house finches or parasitic nematodes in red grouse and feral Soay sheep provide an ex-
ample of a system where disease regulates population size (Gulland 1992; Hudson et al. 1998; Hochachka
and Dhondt 2000). Pathogen infections are contributors to the decline or the extinction of some species
(Dwyer et al. 1990; Daszak et al. 1999; Harvell et al. 2002; Smith et al. 2006; Thieme et al. 2009). The deleterious role of chytridiomycosis in amphibians, chestnut blight in American chestnuts, avian malaria
in Hawaiian birds, devil facial tumour disease in Tasmanian devils, or sudden oak death in Californian
trees provide classical examples of the role of disease in regulating a population. Theory suggests that
density-dependent specialist pathogens (i.e., those infecting a single host) alone rarely drive their hosts’
extinction but can lead to extinction of the pathogen while frequency-dependent transmission may be
capable of supporting significant decreases, including the potential extinction of host and parasite pop-
ulations in the presence of moderately lethal pathogens (de Castro and Bolker 2005; Ferrari et al. 2011;
Kilpatrick and Altizer 2012).

The impact of disease outbreaks can be devastating and their dynamics must be particularly mon-
titored within populations near extinction; that is, those with population levels near established Allee
effects thresholds (Allee 1938; Stephens and Sutherland 1999; Stephens et al. 1999; Courchamp et al.
2009; Kang and Lanchier 2011). The relevance of threshold effects has been identified within a wide
array of taxa (Courchamp et al. 2008; Kramer et al. 2009). Populations under Allee effects or fac-
ing extinction or both must be effectively managed (Drake 2004; Hilker 2009). The fragility of these
populations means that limiting the transmission of highly deleterious diseases is critical (Deredec and
Courchamp 2007; Hilker 2009). Recurrent infectious disease outbreaks tend to enhance the deleterious
role of Allee effects within diseases capable of inducing reductions in host fitness (Hilker et al. 2005;
Friedman and Yakubu 2011; Kang and Castillo-Chavez 2013). The results of this manuscript seem to
be in sync with the overall conclusions reached the study of predator-prey systems (e.g., Cushing 1994;
Emmert and Allen 2004; Drew et al. 2006; Jang and Diamond 2007; Berezovskaya et al. 2010; Kang and

Parasites and hosts co-evolve in response to environmental clues and/or selective pressures (Kil-
patrick and Altizer 2012). Mammals, birds, fish, and insects generate mobility patterns as they track
resources and as it is well known movement and/or dispersal can impact disease dynamics (Altizer 2010).
In short, mobility has been a key player in the evolution of host-parasite systems. Studies that in addi-
tion to disease and mobility (dispersal) also include the impact of Allee effects are not well understood
(Rios-Soto et al. 2006; Hilker et al. 2007; Kang and Castillo-Chavez 2013b). Hilker et al. (2007) used a
reaction-diffusion SI model within a frequency-dependent transmission framework in their explorations.
of the impact of disease and mobility on the spatiotemporal patterns of disease transmission. *SI* models that incorporate disease-reduced fertility have been explored by a number of researchers (Diekmann and Kretzschmar (1991) and Beregovskaya et al. (2004)). In Kang and Castillo-Chavez (2013b) a two-patch *SI* model with density-dependent transmission is used to show that the differential movement of susceptible and infected individuals can enhance or suppress the spread of a disease. A *SI* model that incorporates a horizontally and vertically transmitted disease; infectives giving birth to infectives; susceptibles giving birth to susceptibles; Allee effects within the net reproduction term; disease-induced death rate; and disease reduced reproductive ability, is used in this manuscript to begin to address questions that include: What is the role of multiple modes of transmission? Will density-dependent and frequency-dependent vertical transmission affect host-parasite dynamics differentially? Under what conditions would Allee effects alter disease-free dynamics or facilitate disease-driven extinction? Would Allee thresholds on reproductive fitness become altered (reduced) by disease? What is the role of DDT or FDT in support of diffusive instability?

In Section 2, a general *SI* (Susceptible-Infected) model with Allee effects built in the reproduction that incorporates horizontal and vertical transmission modes, is formulated. The basic dynamic properties of the model are characterized, in particular, sufficient conditions in support of disease-free and persistence of species results are identified (Theorem 2.1 and its corollary 2.1). In Section 3, the dynamics of *SI* models under frequency-dependent or density-dependent horizontal transmission are contrasted. Boundary dynamics are characterized (Proposition 3.1) and sufficient conditions for disease- and susceptible-population persistence are provided in Theorem 3.1. A classification of interior dynamics comes in Theorem 3.2. In Section 4, disease-driven extinction, disease-free or susceptible-free dynamics, and endemic persistent dynamics are characterized. The nature of bifurcations supported by *SI* models is studied with the aid of the reproduction numbers linked to horizontal and vertical transmission modes. In Section 5, sufficient conditions leading to diffusive instability (Theorem 5.1) are identified. The nature of mechanisms potentially capable of supporting diffusive instability in *SI*-models and prey-predator models, is briefly discussed. The implications of the results in this manuscript are discussed in the Conclusion.

2. An *SI* model with Allee effects and vertical transmission

The model outlined in this section deals with a population facing a disease that can be effectively captured within a *SI* framework under assumptions that include the possibility of multiple modes of transmission, that is, horizontal and vertical. It is therefore assumed that infected individuals can give birth to infected hosts; that Allee effects alter the net reproduction term (possibly due to mating limitations or predator saturation); the presence of increases in mortality due to disease-induced deaths; and the fact that infected individuals may experience reductions in reproductive ability.

We let *S* and *I* denote the susceptible and infective populations, respectively, with *N = S + I* denoting the total host population. The approach followed from Derbec and Courchamp (2006) leads to the following set of nonlinear system after the incorporation of the above assumptions:

\[
\begin{align*}
\frac{dS}{dt} &= rSf(N) - \frac{\phi(N)I}{N}S \\
\frac{dI}{dt} &= \phi(N)\frac{I}{N}S + \rho rI f(N) - dI
\end{align*}
\]

(1)

where \(r > 0, \rho \in [0,1], d > 0 \) are respectively the intrinsic growth rate, the reduction of growth rate due to disease, and the excess death rate from the disease. The horizontal transmission term \(\phi(N) \) includes density-dependent transmission, \(\phi(N) = \beta N \) (the law of mass action) or frequency-dependent
transmission, $\phi(N) = \beta$ (proportionate mixing or standard incidence). In the absence of disease, the SI Model (1) reduces to the following single species growth model:

$$\frac{dN}{dt} = rNf(N)$$

(2)

where the per capita growth function $rNf(N)$ is subject to strong Allee effects, i.e., there exists an Allee threshold K^- and a carrying capacity K^+ such that

$$f(N) < 0 \text{ if } 0 < N < K^- \text{ or } N > K^+; f(N) > 0 \text{ if } K^- < N < K^+; f(K^-) = f(K^+) = 0.$$

(3)

Thus, the population model described by Equation (2) converges to 0 if initial conditions are below K^- or converges to its carrying capacity K^+ whenever the initial conditions are above K^-.

Note: If $\rho = 1$, Model (1) is reduced to Model (6), which was introduced by Deredec and Chourchamp (2006) while if $\rho = 0$, Model (1) can be seen as a special case of the models studied in Kang and Chavez-Castillo (2012). The formulation of this SI Model (1) is similar in approach to that found in Boukal and Berec (2002), Courchamp et al (2009), Hilker et al (2009), and Thieme et al (2009), particularly in the way we model the effects of Allee effects and disease. The literature on the use of phenomenological models like Model (2) is extensive (e.g., see Lewis and Kareiva 1993; Gruntfest et al 1997; Alvarez 1998; Padrón and Trevisan 2000; Shi and Shivaji 2006; Hilker 2010; Friedman and Yakubu 2012). Our models allow for infectives to give birth to infectives with the caveat that their reproductive ability may be reduced; a feat that being captured with the parameter ρ.

The need for biological consistency (well posed model) is addressed with the help of the state-space naturally associated with Model (1), namely, $X = \{(S,I) \in \mathbb{R}_+^2 \}$ with its interior defined as $X = \{(S,I) \in \mathbb{R}_+^2 : SI > 0 \}$. The state space when $\phi(N) = \beta$ is $X = \{(S,I) \in \mathbb{R}_+^3 : S + I > 0 \}$. The assumption that $f(N)$ is differentiable leads to the following theorem for Model (1):

Theorem 2.1 (Basic dynamical features of (1)). Assume that $r > 0, d > 0, \rho \in [0,1]$ and both f, ϕ are continuous in X with f satisfying Condition (3), then System (1) is positively invariant and bounded in X with the following property

$$\limsup_{t \to \infty} N(t) = \limsup_{t \to \infty} S(t) + I(t) \leq K^+.$$

In addition, we have the following:

1. If $N(0) \in (0, K^-)$, then $\lim_{t \to \infty} N(t) = 0$.

2. If there exists a positive number $\alpha > K^-$ such that $r\rho f(\alpha) > d$, then

$$\liminf_{t \to \infty} N(t) = \liminf_{t \to \infty} S(t) + I(t) \geq \alpha \text{ for any } N(0) > \alpha.$$

3. If $\max_{K^- \leq N \leq K^+} \left\{ \frac{K^+ \phi(N)}{N} + r\rho f(N) \right\} < d$, then $\limsup_{t \to \infty} I(t) = 0$.

Proof. Since both $S = 0$ and $I = 0$ are invariant manifold for System (1), then according to the continuity of the system, we can easily show that (1) is positively invariant in X. In addition, System (1) gives the following equation:

$$\frac{dN}{dt} = r(S + \rho I)f(N) - dI$$

(4)

where $N = S + I$. Thus, if $K^- \leq N \leq K^+$, we have the following

$$r\rho Nf(N) - dN = N(r\rho f(N) - d) \leq \frac{dN}{dt} = r(S + \rho I)f(N) - dI \leq rNf(N)$$

(5)
which indicates that
\[
\lim_{t \to \infty} N(t) = \lim_{t \to \infty} S(t) + I(t) = 0 \text{ if } N(0) < K^-
\]
since \(f(N) \) satisfies Condition (3), i.e.,
\[
f(N) > 0 \text{ when } K^- \leq N \leq K^+.
\]

If \(N < K^- \) or \(N > K^+ \), then we have the following
\[
rNF(N) - dN = N(rf(N) - d) \leq \frac{dN}{dt} = r(S + \rho I)f(N) - dI \leq r\rho Nf(N) \quad (6)
\]
which indicates that
\[
\limsup_{t \to \infty} N(t) = \limsup_{t \to \infty} S(t) + I(t) \leq K^+ \text{ if } N(0) > K^-
\]
since \(f(N) \) satisfies Condition (3), i.e.,
\[
f(N) < 0 \text{ when } N < K^- \text{ or } N > K^+.
\]

If there exists a positive number \(\alpha > K^- \) such that \(r\rho f(\alpha) > d \), then according to (6), we have
\[
\frac{dN}{dt} \bigg|_{N=\alpha} \geq r\rho f(N) - d \bigg|_{N=\alpha} > 0.
\]
Therefore, \(\liminf_{t \to \infty} N(t) = \liminf_{t \to \infty} S(t) + I(t) \geq \alpha \) for any \(N(0) > \alpha \).

