Motivation

The Problem
- Cloud-bases systems are crucial to processing and analyzing large data
- Similarity Joins (SJ) are a key data processing and analysis tool
- Very little work on Similarity Joins has been done for cloud systems

Our Contribution
- We propose MRSimJoin—a MapReduce-based algorithm to efficiently solve the SJ problem
- Partitions the data until the subsets are small enough to be processed in a single node
- The algorithm is general enough to be used with data that lies in any metric space
- We have implemented MRSimJoin in Hadoop

MRSimJoin Round

- MRSimJoin iteratively partitions the data into smaller partitions until each partition is small enough to be efficiently processed by a single-node SJ routine
- The process is divided into a sequence of rounds
- The initial round partitions the input data while any subsequent round repartitions a previously generated partition

Partitioning in a MRSimJoin Round

- Data partitioning is performed using a set of K pivots (conceptually similar to QuickJoin), which are a subset of the records to be partitioned
- The process generates two types of partitions: base partitions and window-pair partitions
 1. A base partition contains all the records that are closer to a given pivot than to any other pivot
 2. A window-pair partition contains the records in the boundary between two base partitions

Multiple Rounds

- Each round corresponds to a MapReduce job
- The output of a round includes:
 1. Result links for the small partitions that were processed in a single-node
 2. Intermediate data for partitions that require further partitioning

Performance Evaluation

Tests run over 5 million (SF1) 9D records

ColorData, 9D, SF:1

Increasing Epsilon - ColorData

ColorData, 9D, Eps:1.5%

Increasing SF - ColorData