If \(\max_{K^- < N < K^+} \{ \frac{K^+ \phi(N)}{N} + r\rho f(N) \} < d \), then from (1) and the fact that \(\limsup_{t \to \infty} N(t) \leq K^+ \),
we have
\[
\frac{dI}{dt} = \phi(N) \frac{I}{N} S + \rho rI f(N) - dI = I \left(\frac{S\phi(N)}{N} + r\rho f(N) - d \right) < I \left(\frac{K^+ \phi(N)}{N} + r\rho f(N) - d \right) < 0
\]
which indicates that \(\limsup_{t \to \infty} I(t) = 0 \).

\[\square\]

Notes: Some of the consequences that follow from Theorem 2.1 are:

1. The size of the initial population is extremely important for persistence regardless of the disease due to Allee effects.
2. The total population population will not be above its carrying capacity \(K^+ \) in the long run.
3. Species persistence requires that the initial population \(\alpha \) is above the Allee threshold \(K^- \), and excess deaths \(\frac{d}{r\rho} \) are small enough, smaller than the per capita growth function evaluated at the total population \(\alpha \), i.e., \(f(\alpha) > \frac{d}{r\rho} \).
4. In the absence of vertical transmission, disease free dynamics requires that
\[
\max_{K^- \leq N \leq K^+} \{ \frac{\phi(N)}{N} \} < \frac{d}{K^+}.
\]

While in the presence of vertical transmission, disease free dynamics requires that
\[
\max_{K^- \leq N \leq K^+} \{ \frac{\phi(N)}{N} + \frac{r\rho f(N)}{K^+} \} < \frac{d}{K^+}.
\]
For convenience, we can consider that \(f(N) \) has a generic form of \((N - K^-)(K^+ - N)\) and \(\phi(N) = \beta \) (i.e., frequency-dependent) or \(\beta N \) (i.e., the law of mass action) then scaling and setting

\[
S \rightarrow \frac{S}{K^+}, \quad I \rightarrow \frac{I}{K^+}, \quad K^+ \rightarrow \frac{K^-}{K^+}, \quad t \rightarrow rt, \quad \rho \rightarrow \frac{\rho}{r}, \quad \beta \rightarrow \frac{\beta}{r}, \quad d \rightarrow \frac{d}{r}
\]

leads to the following two SI models with both horizontal and vertical transmission and Allee effects:

\[
\frac{dS}{dt} = S(N - \theta) \left(1 - N\right) - \frac{\beta SI}{N} \quad (7)
\]

\[
\frac{dI}{dt} = \frac{\beta SI}{N} - dI + \rho I(N - \theta) \left(1 - N\right) \quad (8)
\]

\[
\frac{dS}{dt} = S(N - \theta) \left(1 - N\right) - \beta SI \quad (9)
\]

\[
\frac{dI}{dt} = \beta SI - dI + \rho I(N - \theta) \left(1 - N\right) \quad (10)
\]

where \(f(N) = r(N - \theta) \left(1 - N\right) \) is the per capita growth in the absence of disease; the parameter \(\theta = \frac{K^+ - K^-}{K^+} \) represents the Allee threshold; \(\rho \in [0, 1] \) represents the reduce reproductive ability due to the disease; \(\beta \) represents the disease transmission rate while \(d \) denotes the additional death rate coming from infections.

The direct application of Theorem 2.1 to System (7)-(8) and (9)-(10) gives the following corollary:

Corollary 2.1 (Basic dynamic features of (7)-(8) and (9)-(10)). System (7)-(8) and System (9)-(10) are positively invariant and bounded in their state space \(X \) with the following property

\[
\lim_{t \to \infty} \sup N(t) = \lim_{t \to \infty} \sup S(t) + I(t) \leq 1.
\]

In addition, we have the following:

1. If \(N(0) \in (0, \theta) \), then \(\lim_{t \to \infty} N(t) = 0 \).

2. If there exists a positive number \(\alpha > \theta \) such that \(\rho f(\alpha) > d \), then

\[
\lim_{t \to \infty} \inf N(t) = \lim_{t \to \infty} \inf S(t) + I(t) \geq \alpha \text{ for any } N(0) > \alpha.
\]

3. If \(\beta + \frac{\rho(1-\theta)^2}{4} < d \), we have \(\lim_{t \to \infty} \sup I(t) = 0 \).

Proof. The application of Theorem 2.1 is direct. We only show the item 3. Since \(N = S + I \geq S \) and \(\lim_{t \to \infty} N(t) = \lim_{t \to \infty} S(t) + I(t) \leq 1 \), therefore, for System (7)-(8), we have

\[
\frac{S\phi(N)}{N} + r\rho f(N) = \frac{\beta S}{N} + \rho(\theta - N)(1 - \theta) \leq \beta + \rho(\theta - N)(1 - \theta) \leq \beta + \frac{\rho(1-\theta)^2}{4}.
\]

For System (9)-(10), we also have

\[
\frac{S\phi(N)}{N} + r\rho f(N) = \beta S + \rho(\theta - N)(1 - \theta) \leq \beta + \rho(\theta - N)(1 - \theta) \leq \beta + \frac{\rho(1-\theta)^2}{4}.
\]

Therefore, if \(\beta + \frac{\rho(1-\theta)^2}{4} < d \), we have \(\lim_{t \to \infty} \sup I(t) = 0 \) for System (7)-(8) and System (9)-(10).

Notes: The traditional basic reproduction number for SI- Allee effects free- and vertical transmission free-models, namely \(R_0 = \frac{d}{\beta} \) is naturally no longer relevant. The remainder of this article focuses on the dynamics of System (7)-(8) and System (9)-(10).
3. Mathematical analysis

Notice that System (7)-(8) is not defined at \((S,I) = (0,0)\) but from Corollary 2.1, we know that
\[
\lim_{t \to \infty} (S(t), I(t)) = (0,0) \text{ whenever } S(0) + I(0) < \theta.
\]
Thus, we artificially define \((0,0)\) as the extinction equilibrium. Hence, System (7)-(8) and System (9)-(10) have the same boundary dynamics since both of them can be reduced to the system given by
\[
\frac{dS}{dt} = S(S - \theta)(1 - S) \text{ if } I = 0
\]
and
\[
\frac{dI}{dt} = \rho I(I - \theta)(1 - I) - dI \text{ if } S = 0.
\]
Therefore, System (7)-(8) and System (9)-(10) have the following three boundary equilibria
\[
E_{0,0} = (0,0), \quad E_{\theta,0} = (\theta,0), \quad E_{1,0} = (1,0).
\]
If, in addition, \((1 - \theta)^2 > 4d/\rho\) holds, then systems (7)-(8) and (9)-(10) support the following additional boundary equilibria on the I-axis:
\[
E_{0,\theta} = (0, \frac{1 + \theta}{2} - \sqrt{(1 - \theta)^2 - 4d/\rho}) \quad \text{and} \quad E_{0,1} = (0, \frac{1 + \theta}{2} + \sqrt{(1 - \theta)^2 - 4d/\rho}).
\]
We have arrived at the following proposition regarding the boundary equilibria of System (7)-(8) and System (9)-(10):

Proposition 3.1 (Boundary equilibria of System (7)-(8) and System (9)-(10)). System (7)-(8) and System (9)-(10) always have boundary equilibria \(E_{0,0} = (0,0), \quad E_{\theta,0} = (\theta,0), \quad E_{1,0} = (1,0)\). If in addition Condition \((1 - \theta)^2 > 4d/\rho\) holds then both systems will support two additional boundary equilibria \(E_{0,\theta} = (0, \theta_2)\) and \(E_{0,1} = (0, K_2)\) where
\[
\theta < \theta_2 = \frac{1 + \theta}{2} - \frac{\sqrt{(1 - \theta)^2 - 4d/\rho}}{2} < K_2 = \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - 4d/\rho}}{2} < 1.
\]
The nature of the stability of these boundary equilibria is listed in Table 1.

Proof. If \(S = 0\), System (7)-(8) and System (9)-(10) reduced to the following equation:
\[
\frac{dI}{dt} = I(\rho(I - \theta)(1 - I) - d) = 0 \Rightarrow \rho(I - \theta)(1 - I) - d = 0.
\]
Therefore, if \((1 - \theta)^2 - 4d/\rho\), we have
\[
E_{0,\theta} = (0, \theta_2) = \left(0, \frac{1 + \theta}{2} - \frac{\sqrt{(1 - \theta)^2 - 4d/\rho}}{2}\right), \quad E_{0,1} = (0, K_2) = \left(0, \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - 4d/\rho}}{2}\right).
\]
Notice that \(\sqrt{(1 - \theta)^2 - 4d/\rho} < \frac{1 - \theta}{2}\), therefore,
\[
\theta_2 = \frac{1 + \theta}{2} - \frac{\sqrt{(1 - \theta)^2 - 4d/\rho}}{2} > \frac{1 + \theta}{2} - \frac{1 - \theta}{2} > \theta
\]
and
\[
K_2 = \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - 4d/\rho}}{2} < \frac{1 + \theta}{2} - \frac{1 - \theta}{2} = 1.
\]
Boundary Equilibria	**Stability Condition**
$E_{0,0}$ | Always locally asymptotically stable
$E_{\theta,0}$ | For Model (7)-(8)- Saddle if $\frac{d}{\rho} > \theta$; Source if $\frac{d}{\rho} < \theta$.
For Model (9)-(10)-Saddle if $\frac{d}{\beta} > 1$; Source if $\frac{d}{\beta} < 1$.
$E_{1,0}$ | Saddle if $\frac{d}{\rho} < 1$; Locally asymptotically stable if $\frac{d}{\rho} \geq 1$
$E_{0,\theta}$ | For Model (7)-(8)- Saddle if $\frac{\rho}{\theta} < \beta$; Source if $\frac{\rho}{\theta} > \beta$.
For Model (9)-(10)-Saddle if $1 + \frac{\theta}{\beta} - \sqrt{(1 - \theta)^2 - 4\rho/d}\rho > \frac{d}{\rho}\beta$ (i.e., $\theta_2 > \frac{d}{\rho\beta}$); Source if $1 + \frac{\theta}{\beta} + \sqrt{(1 - \theta)^2 - 4\rho/d}\rho < \frac{d}{\rho}\beta$ (i.e., $K_2 < \frac{d}{\rho\beta}$).
$E_{0,1}$ | For Model (7)-(8)- Saddle if $\frac{d}{\rho} > \beta$; Locally asymptotically stable if $\frac{d}{\rho} < \beta$.
For Model (9)-(10)-Saddle if $1 + \frac{\theta}{\beta} + \sqrt{(1 - \theta)^2 - 4\rho/d}\rho < \frac{d}{\rho}\beta$ (i.e., $K_2 < \frac{d}{\rho\beta}$); Locally asymptotically stable if $1 + \frac{\theta}{\beta} + \sqrt{(1 - \theta)^2 - 4\rho/d}\rho > \frac{d}{\rho}\beta$ (i.e., $K_2 > \frac{d}{\rho\beta}$).

Table 1: The local stability of boundary equilibria for System (7)-(8) and System (9)-(10)

Thus, we have

$$\theta < \theta_2 = \frac{1 + \theta}{2} - \frac{\sqrt{(1 - \theta)^2 - 4\rho/d}}{2} < \frac{1 + \theta}{2} < K_2 = \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - 4\rho/d}}{2} < 1.$$

The stability of the boundary equilibria is obtained from the signs of eigenvalues of the corresponding Jacobian matrices. We omit the details but collect the results in Table 1.

Notes: The results in Proposition 3.1 are used to determine the global dynamics in the absence of interior equilibrium (see the proof of Theorem 3.2 for details).

Theorem 3.1 (Persistence of disease or susceptibles). Assume that $\frac{(1-\theta)^2}{4} > \frac{d}{\rho}$ and the initial condition $N(0) \in (\theta_2, K_2)$ then the following statement follows:

1. For System (7)-(8) and System (9)-(10), a sufficient condition for the persistence of disease is $\frac{d}{\rho} < 1$.

2. For System (7)-(8), a sufficient condition for the persistence of susceptibles is $\frac{d}{\rho\beta} > 1$ while for System (9)-(10) is $\frac{d}{\rho\beta} > K_2$.

The persistence of disease (or susceptibles) means that there exists a positive number ϵ such that

$$\liminf_{t \to \infty} I(t) \geq \epsilon \text{ for any } N(0) \in (\theta_2, K_2).$$

Proof. The condition $\frac{(1-\theta)^2}{4} > \frac{d}{\rho}$ leads to the equalities

$$h(N) = \rho(N - \theta)(1 - N) - d = \frac{\rho}{d}(N - \theta_2)(K_2 - N),$$

which indicates that $h(\alpha) > 0$ for any $\alpha \in (\theta_2, K_2)$. Since $h(N) = \rho f(N) - d$ then Theorem 2.1 and (its) Corollary 2.1 imply that

$$\liminf_{t \to \infty} N(t) = \liminf_{t \to \infty} S(t) + I(t) \geq \alpha \text{ for any } N(0) = \alpha \in (\theta_2, K_2).$$
The use of Theorem 2.1 and (its) Corollary 2.1 again allows to conclude that System (7)-(8) and System (9)-(10) attract to the compact set $0 \leq N \leq 1$ and are positively invariant within $\alpha \leq N \leq 1$ for any $\alpha \in (\theta_2, K_2)$.

Letting $B_S = \{(S, I) \in X : \alpha \leq S+I \leq 1\} \cap \{I = 0\}$ and $B_I = \{(S, I) \in X : \alpha \leq S+I \leq 1\} \cap \{S = 0\}$ leads to the facts that (i) B_S and B_I are positively invariant and that (ii) the omega limit set of B_S is $E_{1,0}$ while the omega limit set of B_I is $E_{0,1}$.

The results (Theorem 2.5 and its corollary) in Hutson (1984) guarantee that the persistence of disease is determined by the sign of $\frac{dS}{dt}\bigg|_{B_S} = \frac{dI}{dt}\bigg|_{E_{1,0}}$ while the persistence of susceptibles is determined by the sign of $\frac{dS}{dt}\bigg|_{B_I} = \frac{dI}{dt}\bigg|_{E_{0,1}}$.

Letting $\phi(N) = \beta$ or βN means that the dynamics of I-class are governed by

$$\frac{dI}{dt} = \phi(N) I + \rho I f(N) - dI = I \left(\frac{S\phi(N)}{N} + \rho f(N) - d \right),$$

which gives

$$\left. \frac{dI}{dt} \right|_{B_S} = (\beta + \rho f(N) - d) \bigg|_{B_S} = (\beta + \rho f(S) - d) \bigg|_{E_{1,0}} = \beta - d > 0 \text{ if } \phi(N) = \beta \text{ and } \frac{d}{\beta} < 1$$

and

$$\left. \frac{dI}{dt} \right|_{B_I} = (\beta S + \rho f(N) - d) \bigg|_{B_I} = (\beta S + \rho f(S) - d) \bigg|_{E_{0,1}} = \beta - d > 0 \text{ if } \phi(N) = \beta N \text{ and } \frac{d}{\beta} < 1.$$

The results (Theorem 2.5 and its corollary) in Hutson (1984) guarantee that the persistence of disease for System (7)-(8) and System (9)-(10) as long as $d < \min\{\frac{\rho(1-\theta)^2}{4}, \beta\}$ and the initial condition $N(0) \in (\theta_2, K_2)$.

The dynamics of the S-class are governed by

$$\frac{dS}{dt} = S f(N) - \phi(N) I N S = S \left(f(N) - \frac{I\phi(N)}{N} \right),$$

which gives

$$\left. \frac{dS}{dt} \right|_{B_I} = f(N) - \frac{I\phi(N)}{N} \bigg|_{B_I} = f(I) - \beta \bigg|_{E_{0,1}} = f(K_2) - \beta = \frac{d}{\rho} - \beta > 0 \text{ if } \phi(N) = \beta \text{ and } \frac{d}{\beta \rho} > 1$$

and

$$\left. \frac{dS}{dt} \right|_{B_I} = f(N) - \frac{I\phi(N)}{N} \bigg|_{B_I} = f(I) - \beta I \bigg|_{E_{0,1}} = \frac{d}{\rho} - \beta K_2 > 0 \text{ if } \phi(N) = \beta N \text{ and } \frac{d}{\beta \rho} > K_2.$$

Therefore, applications of the results in Hutson ((Theorem 2.5 and its corollary, 1984) allows us to conclude that:

1. A sufficient condition for the persistence of susceptibles in System (7)-(8) is that $\frac{(1-\theta)^2}{4} > \frac{d}{\rho} > \beta$ as long initial condition are such that $N(0) \in (\theta_2, K_2)$.

2. A sufficient condition for the persistence of susceptibles in System (9)-(10) is that $\frac{(1-\theta)^2}{4} > \frac{d}{\rho} > \beta K_2$ as long initial condition are such that $N(0) \in (\theta_2, K_2)$.

\[\square\]
Note: The System (7)-(8) or System (9)-(10) satisfy the definition of permanence provided that there exists a positive number \(\epsilon \) such that for any \(N(0) \in (\theta_2, K_2) \)

\[
\liminf_{t \to \infty} \min\{I(t), S(t)\} \geq \epsilon
\]

An application of Theorem 3.1 leads to the following permanency results:

1. A sufficient condition for the permanence of System (7)-(8) is that the initial condition \(N(0) \in (\theta_2, K_2) \) and

\[
\rho < \frac{d}{\beta} < \min\{1, \frac{\rho(1 - \theta)^2}{4\beta}\}.
\]

2. A sufficient condition for the permanence of System (9)-(10) is that the initial condition \(N(0) \in (\theta_2, K_2) \) and

\[
\rho K_2 < \frac{d}{\beta} < \min\{1, \frac{\rho(1 - \theta)^2}{4\beta}\}.
\]

We postulate (throughout the rest of this manuscript) that System (7)-(8) or System (9)-(10) have **disease-free dynamics** if its attractor is \(E_{0,0} \cup E_{1,0} \); or System (7)-(8) or (9)-(10) has **susceptibles-free dynamics** if its attractor is \(E_{0,0} \cup E_{0,1} \); or System (7)-(8) or (9)-(10) has **disease-driven extinction** if its attractor is \(E_{0,0} \).

3.1. Interior equilibrium

Notice that the equilibria of System (7)-(8) satisfy the following equations:

\[
\begin{align*}
S' & = S \left[(N - \theta) (1 - N) - \frac{\beta I}{N} \right] = 0 \Rightarrow S = 0 \text{ or } I = \frac{N(N - \theta)(1 - N)}{\beta}, \\
I' & = I \left[\frac{\beta S}{N} + \rho(N - \theta)(1 - N) - d \right] = 0 \Rightarrow I = 0 \text{ or } S = \frac{N[d - \rho(N - \theta)(1 - N)]}{\beta}.
\end{align*}
\]

while the equilibria of System (9)-(10) satisfy the following equations:

\[
\begin{align*}
S' & = S \left[(N - \theta)(1 - N) - \beta I \right] = 0 \Rightarrow S = 0 \text{ or } I = \frac{(N - \theta)(1 - N)}{\beta}, \\
I' & = I \left[\beta S + \rho(N - \theta)(1 - N) - d \right] = 0 \Rightarrow I = 0 \text{ or } S = \frac{d}{\beta} = -\frac{\rho(N - \theta)(1 - N)}{\beta}.
\end{align*}
\]

If we let \((S^*, I^*) \) be an interior equilibrium of System (7)-(8) or System (9)-(10) then we have that:

1. The following equation

\[
N^* = S^* + I^* = \frac{N^*[d + (1 - \rho)(N^* - \theta)(1 - N^*)]}{\beta} \Rightarrow \frac{\beta - d}{1 - \rho} = (N^* - \theta)(1 - N^*) \quad (11)
\]

for System (7)-(8) must be satisfied, and so, we see that System (7)-(8) has no interior equilibrium if \(d \geq \beta \) and

\[
\begin{align*}
N^* & = \frac{1 + \theta}{2} \pm \sqrt{\frac{(1 - \theta)^2 - \frac{4(\beta - d)}{1 - \rho}}{2}} \quad \text{if } \frac{(1 - \theta)^2}{4} > \frac{4(\beta - d)}{1 - \rho} > 0, \\
I^* & = \frac{N^*(N^* - \theta)(1 - N^*)}{\beta}, \\
S^* & = \frac{N^*(d - \rho(N^* - \theta)(1 - N^*))}{\beta} = \rho N^* \left(\frac{N^* - \theta_2}{\beta} \right) \frac{(N^* - K_2)}{\beta} \quad \text{if } \frac{(1 - \theta)^2}{4} > \frac{\rho}{\beta}.
\end{align*}
\]

System (7)-(8) may have the following two interior equilibria \(N_i^*, i = 1, 2 \), i.e.,

\[
\theta < S_1^* + I_1^* = N_1^* = \frac{1 + \theta}{2} - \frac{\sqrt{(1 - \theta)^2 - \frac{4(\beta - d)}{1 - \rho}}}{2} < \frac{1 + \theta}{2}
\]

11
and
\[\frac{1 + \theta}{2} < S^*_2 + I^*_2 = N^*_2 = \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - \frac{4(\beta - d)}{1 - \rho}}}{2} < 1. \]

The Jacobian matrix of Model (7)-(8) evaluated at the interior equilibrium \((S^*, I^*)\) can be represented as follows
\[J_{(S^*, I^*)} = \begin{pmatrix}
S^* \left[1 + \theta - 2N^* + \frac{\beta I^*}{(N^*)^2} \right] \\
I^* \left[\beta + \rho(1 + \theta) - 2\rho N^* + \frac{\beta I^*}{(N^*)^2} \right]
\end{pmatrix}
\begin{pmatrix}
S^* \left[1 + \theta - 2N^* - \frac{\beta S^*}{(N^*)^2} \right] \\
I^* \left[\rho(1 + \theta - 2N^*) - \frac{\beta S^*}{(N^*)^2} \right]
\end{pmatrix} \quad (12)\]

where \(N^* = S^* + I^*\). Its two eigenvalues \(\lambda_i, i = 1, 2\) satisfy the following equalities:
\[\lambda_1 + \lambda_2 = (S^* + \rho I^*)(1 + \theta - 2N^*) \quad \text{and} \quad \lambda_1\lambda_2 = \frac{\beta S^* I^*(1 - \rho)(2N^* - 1 - \theta)}{N^*}, \quad (13) \]

Thus, if an interior equilibrium \((S^*, I^*)\) exists, it would be locally asymptotically stable provided that \(N^* > \frac{1 + \theta}{2}\), or a saddle if \(N^* < \frac{1 + \theta}{2}\). We conclude that System (7)-(8) has either no interior or two interior equilibria \(N^*_i, i = 1, 2\) and if we happen to have two interior equilibria then we must have that \(N^*_1\) is always a saddle and \(N^*_2\) is always a source.

2. The following equation
\[N^* = S^* + I^* = \frac{d}{\beta} + (1 - \rho) \frac{(N^* - \theta)(1 - N^*)}{\beta} \Rightarrow \frac{\beta}{1 - \rho} (N^* - \frac{d}{\beta}) = (N^* - \theta)(1 - N^*) \quad (14) \]

for System (9)-(10). According to Corollary 2.1, we have \(N^* < 1\), thus (14) implies that System (9)-(10) has no interior equilibrium if \(\frac{d}{\beta} \geq 1\) and
\[N^* = \frac{1 + \theta}{2} - \frac{\beta}{2(1 - \rho)} + \frac{\sqrt{(1 + \theta - \frac{\beta}{2})^2 + 4(\frac{d}{\beta} - \theta)}}{2} \quad \text{if} \quad (1 + \theta - \frac{\beta}{2} > \theta - \frac{d}{1 - \rho}) \]
\[= \frac{1 + \theta}{2} - \frac{\beta}{2(1 - \rho)} + \frac{\sqrt{(1 - \theta - \frac{\beta}{2})^2 - 4(\frac{d}{\beta} - \theta)}}{2} \quad \text{if} \quad (1 + \theta - \frac{\beta}{2} < \theta - \frac{d}{1 - \rho}) \]
\[I^* = \frac{(N^* - \theta)(1 - N^*)}{\beta}, \]
\[S^* = \frac{d - \rho(N^* - \theta)(1 - N^*)}{\beta} \quad \text{if} \quad (1 - \theta)^2 > \frac{d}{\rho}. \]

System (9)-(10) may have the following two interior equilibria:
\[S^*_1 + I^*_1 = N^*_1 = \frac{1 + \theta}{2} - \frac{\beta}{2(1 - \rho)} - \frac{\sqrt{(1 + \theta - \frac{\beta}{1 - \rho})^2 + 4(\frac{d}{1 - \rho} - \theta)}}{2} < 1 + \theta - \frac{\beta}{2(1 - \rho)} \]

and
\[\frac{1 + \theta}{2} - \frac{\beta}{2(1 - \rho)} < S^*_2 + I^*_2 = N^*_2 = \frac{1 + \theta}{2} - \frac{\beta}{2(1 - \rho)} + \frac{\sqrt{(1 + \theta - \frac{\beta}{1 - \rho})^2 + 4(\frac{d}{1 - \rho} - \theta)}}{2} < 1 + \theta - \frac{\beta}{(1 - \rho)} \]

if \(\frac{1 + \theta}{2} > \frac{\beta}{2(1 - \rho)}, \left(1 + \theta - \frac{\beta}{1 - \rho}\right)^2 > 4(\theta - \frac{d}{1 - \rho}) \quad \text{and} \quad \theta > \frac{d}{1 - \rho}. \)
On the other hand if \(\theta < \frac{d}{1-\rho} \) then System (9)-(10) may have at most one interior equilibrium, namely,

\[
S_i^* + I_i^* = N_i^* = \frac{1 + \theta}{2} - \frac{\beta}{2(1-\rho)} + \frac{\sqrt{(1 + \theta - \frac{\beta}{1-\rho})^2 + 4(\frac{d}{1-\rho} - \theta)}}{2}.
\]

The Jacobian matrix of System (9)-(10) evaluated at the interior equilibrium \((S^*, I^*)\) is represented as

\[
J_{(S^*, I^*)} = \begin{pmatrix}
S^*(1 + \theta - 2N^*) & S^*(1 + \theta - \beta - 2N^*) \\
I^*(\beta + \rho(1 + \theta) - 2\rho N^*) & \rho I^*(1 + \theta - 2N^*)
\end{pmatrix}
\]

where \(N^* = S^* + I^*\). Its two eigenvalues \(\lambda_i, i = 1, 2\) satisfy the following equalities:

\[
\lambda_1 + \lambda_2 = (S^* + \rho I^*)(1 + \theta - 2N^*) \quad \text{and} \quad \lambda_1\lambda_2 = \beta S^* I^*[1 - (\rho)(2N^* - 1 - \theta) + \beta].
\]

Thus, when the interior \((S^*, I^*)\) exists, it is locally asymptotically stable as long as \(N^* > \frac{1+\theta}{2}\) while a saddle whenever \(N^* < \frac{1+\theta}{2} - \frac{\beta}{2(1-\rho)}\). It is a source if

\[
\frac{1 + \theta}{2} - \frac{\beta}{2(1-\rho)} < N^* < \frac{1 + \theta}{2}.
\]

If System (9)-(10) has two interior equilibria \(N_i^*, i = 1, 2\) then using their expressions and the criteria for interior stability allow us to conclude that \(N_1^*\) is always a saddle while \(N_2^*\) can be a sink or source. If, on the other hand, System (9)-(10) has only one interior equilibrium, namely \(N_2^*\), then we see that it can be a sink or source depending on parameter values.

The above discussion can be summarized in the following theorem:

Theorem 3.2 (Interior equilibria of Models). Let \(E_{i1} = (S^*_1, I^*_1)\) and \(E_{i2} = (S^*_2, I^*_2)\) then existence and stability conditions for the interior equilibria of System (7)-(8) are listed in Table 2.

<table>
<thead>
<tr>
<th>Interior Equilibrium</th>
<th>Condition for existence</th>
<th>Condition for local asymptotically stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{i1})</td>
<td>(0 < \frac{d}{1-\rho} < \frac{(1-\theta)^2}{4}) or (0 < \frac{\beta}{1-\rho} < \frac{(1-\theta)^2}{4})</td>
<td>Always a saddle</td>
</tr>
<tr>
<td>(E_{i2})</td>
<td>(0 < \frac{d}{1-\rho} < \frac{(1-\theta)^2}{4}) or (0 < \frac{\beta}{1-\rho} < \frac{(1-\theta)^2}{4})</td>
<td>Always locally asymptotically stable.</td>
</tr>
</tbody>
</table>

Table 2: The local stability of interior equilibrium for System (7)-(8)

Existence and stability conditions for the interior equilibria of System (9)-(10) are listed in Table 3. Sufficient conditions leading to no interior equilibrium and the related global dynamics of System (7)-(8) and System (9)-(10) are listed in Table 4.

Proof. The above discussion shows that a necessary condition for System (7)-(8) and System (9)-(10) to have an interior equilibrium is that \(\frac{d}{\rho} < 1\) while the existence of interior equilibrium for System (7)-(8) and System (9)-(10) can be classified with the conditions \(\frac{d}{\rho} > \frac{(1-\theta)^2}{4}\) and \(\frac{d}{\rho} < \frac{(1-\theta)^2}{4}\).

If \(\frac{d}{\rho} > \frac{(1-\theta)^2}{4}\) then System (7)-(8) and System (9)-(10) have no boundary equilibria \(E_{0,\theta}\) and \(E_{0,1}\) on \(I\)-axis and therefore

\[
h(N) = \rho(N - \theta)(1 - N) - d < 0 \quad \text{for all} \quad N > 0.
\]
Table 3: The local stability of interior equilibrium for System (9)-(10)

<table>
<thead>
<tr>
<th>Interior Equilibrium</th>
<th>Condition for existence</th>
<th>Condition for stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{i1}</td>
<td>$\min{\frac{d}{1-\rho}, \frac{d+\rho-1}{1-\rho}} < \theta$ and (a) $\frac{d}{\rho} > (1-\theta)^2$ or (b) $\frac{d}{\rho} < (1-\theta)^2$, $N_1 < \theta_2$</td>
<td>Always a saddle</td>
</tr>
<tr>
<td>E_{i2}</td>
<td>Case (1):$\min{\frac{d}{1-\rho}, \frac{d+\rho-1}{1-\rho}} < \theta$ and (a) $\frac{d}{\rho} > (1-\theta)^2$ or (b) $\frac{d}{\rho} < (1-\theta)^2$, $N_2 < \theta_2$ or (c) $\frac{d}{\rho} < (1-\theta)^2$, $N_2 > K_2$; Case (2): $1 > \frac{d}{\rho}$ and (a) $\frac{d}{\rho} > (1-\theta)^2$ or (b) $\frac{d}{\rho} < (1-\theta)^2$, $N_2 < \theta_2$ or (c) $\frac{d}{\rho} < (1-\theta)^2$, $N_2 > K_2$</td>
<td>Locally asymptotically stable if $N_2^* > \frac{1+\theta}{2}$ while it’s a source if $\frac{1+\theta}{2} - \frac{\beta}{2(1-\rho)} < N_2^* < \frac{1+\theta}{2}$</td>
</tr>
</tbody>
</table>

Necessary conditions for the existence of interior equilibrium for System (7)-(8) and System (9)-(10) are tied in to the existence of solutions of the following equations:

$$\beta - d = (N - \theta) (1 - N), \ 0 < \frac{\beta - d}{1 - \rho} < \frac{(1 - \theta)^2}{4} < \frac{d}{\rho}$$

(17)

and

$$\frac{\beta}{1-\rho} (N - \frac{d}{\beta}) = (N - \theta) (1 - N), \ \frac{d}{\beta} > \theta, \ \text{or}$$

$$\frac{\beta}{1-\rho} (N - \frac{d}{\beta}) = (N - \theta) (1 - N), \ \frac{1+\theta}{2} > \frac{\beta}{1-\rho}, \ (1 - \theta - \frac{\beta}{1-\rho})^2 > 4\frac{(\beta d - d)}{1-\rho} > 0.$$

(18)

Therefore, if $\frac{d}{\beta} > (\frac{1-\theta)^2}{4}$ then System (7)-(8) and System (9)-(10) have no interior if $\frac{d}{\beta} \geq 1$ or if the following conditions

$$\frac{\beta - d}{1 - \rho} > \frac{(1 - \theta)^2}{4} \text{ for System (7)-(8)}$$

and

$$\left(1 - \theta - \frac{\beta}{1-\rho}\right)^2 < 4\frac{(\beta d - d)}{1-\rho} < 0 \text{ for System (9)-(10)}$$

for each model hold.

If $\frac{d}{\beta} < (\frac{1-\theta)^2}{4}$, then System (7)-(8) and System (9)-(10) have boundary equilibria $E_{0,\theta}$ and $E_{0,1}$ on the I-axis. Additional conditions are needed to guarantee the existence of interior equilibrium for System (7)-(8) and System (9)-(10). System (7)-(8) and System (9)-(10) are discussed separately.

1. For System (7)-(8), if $\frac{\beta - d}{1 - \rho} > (\frac{1-\theta)^2}{4}$ Equation (17) should have solutions in the interval $(0, \theta_2)$ or $(K_2, 1)$ since

$$S^* = N^* \frac{d - \rho (N^* - \theta) (1 - N^*)}{\beta} = \rho N^* (N^* - \theta_2)(N^* - K_2) > 0.$$

The schematic nullclines for System (7)-(8) when $\frac{\beta - d}{1 - \rho} < (\frac{1-\theta)^2}{4}$ are illustrated in Figure 1. Two interior equilibria occur whenever $\frac{\beta - d}{1 - \rho} < \frac{d}{\beta} < (\frac{1-\theta)^2}{4}$ with one interior a saddle (i.e., the horizontal
line intercepts in the green region of \((N - \theta)(1 - N)\) and the other a sink (i.e., the horizontal line intercepts in the blue region of \((N - \theta)(1 - N)\)). There is no interior equilibrium when the horizontal line intercepts (crosses) the black region of \((N - \theta)(1 - N)\), i.e., \(\frac{d}{\beta} < \frac{\theta}{4}\).

2. For System (9)-(10), whenever \(\frac{\beta \theta - d}{1 - \rho} < \frac{(1 - \theta - \frac{\beta}{4})^2}{\beta} \) Equation (18) should have solutions in the interval \((0, \theta_2)\) or \((K_2, 1)\) since

\[
S^* = \frac{d - \rho (N^* - \theta) (1 - N^*)}{\beta} = \rho \frac{(N^* - \theta_2) (N^* - K_2)}{\beta} > 0.
\]

The schematic nullclines for System (9)-(10) when \(\frac{\beta \theta - d}{1 - \rho} < \frac{(1 - \theta - \frac{\beta}{4})^2}{\beta} \) are found in Figure 2. There are two cases depending on the sign of \(\frac{d}{\beta} - \theta\): (1) If \(\frac{d}{\beta} > \theta\) (see Figure 2(a)), two interior equilibria occur whenever

\[
1 + \theta > \frac{\beta}{2(1 - \rho)} \left(1 - \theta - \frac{\beta}{1 - \rho}\right)^2 > \frac{4(\beta \theta - d)}{1 - \rho} > 0
\]

and

\[N_1^* < \theta_2, N_2^* < \theta_2\] or \(N_2^* < K_2\)

where \(N_1^*\) is always a saddle (i.e., the line \(\frac{\beta}{1 - \rho}(N - \frac{\beta}{4})\) intercepts the green region of \((N - \theta)(1 - N)\)) and \(N_2^*\) can be sink (i.e., the line intercepts the red region of \((N - \theta)(1 - N)\)) or source (i.e., the line intercepts the blue region of \((N - \theta)(1 - N)\)). If Condition \(N_2^* < \theta_2\) or \(N_2^* < K_2\) does not hold, i.e., \(\theta_2 < N_2^* < K_2\) then System (9)-(10) has only one interior equilibrium \(N_1^*\), a saddle. (2) If \(\frac{d}{\beta} < \theta\) (see Figure 2(b)) then only one interior equilibrium occurs whenever

\[
\theta < \frac{d}{\beta} < 1, \theta < \frac{d}{1 - \rho}\text{ and } [N_2^* < \theta_2 \text{ or } N_2^* < K_2]
\]
and this interior equilibrium N_2^* can be a sink or a source, depending on parameters’ values. There is no interior if the line intercepts the black region of $(N - \theta)(1 - N)$ when

$$\frac{d}{\beta} < \theta, \theta_2 < N_2^* < K_2$$

or

$$\left(1 - \theta - \frac{\beta}{1 - \rho}\right)^2 < \frac{4(\beta \theta - d)}{1 - \rho}.$$

In short, sufficient conditions for the existence of interior equilibria and their stability have been identified and listed in Table 2 for System (7)-(8) and in Table 3 for System (9)-(10).

The above analysis has identified conditions (sufficient) that guarantee the absence of interior equilibria for System (7)-(8) and System (9)-(10); listed in Table 4. In the absence of interior equilibrium, we can conclude thanks to the Poincaré-Bendixson Theorem (Guckenheimer & Holmes 1983), that a trajectory starting with arbitrary initial conditions in X converge to its locally asymptotically stable boundary equilibria since System (7)-(8) and System (9)-(10) support each a global compact attractor $\{(S, I) \in X : 0 \leq S + I \leq 1\}$ in X. The fact that $E_{0,0}$ is always an attractor results according to Proposition 3.1 in the following three cases:

1. **Disease-free dynamics** that corresponds to the case where $E_{0,0}$ and $E_{1,0}$ are the only locally asymptotically stable boundary equilibria while other existing boundary equilibria are unstable.
Figure 2: Schematic nullclines for System (9)-(10) when $\frac{d}{\beta} < \theta$. (b) Schematic nullclines for System (9)-(10) when $\frac{d}{\beta} > \theta$.

This implies that $\beta \geq d$ is a sufficient condition in support of disease-free dynamics within System (7)-(8) and System (9)-(10).

2. **Susceptible-free dynamics** that corresponds to the case where $E_{0,0}$ and $E_{0,1}$ are the only locally asymptotically stable boundary equilibria while other existing boundary equilibria (including those on the I-axis) are unstable. This implies that $\frac{d}{\beta} < \rho K_2$ and $\frac{d}{\rho} < (1-\theta)^2/4$ for System (7)-(8) and System (9)-(10), in addition to the conditions of non-existence of interior equilibrium.

3. **Disease-driven extinction** that corresponds to the case where $E_{0,0}$ is the only locally asymptotically stable boundary equilibria provided that there is no boundary equilibria on the I-axis a result based on Theorem 3.1. This implies that $\rho K_2 < \frac{d}{\beta} < 1$ and $\frac{d}{\rho} > \frac{(1-\theta)^2}{4}$ for System (7)-(8) and System (9)-(10) in conjunction to the conditions that there are no interior equilibrium.

Detailed conditions on the three cases discussed above are listed in Table 4.

Notes: Theorem 3.2 implies the following:

1. Small values of ρ make System (7)-(8) and System (9)-(10) prone to disease-driven extinction since one necessary condition for disease-driven extinction requires that $\frac{d}{\rho} > \frac{(1-\theta)^2}{4}$ according to Theorem 3.1. This also suggests that vertical transmission may save a species from extinction provided that the reproductive ability of infectives is large enough (some additional conditions must be met).

2. System (7)-(8) has simpler dynamics than System (9)-(10). In fact, System (7)-(8) has no interior equilibria or two interior equilibria (a saddle and a sink) while System (9)-(10) may have one or two interior equilibria.
4. Classifications on dynamics and related bifurcation diagrams

This section focuses on the classification of the dynamics and related bifurcations of System (7)-(8) and System (9)-(10). We define \(R_h^0 = \frac{\beta}{\beta - d} \) to be the horizontal transmission reproduction number and \(R_v^0 = \frac{\rho}{\rho - d} \) as the vertical transmission reproduction number.

4.1. The SI model with frequency-dependent horizontal transmission

For System (7)-(8), notice that

\[
\frac{\beta - d}{1 - \rho} < \frac{d}{\rho} \Rightarrow R_v^0 = \frac{\rho}{d} > \frac{1}{\beta}.
\]

Thus, if System (7)-(8) has boundary equilibria on the \(I \)-axis, i.e., \(\frac{d}{\rho} < \frac{(1-\theta)^2}{4} \), then the no interior equilibria condition \(\frac{\beta - d}{1 - \rho} > \frac{d}{\rho} \) says that the boundary equilibrium \(E_{0,0} \) is a source while \(E_{0,1} \) is locally asymptotically stable according to Proposition 3.1 and the fact that

\[
\frac{\beta - d}{1 - \rho} > \frac{d}{\rho} \Rightarrow R_v^0 = \frac{\rho}{d} < \frac{1}{\beta}.
\]

Therefore, System (7)-(8) have two interior equilibria provided that

\[
0 < \frac{\beta - d}{1 - \rho} < \frac{(1-\theta)^2}{4} \Rightarrow R_v^0 = \frac{\rho}{d} < \min\left\{ \frac{1}{\beta}, \frac{4}{(1-\theta)^2} \right\}
\]

or

\[
0 < \frac{\beta - d}{1 - \rho} < \frac{d}{\rho} < \frac{(1-\theta)^2}{4} \Rightarrow \frac{4}{(1-\theta)^2} < R_v^0 = \frac{\rho}{d} < \frac{1}{\beta}.
\]

Corollary 2.1, Proposition 3.1, and Theorem 3.1-3.2 lead to the study of three cases for System (7)-(8):

1. The disease-driven extinction occurs in the situation depicted in Figure 3. First, no interior equilibrium, which requires \(\frac{\beta - d}{1 - \rho} > \frac{(1-\theta)^2}{4} \). Within Figure 3, we see that the existence and the stability of boundary equilibria requires \(R_v^0 = \frac{\rho}{d} < \frac{4}{(1-\theta)^2} \) and \(\frac{d}{\beta} < 1 \) (i.e., \(R_h^0 > 1 \)). Thus, a sufficient condition that makes Figure 3 possible is

\[
\max\left\{ \frac{\rho}{d}, \frac{1 - \rho}{\beta - d} \right\} < \frac{4}{(1-\theta)^2} \quad \text{and} \quad R_h^0 = \frac{\beta}{\beta - d} > 1.
\]

System (7)-(8) may also support disease-driven extinction whenever it supports an interior equilibrium. In such a case, disease-driven extinction occurs as a result of catastrophic events, that is, when a stable limit cycles merges with the adjacent saddle, leading to the annihilation of the susceptible and infected sub-populations.

2. An endemic situation occurs whenever System (7)-(8) supports the interior equilibria shown in Figure 4. A necessary condition is that \(\frac{\beta - d}{1 - \rho} < \frac{(1-\theta)^2}{4} \) and thus we can conclude that the sufficient condition leading to Figure 4(a) is

\[
R_h^0 = \frac{\rho}{d} < \frac{4}{(1-\theta)^2} < \frac{1 - \rho}{\beta - d} \quad \text{and} \quad \rho < \frac{d}{\beta} < 1 \quad \text{(or} \quad 1 < R_h^0 < \frac{1}{\rho} \text{)}
\]

while the sufficient condition leading to Figure 4(b) is

\[
\frac{4}{(1-\theta)^2} < \frac{1 - \rho}{\beta - d} < R_h^0 = \frac{\rho}{d} \quad \text{and} \quad \rho < \frac{d}{\beta} < 1 \quad \text{(or} \quad 1 < R_h^0 < \frac{1}{\rho} \text{)}.
\]
Disease-driven Extinction

\[\beta > d \text{ and } (1 - \theta)^2/4 < \min\{d/\rho, (\beta - d)/(1 - \rho)\} \]

Figure 3: Schematic phase plane for System (7)-(8) when it experiences the possibility of disease-driven extinction.

3. Disease-free or susceptible-free dynamics occur when System (7)-(8) has no interior equilibrium with either \(E_{1,0} \) or \(E_{0,1} \) locally asymptotically stable, as shown in Figure 5. Figure 5(a) highlights a disease-free situation for which the condition

\[R_0^h \geq 1 \text{ and } 4 < R_0^v = \frac{\rho}{d} \]

is sufficient.

Figure 5(b) highlights a susceptible-free state for which sufficient the condition is

\[\frac{1 - \rho}{\beta - d} < \frac{4}{(1 - \theta)^2} < R_0^v = \frac{\rho}{d} \text{ and } \frac{d}{\beta} < \rho \text{ (or } R_0^h > \frac{1}{\rho}). \]

The vertical transmission reproduction number, \(R_0^v = \frac{\beta}{\theta} \), and the horizontal transmission reproduction number, \(R_0^h = \frac{\beta}{\theta} \), help, using the above discussions and the analytical results in previous sections, understand the effects of parameters \(\rho, d, \beta, \theta \) on the dynamics of System (7)-(8). The results can briefly summarized as follows:

1. A horizontal transmission reproduction number \(R_0^h \) less than 1 supports disease-free dynamics for System (7)-(8) (see Theorem 3.2 when combined with the relevant results in Table 4).

2. Both initial condition \(N(0) = S(0) + I(0) \) and the value of the vertical transmission reproduction number, \(R_0^v \), are important in determining global dynamics (see Corollary 2.1 and Theorem 3.2). We can conclude that large values of \(R_0^v \) tend to lead to susceptible-free dynamics; while intermediate values of \(R_0^v \) tend lead to the coexistence of susceptibles and infectives; and small values of \(R_0^v \) tends to lead to disease-driven extinction.

3. The SI model with frequency-dependent transmissions or System (7)-(8) supports relatively simple equilibrium dynamics. It can support no interior or two interior equilibria, with one of the interior equilibrium always stable (see Theorem 3.2, Table 3-4 and Figure 1).
4.2. SI model with density-dependent horizontal transmissions

In this subsection, the dynamics and potential bifurcations of the SI model, with density-dependent horizontal transmission, given by System (9)-(10), are classified. The classification of stability of boundary equilibria for System (9)-(10) on the I-axis $E_{0,0}$ and $E_{0,1}$ when $(1-\theta)^2 > \frac{d}{\rho}$ can be determined from the signs of $\theta - \frac{d}{\rho}$ and $K_2 - \frac{d}{\rho}$. Since

\[
\theta < \theta_2 = \frac{1 + \theta}{2} - \frac{\sqrt{(1-\theta)^2 - 4d/\rho}}{2} < K_2 = \frac{1 + \theta}{2} + \frac{\sqrt{(1-\theta)^2 - 4d/\rho}}{2} < 1.
\]

Hence, the signs can be determined by solving

\[
\frac{1 + \theta}{2} - \frac{\sqrt{(1-\theta)^2 - 4d/\rho}}{2} = \frac{d}{\rho\beta} \Rightarrow R_0^* = \frac{\rho}{d} = \frac{1 + \theta - 4\beta \pm \sqrt{(4\beta - 1)^2 + (1-\theta)^2 - 1 - 8\beta\theta}}{2\beta\theta}
\]

and

\[
\frac{1 + \theta}{2} + \frac{\sqrt{(1-\theta)^2 - 4d/\rho}}{2} = \frac{d}{\rho\beta} \Rightarrow \frac{\rho}{d} = \frac{1 + \theta - 4\beta \pm \sqrt{(4\beta - 1)^2 + (1-\theta)^2 - 1 - 8\beta\theta}}{2\beta\theta}.
\]

Letting $c_1 = \frac{1 + \theta - 4\beta - \sqrt{(4\beta - 1)^2 + (1-\theta)^2 - 1 - 8\beta\theta}}{2\beta\theta}$ and $c_2 = \frac{1 + \theta - 4\beta + \sqrt{(4\beta - 1)^2 + (1-\theta)^2 - 1 - 8\beta\theta}}{2\beta\theta}$ leads, making use of Proposition 3.1, to the following (a two dimensional bifurcation diagram example is shown in Figure 6 when $\beta = 0.1$ and $\theta = 0.15$) results:
1. Black area in Figure 6: \(E_{0,\theta} \) is a saddle and \(E_{0,1} \) is locally asymptotically stable if
\[
R^e_0 = \frac{\rho}{d} > \max \left\{ \frac{4}{(1-\theta)^2}, c_2 \right\}.
\]

2. Cyan area in Figure 6: \(E_{0,\theta} \) is a source and \(E_{0,1} \) is locally asymptotically stable if
\[
\max \left\{ \frac{4}{(1-\theta)^2}, c_1 \right\} < R^e_0 = \frac{\rho}{d} < c_2.
\]

3. Green area in Figure 6: \(E_{0,\theta} \) is a source and \(E_{0,1} \) is a saddle if
\[
\frac{4}{(1-\theta)^2} < R^h_0 = \frac{\rho}{d} < c_1.
\]

4. White area in Figure 6: there is no boundary equilibrium on \(I \)-axis, i.e.,
\[
R^h_0 = \frac{\rho}{d} < \frac{4}{(1-\theta)^2}.
\]

We therefore identify only four cases for System (9)-(10):

1. Case one: There is no boundary equilibrium \(E_{0,\theta} \) and \(E_{0,1} \) when the reproduction number of vertical transmission \(R^e_0 = \frac{\rho}{d} \) is small enough, i.e., \(R^e_0 < \frac{4}{(1-\theta)^2} \). For a certain range of parameter values, System (9)-(10) can have a unique interior attractor, which can be an interior equilibrium (see Figure 7; where within the the sub-figure (a) corresponds to the white area with blue dots, i.e., \(R^h_0 = \frac{\beta}{d} > \frac{1}{\theta} \), and (b) corresponds to the white area with red dots, i.e., \(1 < R^h_0 < \frac{1}{\theta} \), below the green area of Figure 6) or a stable limit cycle through Hopf-Bifurcation. This is the case when System (9)-(10) can support disease-driven extinction as it was the case for System (7)-(8).

2. Case two: There are boundary equilibria \(E_{0,\theta} \) and \(E_{0,1} \) and the reproduction number of horizontal transmission has a large value, i.e., \(R^h_0 > \frac{1}{\theta} \). An example of this case is shown in the black area [whose dynamics is corresponding to the sub-figure (a) of Figure 8] and the green area [whose dynamics is corresponding to the sub-figure (b) of Figure 8] on the right of the purple vertical line \(d = 0.015 \) of Figure 6.

3. Case three: There are boundary equilibria \(E_{0,\theta} \) and \(E_{0,1} \) and the reproduction number of horizontal transmission has intermediate values, i.e., \(1 < R^h_0 < \frac{1}{\theta} \). An example of this case is shown in the green area [whose dynamics corresponds to the sub-figure (a) of Figure 9] and the black area [whose dynamics is corresponding to the sub-figure (b) of Figure 9] on the left of the purple vertical line \(d = 0.015 \) of Figure 6.

4. Case four: There are boundary equilibria \(E_{0,\theta} \) and \(E_{0,1} \) and the reproduction number of vertical transmission has intermediate values, i.e., \(\max \left\{ \frac{4}{(1-\theta)^2}, c_1 \right\} < R^h_0 < c_2 \). An example of this case is shown in the cyan area of Figure 6 whose dynamics on the right side of the purple vertical line \(d = 0.015 \), i.e., the reproduction number of horizontal transmission has large values, i.e., \(R^h_0 > \frac{1}{\theta} \). Dynamics represented by the sub-figure (a) of Figure 10 and the dynamics on the left side of the purple vertical line \(d = 0.015 \), i.e., \(1 < R^h_0 < \frac{1}{\theta} \), represented by the sub-figure (b) of Figure 10.
The above discussion and the associated analytical results, including Proposition 3.1, Theorem 2.1, 3.1, 3.2 lead us to conclude that the effects of parameters ρ, d, β, θ on the dynamics of System (9)-(10) can be summarized as follows:

1. The values of the reproduction number of horizontal transmission $R^h_0 = \frac{\beta}{d}$ and the reproduction number of vertical transmission $R^v_0 = \frac{\rho}{d}$ determine the dynamics of System (9)-(10):

 - If $1 < R^h_0 < \frac{1}{3}$ and $R^v_0 < \frac{4}{(1-\theta)^2}$, then System (9)-(10) has no boundary equilibrium on the I-axis and it may have the disease-driven extinction in certain range of parameter values.
 - If System (9)-(10) has the intermediate values of R^v_0, i.e., $\max\left\{\frac{4}{(1-\theta)^2}, c_1\right\} < R^v_0 < c_2$, then the system tends to have susceptible-free dynamics.
 - The values of R^h_0 determines whether System (9)-(10) can have unique interior equilibrium ($R^h_0 > \frac{1}{3}$) or two interior equilibria ($1 < R^h_0 < \frac{1}{3}$).

2. The large values of ρ, θ, β and the small values of d can destablize System (9)-(10) (see Figure 11).

3. System (9)-(10) can have a stable limit cycle; an example is included in Figure 12.

5. Diffusive instability

 The dynamics and evolution of host-pathogen or host-parasite systems is of theoretically challenging for factors that include the impact of recurrent disease invasion, the ability of a parasite or pathogen to modify a host’s mobility-tied fitness, or reducing life span, or limiting/eliminating reproductive ability. Dispersal is capable of shaping the boundaries of habitats through increases or reductions on the size of the sphere-of-influence of infectious hosts, a cumulative process possibly altering infection rates (reductions or increases in effective contact rates), or its ability to generate clusters, or disease-driven selection of particular behavioral types (Altizer 2010; Diaz 2010; Levin 1974; Murray 2003).

 Diffusive instability arises when diffusion or migration destabilizes stable situations (Segel and Jackson 1972; Levin 1974; Segel and Levin 1976). It may emerge as a result of the dynamics of metapopulation systems when coupled by dispersal or reaction-diffusion (Diaz 2010; Levin 1974; Murray 2003). The possible emergence of diffusive instability from two-patch systems, coupled by dispersal, when the local dynamics are governed by variants of the general SI-FD or SI-DD systems, is briefly address in this section.

 Segel and Jackson (1972) using a simple predator-prey model studied the possibility of diffusive instability in predator-prey systems. Hence, first, some classical results addressing the emergence of diffusive instability in predator-prey systems, are revisited. Segel and Jackson (1972) showed that the addition of random dispersal was enough to generate instability from an otherwise initially stable uniform steady-state distribution. Diffusive instability, as shown by Levin (1974), also arises from the effects of dispersal on predator-prey interactions under the pressure of Allee effects. Segel and Levin (1976) used approximate methods and a multiple-time scale theoretical approach in their development of a small amplitude nonlinear theory of prey-predator interactions under random dispersal; a process modeled via diffusion-like terms in discrete and continuous settings. Segel and Levin (1976) showed that dispersal can destabilize spatially uniform states; diffusive instability moving the system to new nonuniform steady states. Levin and Segel (1976 & 1985) noted that the emergence of diffusive instabilities may explain some of the spatial irregularities observed in nature. The possibility of diffusive instability in general SI models is briefly discussed since identifying conditions that lead to diffusive instability on systems where disease and dispersal play a non-independent role are explored. The discussion below,
A general SI-model can be represented abstractly via the following set of equations

\[
\begin{align*}
\frac{dS}{dt} &= f(S, I) \\
\frac{dI}{dt} &= g(S, I),
\end{align*}
\]

(19)

operating under the assumption that System (19) has a local asymptotically stable interior equilibrium \((S^*, I^*)\), an assumption formulated using the inequalities

\[
f_S + g_I < 0 \text{ and } f_S g_I - f_I g_S > 0
\]

(20)

where \(f_S = \frac{\partial f}{\partial S}(S^*, I^*), \ f_I = \frac{\partial f}{\partial I}(S^*, I^*), \ g_S = \frac{\partial g}{\partial S}(S^*, I^*), \ g_I = \frac{\partial g}{\partial I}(S^*, I^*)\).

The inclusion of dispersal leads, for example, to the study of symmetric two-patch models. An example of such a system is given by the following set of equations:

\[
\begin{align*}
\frac{dS_1}{dt} &= f(S_1, I_1) + l_S(S_2 - S_1) \\
\frac{dI_1}{dt} &= g(S_1, I_1) + l_I(I_2 - I_1) \\
\frac{dS_2}{dt} &= f(S_2, I_2) + l_S(S_1 - S_2) \\
\frac{dI_2}{dt} &= g(S_2, I_2) + l_I(I_1 - I_2)
\end{align*}
\]

(21)

where \(l_S\) is the dispersal rate of the \(S\)-class and \(l_I\) is the dispersal rate of \(I\)-class. A typical pseudo diffusion model analog, involving constant diffusion coefficients, is given by the following system:

\[
\begin{align*}
\frac{dS}{dt} &= D_S \Delta S + f(S, I) \\
\frac{dI}{dt} &= D_I \Delta I + g(S, I)
\end{align*}
\]

(22)

where \(\Delta\) is the Laplacian; \(D_S, D_I\) are the constant diffusion coefficients for susceptibles and infectives, respectively. We say the SI Model (19) supports diffusive instability (or Turing Effects) if \((S^*, I^*)\) is a locally asymptotically stable interior equilibrium of System (19) but \((S^*, I^*, S^*, I^*)\) becomes unstable when embedded in the symmetric two-patch model given by System (21) for certain values of \(l_I, l_S\). We can achieve similar results as long as the \((S^*, I^*)\) equilibrium is unstable for the Diffusion System (22) at least for some values of \(D_S, D_S\). The following theorem provides conditions that support the diffusive instability of System (7)-(8) and System(9)-(10):

Theorem 5.1 (Diffusive instability). The general SI model (19) can have diffusive instability only if \(f_S g_I < 0\). In particular, System (7)-(8) can support diffusive instability provided that the following inequalities hold

\[
\beta - d < \min \left\{ \frac{d}{\rho}, \frac{(1 - \theta)^2}{4} \right\} \text{ and } \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - \frac{4(\beta - d)}{1 - \rho}}}{2} < \frac{(1 + \theta) + \sqrt{(1 + \theta)^2 - 3\theta}}{3}.
\]

System (9)-(10) does not support diffusive instability.

Proof. Recall that the general SI model (19) has locally asymptotically stable interior equilibrium \((S^*, I^*)\) if

\[
f_S + g_I < 0 \text{ and } f_S g_I - f_I g_S > 0.
\]

A simple calculation shows that \((S^*, I^*, S^*, I^*)\) is an interior equilibrium of its two-patch model (21) with its stability being determined by the sign of
\[\Lambda = f_s g_t - f_t g_s - 2(f_s l_t + g_t l_s) + 4 l_s l_t. \]

Thus, **diffusive instability** can occur only if \(\Lambda < 0 \) which indicates that \(f_s g_t < 0 \), that is, if either \(f_s \) or \(g_t \), is positive then \((f_s l_t + g_t l_s) > 0 \) can be made positive and large enough with the right combination of \(l_s, l_t \); in other words, we conclude that for these parameter values, we have that \(\Lambda < 0 \). For example, if \(f_s > 0 \) then we can select the dispersal rate of the I-class \(l_t \) large enough and the dispersal rate of S-class \(l_s \) small so that the condition \(\Lambda < 0 \) is met. Now, under \(g_t > 0 \) diffusive instability may be possible as long as \(l_s \) is large and \(l_t \) is small.

Relying on the discussion in Section 8.9 of Brauer and Castillo-Chavez (2012), we conclude that \((S^*, I^*) \) is a steady state of its reaction-diffusion model, namely Model (22), where the necessary and sufficient conditions for **diffusive instability** are given by

\[
\begin{align*}
 f_s + g_t < 0, & \quad f_s g_t - f_t g_s > 0 \quad \text{and} \quad f_s D_t + g_t D_s > \sqrt{D_s D_t (f_s g_t - f_t g_s)}
\end{align*}
\]

which also implies that \(f_s g_t < 0 \).

From Theorem 3.2, we know that if an interior equilibrium \((S^*, I^*) \) is locally asymptotically stable then for System (7)-(8) or System (9)-(10),

\[N^* = S^* + I^* > \frac{1 + \theta}{2}. \]

Thus, for System (7)-(8), its Jacobian matrix (12) evaluated at the interior equilibrium \((S^*, I^*) \) gives

\[
\begin{align*}
 f_s &= S^* \left[1 + \theta - 2N^* + \frac{\beta I^*}{(N^*)^2} \right] \quad \text{and} \quad g_t = I^* \left[\rho (1 + \theta - 2N^*) - \frac{\beta S^*}{(N^*)^2} \right]
\end{align*}
\]

which implies that \(g_t < 0 \) since \(N^* > \frac{1 + \theta}{2} \). Therefore the possibility of **diffusive instability** in System (7)-(8) requires that \(f_s > 0 \). Since

\[
I^* = \frac{N^*(N^* - \theta)(1 - N^*)}{\beta} \quad \text{and} \quad N^* = \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - \frac{4(\beta - d)}{1 - \rho}}}{2} > \frac{1 + \theta}{2},
\]

we have

\[
f_s > 0 \Rightarrow 1 + \theta - 2N^* + \frac{\beta I^*}{(N^*)^2} = 1 + \theta - 2N^* + \frac{(N^* - \theta)(1 - N^*)}{N^*} = -3(N^*)^2 + 2(1 + \theta)N^* - \theta > 0.
\]

Since

\[
-3(N^*)^2 + 2(1 + \theta)N^* - \theta = 0 \Rightarrow N^* = \frac{(1 + \theta) \pm \sqrt{(1 + \theta)^2 - 3\theta}}{3},
\]

therefore \(f_s > 0 \) requires that \(\frac{\beta - d}{1 - \rho} < \min \left\{ \frac{d}{\rho}, \frac{(1 - \theta)^2}{4} \right\} \) for the existence of \(N^* \) based on Theorem 3.2 and

\[
N^* = \frac{1 + \theta}{2} + \frac{\sqrt{(1 - \theta)^2 - \frac{4(\beta - d)}{1 - \rho}}}{2} < \frac{(1 + \theta) + \sqrt{(1 + \theta)^2 - 3\theta}}{3}.
\]

For System (9)-(10), its Jacobian matrix (15) evaluated at \((S^*, I^*) \) gives

\[
\begin{align*}
 f_s &= S^*(1 + \theta - 2N^*) \quad \text{and} \quad g_t = \rho I^*(1 + \theta - 2N^*)
\end{align*}
\]

which implies that \(f_s < 0 \) and \(g_t < 0 \) since \(N^* > \frac{1 + \theta}{2} \). Therefore, we conclude that System (9)-(10) does not support **diffusive instability**.

\[\square \]
Remark: A direct application of the proof for Theorem 5.1 leads to the following statements:

1. If \(f_S > 0 \) and \(g_I < 0 \), then *diffusive instability* for the patchy Model (21) requires \(\frac{D_S}{D_S} \) to be large enough and \(l_S < \frac{f_S}{S} \) while *diffusive instability* for the reaction-diffusion Model (22) requires that \(\frac{D_S}{D_I} \) is large enough.

2. If \(f_S < 0 \) and \(g_I > 0 \), then *diffusive instability* for the patchy Model (21) requires \(\frac{D_S}{D_I} \) to be large enough and \(l_I < \frac{g_I}{I} \) while *diffusive instability* for the reaction-diffusion Model (22) requires \(\frac{D_S}{D_I} \) to be large enough.

In addition, Theorem 5.1 indicates that the *SI* System (7)-(8) with frequency-dependent horizontal transmission can support *diffusive instability* under certain conditions. For example, when System (7)-(8) has \(\beta = 1, d = 0.85, \rho = 0.05, \theta = 0.2 \), then it has two interior equilibria

\[
E_{11} = (S_1^*, I_1^*) = (0.4666247185, 0.08749213472) \quad \text{and} \quad E_{12} = (S_2^*, I_2^*) = (0.5439015973, 0.1019815495)
\]

where \(E_{11} \) is a saddle and \(E_{12} \) is locally asymptotically stable with

\[
f_S = 0.0830521552 > 0, \quad f_I = -0.7590531079, \quad g_S = 0.02446282446 \quad \text{and} \quad g_I = -0.1334319123 < 0.
\]

Thus if we choose \(\frac{D_S}{D_I} \) (or \(\frac{D_I}{D_I} \)) large enough and \(l_S < \frac{f_S}{S} \), then *diffusive instability* occurs.

These results agree with the study of predator-prey systems by Timm and Okubo (1992), which suggest that the existence of *diffusive instability* in such systems may require density effects on intraspecific coefficients and on a predator’s diffusivity that must be sufficiently larger when compared to the prey’s. There is a critical value involving the ratio of the prey/predator diffusivities that must be crossed before diffusive instability sets in. An alternative *SI* Model (23)-(24) with Allee effects and horizontal and vertical transmission disease that can also support *diffusive instability* is given by the system

\[
\begin{align*}
\frac{dS}{dt} &= S(S - \theta)(1 - S - I) - \beta SI \quad \text{(23)} \\
\frac{dI}{dt} &= \beta SI - dI + \rho I(I - \theta)(1 - S - I) \quad \text{(24)}
\end{align*}
\]

with a locally asymptotically stable interior equilibrium \((S^*, I^*)\) given by

\[
\begin{align*}
f_S &= S^*(1 - N^* - S^* + \theta), & f_I &= -S^*(S^* + \beta - \theta), \\
g_S &= I^*(-\rho I^* + \beta + \rho \theta), & g_I &= \rho I^*(1 - N^* - I^* + \theta).
\end{align*}
\]

For example, when \(\beta = .1, \theta = .2, d = 0.095, \rho = 0.001 \), System (26)-(27) has a unique locally asymptotically stable interior equilibrium \((S^*, I^*) = (0.95, 0.044)\) with

\[
f_S = -0.70680 < 0, \quad f_I = -0.8075, \quad g_S = 0.004406864 \quad \text{and} \quad g_I = 0.000006864 > 0.
\]

Thus, if we choose \(\frac{D_S}{D_I} \) (or \(\frac{D_I}{D_I} \)) large enough and \(l_I < \frac{g_I}{I} \), then *diffusive instability* occurs. This suggests that the existence of *diffusive instability* in (23)-(24) requires that susceptible’s diffusivity is sufficiently larger than that of infectives with a critical value involving the ratio of the susceptible/infectives diffusivities moving beyond a threshold after which diffusive instability sets in.

The *SI* System (26)-(27) with Allee effects and disease modified fitness studied by Kang and Castillo-Chavez (2013a) is given by

\[
\begin{align*}
\frac{dS}{dt} &= f(S, I) = \begin{cases} (S + \rho I)(S + \alpha_1 I - \theta)(1 - S - \alpha_2 I) - \beta SI, \\ 0, \quad \text{if } S = 0 \text{ and } (\alpha_1 I - \theta)(1 - \alpha_2 I) \leq 0 \end{cases} \quad \text{(26)} \\
\frac{dI}{dt} &= g(S, I) = \beta SI - dI, \quad \text{(27)}
\end{align*}
\]
where the assumptions of the model and the detailed biological meaning of parameters can be found in Kang and Castillo-Chavez (2013a), cannot support \textit{diffusive instability}. The model can have a locally asymptotically stable interior equilibrium \((S^*, I^*)\) with

\[
\begin{align*}
 f_S &= [2S^* + (\alpha_1 + \rho)I^* - \theta](1 - S^* - \alpha_2I^*) - (S^* + \rho I^*)(S^* + \alpha_1 I^* - \theta) - \beta I^*, \\
 f_I &= [(\rho + \alpha_1)S^* + 2\rho\alpha_1 I^* - \theta](1 - S^* - \alpha_2I^*) - \alpha_2(S^* + \rho I^*)(S^* + \alpha_1 I^* - \theta) - \beta S^*, \\
 g_S &= \beta I^*, \, g_I = 0.
\end{align*}
\]

However, if we replace density-dependent transmission with frequency-dependent transmission in the SI System (26)-(27) then we obtain the following SI System (29)-(30) by letting \(\rho = 0, \alpha_1 = \alpha_2 = 1:\)

\[
\begin{align*}
 \frac{dS}{dt} &= f(S, I) = S(N - \theta)(1 - N) - \frac{\beta SI}{N}, \quad \text{(29)} \\
 \frac{dI}{dt} &= g(S, I) = \frac{\beta SI}{N} - dI, \quad \text{(30)}
\end{align*}
\]

who supports the unique locally asymptotically stable interior equilibrium

\[
(S^*, I^*) = \left(\frac{dN^*}{\beta}, \frac{N^*(N^* - \theta)(1 - N)}{\beta} \right) \quad \text{where} \quad \frac{d}{\beta} < 1, \quad N^* = \frac{1 + \theta + \sqrt{(1 - \theta)^2 - 4(\beta - d)}}{2}
\]

and

\[
\begin{align*}
 f_S &= \frac{\partial f}{\partial S}(S^*, I^*) = S^* \left(1 + \theta - 2N^* + \frac{\beta I^*}{(N^* + \theta)} \right), \\
 f_I &= \frac{\partial f}{\partial I}(S^*, I^*) = S^* \left(1 + \theta - 2N^* - \frac{\beta S^*}{(N^* + \theta)} \right) < 0, \\
 g_S &= \frac{\partial g}{\partial S}(S^*, I^*) = \frac{\beta I^*}{(N^* + \theta)} > 0, \\
 g_I &= \frac{\partial g}{\partial I}(S^*, I^*) = -\frac{\beta S^*}{(N^* + \theta)} < 0.
\end{align*}
\]

Thus, System (29)-(30) can have \textit{diffusive instability} if

\[
 f_S > 0 \Rightarrow 1 + \theta - 2N^* + \frac{\beta I^*}{(N^*)^2} = 1 + \theta - 2N^* + \frac{\beta I^*}{(N^*)^2} = \frac{3(N^*)^2 + 2(1 + \theta)N^* - \theta}{N} > 0.
\]

Therefore, according to the proof of Theorem 5.1 and the discussion on System (7)-(8), we can conclude that sufficient conditions leading to \textit{diffusive instability} are that \(\frac{dI}{ds} (\text{or} \ \frac{dS}{ds})\) is large enough and the following inequalities hold

\[
 I_S < \frac{f_S}{2 - \frac{d}{\beta}} < 1, \quad \frac{1 + \theta + \sqrt{(1 - \theta)^2 - 4(\beta - d)}}{2} < \frac{(1 + \theta + \sqrt{(1 + \theta)^2 - 3\theta})}{3}.
\]

Since SI-disease and prey-predator interaction models share structural similarities, we first look at the following two patch prey-predator model (32) with differential migration coefficients \(\mu, \nu\) introduced by Levin (1974):

\[
\begin{align*}
 \frac{dx_i}{dt} &= x_i(K - ax_i - by_i) + \mu(x_j - x_i) = f(x_i, y_i) + \mu(x_j - x_i) \\
 \frac{dy_i}{dt} &= y_i(-L + cx_i + dy_i) + \nu(y_j - y_i) = g(x_i, y_i) + \nu(y_j - y_i)
\end{align*}
\]

which supports the equilibrium:

\[
 x^* = \bar{x}_1 = \bar{x}_2 = \frac{Lb - Kd}{bc - ad}, \quad y^* = \bar{y}_1 = \bar{y}_2 = \frac{Kc - La}{bc - ad}.
\]

\[26\]
and
\[
\begin{align*}
 f_S &= \frac{\partial f}{\partial x_1}(x^*, y^*) = -ax^* < 0, \\
 f_I &= \frac{\partial f}{\partial y_1}(x^*, y^*) = -bx^* < 0, \\
 g_S &= \frac{\partial g}{\partial x_1}(x^*, y^*) = cy^* > 0, \\
 g_I &= \frac{\partial g}{\partial y_1}(x^*, y^*) = dy^* > 0.
\end{align*}
\]
(33)

According to Theorem 5.1, we conclude that diffusive instability arises if \(\nu < \frac{\nu_I}{\nu} \), \(\nu \) is large enough and the following equalities hold
\[
\frac{a}{c} < \frac{K}{L} < \min \left\{ \frac{b}{d} \frac{a(b + d)}{d(a + c)} \right\}, \quad bc > ad.
\]

Notice that the positivity of \(g_I \) comes from the assumption that \(y_i \) is able to survive without \(x_i \), i.e., \(y_i \to \infty \) if \(y_i(0) > L/d \). If there is no Allee effects, i.e., \(d = 0 \), then the prey-predator Model (32) does not have diffusive instability. However, if we replace a Holling-Type I functional response with a Beddington-DeAngelis type functional response in the Prey-predator Model (32) with \(d = 0 \), then we obtain the following two-patch prey predator model that can have diffusive instability:
\[
\begin{align*}
 \frac{dx_i}{dt} &= x_i \left(K - ax_i - \frac{by_i}{1 + h_1 x_i + h_2 y_i} \right) + \mu(x_j - x_i) = f(x_i, y_i) + \mu(x_j - x_i) \\
 \frac{dy_i}{dt} &= y_i \left(-L + \frac{cx_i}{1 + h_1 x_i + h_2 y_i} \right) + \nu(y_j - y_i) = g(x_i, y_i) + \nu(y_j - y_i)
\end{align*}
\]
(34)

which supports a unique locally asymptotically stable interior equilibrium \((x^*, y^*)\) whenever
\[
ch_2 > bh_1, \quad \frac{cK}{a + h_1 K} > L, \quad \mu = \nu = 0
\]

and
\[
\begin{align*}
 f_S &= \frac{\partial f}{\partial x_1}(x^*, y^*) = x^* \left(-a + \frac{by_i^*}{1 + h_1 x_i^* + h_2 y_i^*} \right), \\
 f_I &= \frac{\partial f}{\partial y_1}(x^*, y^*) = -bx^* \left(1 + h_1 x_i^* + h_2 y_i^* \right) < 0, \\
 g_S &= \frac{\partial g}{\partial x_1}(x^*, y^*) = cy^* \left(1 + h_1 x_i^* + h_2 y_i^* \right) > 0, \\
 g_I &= \frac{\partial g}{\partial y_1}(x^*, y^*) = -by^* \left(1 + h_1 x_i^* + h_2 y_i^* \right) < 0.
\end{align*}
\]
(35)

For example, if \(K = 0.5, L = 0.01, c = 2.5, a = 1, h_1 = 1.5, h_2 = 1, b = 1, \mu = \nu = 0 \), then Prey-predator Model (32) has a unique locally asymptotically stable interior equilibrium \((x^*, y^*, x^*, y^*) = (0.008084, 1.008, 0.080804, 1.008)\) with \(f_S = 0.0022 > 0, g_I = -0.005 \).

In this section, we have discussed diffusive instability in the context of five different SI-models and three different Prey-predator models. So, what are the criteria and mechanisms leading to diffusive instabilities? Comparisons between models supporting diffusive instability [SI-Models (7)-(8), (23)-(24), (29)-(30); the prey-predator models (32), (34)] and models not supporting diffusive instability [SI-models (9)-(10), (26)-(27); the prey-predator model (32) with \(d = 0 \)] are summarized in Table 5.

6. Conclusion

Parasites and pathogens are sometimes effective “regulators of natural populations” (Anderson and May 1979; Dwyer et al. 1990). Hence, it is of theoretical and empirical interest to study when multiple transmission modes are preferred; or whether pathogen/disease transmission depends on either host population density or its frequency; or the role of small populations (Allee effects) on populations living under the selection pressures placed by pathogens or parasites. Answers to such questions are needed to assess the role and impact of selection on populations, communities and ecosystems. In this manuscript, we explore the contributions of some of these factors to the dynamics of host-parasite interactions within a controlled setting, namely a general SI model that includes: (a) Horizontally and vertically-transmitted disease modes, (b) Net reproduction terms that account for the limitations posed by Allee effects, (c) Disease induced death rates, and (d) Disease-driven reductions in reproduction ability. The analyses carried out in the prior sections leads to the following conclusions and observations:

27
• Density- versus frequency-dependent horizontal transmission: From Theorem 3.2, we know that System (7)-(8) can have two interior equilibria, one a saddle and one a locally asymptotically stable equilibrium. System (9)-(10) can support stable limit cycles that emerge via Hopf-Bifurcation (see Figure 6 and 12). In other words, the SI model with density-dependent horizontal transmission turns out to support more complicated outcomes than its frequency-dependent counterpart.

• Effects of ρ, β, d and θ: $R_{h0}^\beta = \frac{\beta}{d}$ is identified as the horizontal-transmission reproduction number and $R_{v0}^\rho = \frac{\rho}{d}$ as the vertical-transmission reproduction number.

1. Theorem 2.1 and its Corollary 2.1 assert that for the SI System (7)-(8) and the SI System (9)-(10), sufficiently large initial conditions ($N(0) = S(0) + I(0)$) and R_{v0}^ρ can prevent extinction.

2. Proposition 3.1, Theorem 3.1 and Theorem 3.2 imply that whenever $R_{h0}^\beta \leq 1$ we can expect disease-free dynamics in System (7)-(8) and System (9)-(10).

3. The SI-FD given by System (7)-(8) tends to support susceptible-free dynamics under large values of R_{v0}^ρ; coexistence of susceptibles and infectives under intermediate values of R_{v0}^ρ, and disease-driven extinction for small values of R_{v0}^ρ.

4. The SI-DD System (9)-(10) supports the following outcomes: (i) No boundary equilibrium on the I-axis and possibly disease-driven extinction for a range of parameter values whenever $1 < R_{h0}^\beta < \frac{1}{\beta}$ and $R_{v0}^\rho < \frac{4}{(1-\theta)^2}$. (ii) Susceptible-free dynamics for R_{v0}^ρ-intermediate values; values that satisfy the inequality $\max\left\{\frac{4}{(1-\theta)^2}, c_1\right\} < R_{v0}^\rho < c_2$. (iii) An unique interior equilibrium whenever $R_{h0}^\beta > \frac{1}{\beta}$ and possibly two interior equilibria if $1 < R_{h0}^\beta < \frac{1}{\beta}$. (iv) Large values of ρ, θ, β and small values of d can destabilize the system (bifurcation diagrams; Figure 11).

• Horizontal versus vertical modes of transmission in SI Systems: Small values of the horizontal transmission rate can lead to the susceptible-free dynamics (in System (7)-(8) and System (9)-(10)) with low reproductive rates for infectives leading, under certain conditions, to disease-driven extinction.

System (7)-(8) and System (9)-(10) have similar dynamics to those of the SI-model

\[\frac{dS}{dt} = S(N - \theta)(1 - N) \]
\[\frac{dI}{dt} = \rho I(N - \theta)(1 - N) - dI \]

whenever the horizontal-transmission reproductive number is not greater than 1 ($R_{h0}^\beta \leq 1$) and the vertical-transmission reproduction number is dominant. In this case, System (36) has $E_{0,0} \cup E_{1,0}$ as its global attractor (susceptible-free dynamics).

If horizontal transmission is dominant, that is, the vertical transmission rate is small due to the low reproductive ability (ρ) of those infected ($R_{v0}^\rho \geq \frac{4}{(1-\theta)^2}$) then System (7)-(8) and System (9)-(10) have similar dynamics to those supported by the SI-Models (37) and (38), respectively:

\[\frac{dS}{dt} = S(N - \theta)(1 - N) - \frac{\beta SI}{N} \]
\[\frac{dI}{dt} = \frac{\beta SI}{N} - dI \]

and

\[\frac{dS}{dt} = S(N - \theta)(1 - N) - \beta SI \]
\[\frac{dI}{dt} = \beta SI - dI. \]
Model (37) and (38) can in fact have the disease-driven extinction, under some conditions.

- **Diffusive instability**: Sufficient conditions leading to *diffusive instability* (Theorem 5.1 in Section 5) require that *SI*/Prey-Predator models support a locally asymptotically stable interior equilibrium with the product of the diagonal entries of the Jacobian matrix (evaluated at this interior equilibrium) being negative. In this manuscript, we have investigated possible ways for *diffusive instability* to emerge in five different *SI*-models while contrasting their behavior with those of three different prey-predator models. The results of these comparisons have been summarized (Table 5). From Table 5 we conclude that:

1. In the context of our *SI* models, asymmetricity and nonlinearity that emerge as a result of frequency-dependent horizontal transmission or some forms of vertical transmission in populations under Allee effects, can generate *diffusive instability*.

2. In the context of Prey-Predator models, asymmetricity and nonlinearity arising from certain forms of functional responses such as Beddington-DeAngelis type functional response or Allee effects in the predator population, can generate *diffusive instability*.

In conclusion, the presence of asymmetricity and nonlinearity such as nonlinear density dependent factors including Allee effects, could be critical for the generation of *diffusive instabilities* in both *SI* models and Prey-Predator models.

Acknowledgements

This research of CCC is partially supported by the grant number 1R01GM100471-01 from the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. The research of Y.K. is partially supported by Simons Collaboration Grants for Mathematicians (208902) and the research scholarship from School of Letters and Sciences. The authors would also like to thank Simon Levin for suggesting that we connect with the concepts of diffusive instability.

7. **References**

Figure 6: An example of two dimensional bifurcation diagram ($d - \rho$) of System (9)-(10) when $\beta = 0.1$ and $\theta = 0.15$. The black area indicates that the reproduction number of vertical transmission $R^v_0 = \frac{\beta}{\theta}$ is large, i.e., $R^v_0 > \max\{4\left(1 - \theta \right)^2, c_2\}$; the cyan area indicates that R^v_0 has intermediate values, i.e., $\max\{4\left(1 - \theta \right)^2, c_1\} < R^v_0 < c_2$; the green area indicates that R^v_0 has small values, i.e., $\frac{4}{\left(1 - \theta \right)^2} < R^v_0 < c_1$ and the white area indicates that $R^v_0 < \frac{4}{\left(1 - \theta \right)^2}$. The green dots indicate that System (9)-(10) has only one interior equilibrium which can be a source, saddle or sink while the red dots indicate that System (9)-(10) has two interior equilibria where one is a saddle and the other one can be a sink or source.
min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \theta

max\{\theta, \rho K_2\} < \frac{d}{\beta} < \min\{\frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\theta < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \theta

\max\{\theta, \rho K_2\} < \frac{d}{\beta} < \min\{\frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\theta < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \theta

\max\{\theta, \rho K_2\} < \frac{d}{\beta} < \min\{\frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\theta < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \theta

\max\{\theta, \rho K_2\} < \frac{d}{\beta} < \min\{\frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\theta < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \theta

\max\{\theta, \rho K_2\} < \frac{d}{\beta} < \min\{\frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\theta < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.

\min\{\theta, \frac{\rho(1-\theta)^2}{4\beta}\} < \frac{d}{\beta} < 1

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \theta

\max\{\theta, \rho K_2\} < \frac{d}{\beta} < \min\{\frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} < \frac{d}{\beta} < \min\{\rho\theta, \frac{\rho(1-\theta)^2}{4\beta}, 1\}

\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta}.
\[\max\{\theta, \rho \theta_2\} < \frac{d}{\beta} < \min\left\{ \frac{\rho(1-\theta)^2}{4\beta}, \rho K_2 \right\} \]

No Interior Equilibrium

\[\max\{\rho \theta_2\} < \frac{d}{\beta} < \min\left\{ \theta, \frac{\rho(1-\theta)^2}{4\beta}, \rho K_2 \right\} \]

A Saddle Interior Equilibrium

Figure 10: Schematic phase plane of System (9)-(10) when I-class is able to persist in the absence of S-class, i.e., \(\frac{\rho(1-\theta)^2}{4\beta} > \frac{d}{\beta} \).

(a) Bifurcation Diagram of \(\rho \) when \(\beta = 1, \theta = 0.15, d = 0.45 \)
(b) Bifurcation Diagram of \(\beta \) when \(\rho = 0.35, \theta = 0.15, d = 0.45 \)
(c) Bifurcation Diagram of \(d \) when \(\beta = 1, \theta = 0.15, \rho = 0.35 \)
(d) Bifurcation Diagram of \(\theta \) when \(\beta = 1, d = 0.45, \rho = 0.35 \)

Figure 11: Bifurcation Diagrams of \(\rho, \beta, d, \theta \) for System (9)-(10) where the blue dots in the left figure means the interior equilibrium is locally asymptotically stable while the red dots means source.
Figure 12: An example of a stable limit cycle when $\beta = 1, \theta = 0.15, d = 0.45, \rho = 0.35, S(0) = 0.26, I(0) = 0.2$ where the blue dots in the right figure means the population of I-class while the red dots means the population of S-class.
<table>
<thead>
<tr>
<th>Models</th>
<th>f_S</th>
<th>f_I</th>
<th>Diffusive Instability</th>
<th>Potential Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-model</td>
<td>$f_S = S^* \left[1 + \theta - 2N^* + \frac{\beta I^}{(N^)^2} \right] > 0$</td>
<td>$I^* \left[\rho(1 + \theta - 2N^) - \frac{\beta S^}{(N^*)^2} \right] < 0$</td>
<td>Yes</td>
<td>Asymmetry and nonlinearity arise from frequency-dependent horizontal transmission</td>
</tr>
<tr>
<td>SI-System</td>
<td>$f_S = S^(1 + \theta - 2N^) < 0$</td>
<td>$g_I = \rho I^(1 + \theta - 2N^) < 0$</td>
<td>No</td>
<td>Symmetry arises from certain forms of vertical transmission with Allee effects; Linearity arises from density-dependent vertical transmission</td>
</tr>
<tr>
<td>SI-System</td>
<td>$f_S = S^(1 - N^ - S^* + \theta) < 0$</td>
<td>$g_I = \rho I^(1 - N^ - I^* + \theta) > 0$</td>
<td>Yes</td>
<td>Asymmetry and nonlinearity arise from certain forms of vertical transmission with Allee effects</td>
</tr>
<tr>
<td>SI-System</td>
<td>$f_S = \frac{[2S^* + (\alpha_1 + \rho)I^* - \theta]}{(1 - S^* - \alpha_2 I^* - (S^* + \rho I^)(S^ + \alpha_1 I^* - \theta) - \beta I^* < 0}$</td>
<td>$g_I = 0$</td>
<td>No</td>
<td>Linearity arises from density-dependent horizontal transmission</td>
</tr>
<tr>
<td>SI-System</td>
<td>$f_S = S^* \left[1 + \theta - 2N^* + \frac{\beta I^}{(N^)^2} \right] > 0$</td>
<td>$g_I = -\frac{\beta S^* I^}{(N^)^2} < 0$</td>
<td>Yes</td>
<td>Asymmetry and nonlinearity arise from frequency-dependent horizontal transmission</td>
</tr>
<tr>
<td>PP-Model</td>
<td>$f_S = -ax^* < 0$</td>
<td>$g_I = dy^* > 0$</td>
<td>Yes</td>
<td>Nonlinearity arises from Allee effects in predator</td>
</tr>
<tr>
<td>PP-Model</td>
<td>$f_S = -ax^* < 0$</td>
<td>$g_I = 0$</td>
<td>No</td>
<td>Linearity arises from a Holling Type I functional response</td>
</tr>
<tr>
<td>PP-Model</td>
<td>$f_S = x^* \left[-a + \frac{bh y^}{(1 + b_1 x^ + b_2 y^*)} \right] > 0$</td>
<td>$g_I = -\frac{ch_2 x^* y^(1 + h_1 x^)}{(1 + h_1 x^* + h_2 y^*)^2} < 0$</td>
<td>Yes</td>
<td>Asymmetry and nonlinearity arise from a Beddington-DeAngelis type functional response</td>
</tr>
</tbody>
</table>

Table 5: Summary of diffusive instability for SI-models and Prey-Predator models