MapReduce-based Similarity Grouping for Big Data
Faculty: Yasin Silva Students: Adelbert Wadsworth, Kyle Brown, Jason Reed (alumnus)
Arizona State University

Motivation
The Problem
- The analysis of massive amounts of data is a crucial requirement in many commercial and scientific applications.
- Analyzing these data sets may require processing tens or hundreds of terabytes of data.
- Big Data Management Systems constitute an answer to the requirements of processing massive datasets in a highly scalable and distributed fashion.
- Grouping operations, which aggregate large datasets and compute aggregation functions for each group, are considered among the most useful operations for data processing and analysis.
- Similarity groups contain similar records instead of exact matches, and enable the composition of more useful data analysis queries.

Our Contribution
- Design of a highly distributed and scalable algorithm (MR-SGB) that performs similarity grouping on massive datasets.
- Implementation of the proposed algorithm on Apache Hadoop, a widely used open source Big Data system.

General Algorithm (Two Rounds)
Key properties of the single-round algorithm:
- We can increase the number of pivots \((k)\) such that all the partitions are small enough to be processed in a single node.
- For the unlikely case that we still have a large partition, we will add a second level of partitioning.

Algorithm:
- Execute algorithm (round 1)
- For each partition \(P_i\):
 - If \(P_i\) can be processed in a single node, we do this
 - Else, we save \(P_i\) in the distributed file system
- For each partition \(P_i\) that was saved
 - Execute second-level algorithm (round 2)

The second level algorithm is similar to the first level one with the difference that we need to keep track of the history of flags for each partition.

Algorithm for \(k\) Pivots (First Round)
1. Partition the data [Map]
 - Duplicate the points in overlapping areas (each base partition is extended by \(\epsilon\) onlap)
 - Structure of each record: \((\text{RecordID}, \text{RecordContent}, \text{AssignedPartition}, \text{BasePartition})\)
 - \(BasePartition\): This is the ID of the pivot that is closest to the current record
 - \(AssignedPartition\): This is the ID of the pivot associated to the current record

2. For each partition \(P_i\), output the clusters in \(P_i\) [Reduce]
 - For each pivot, we know the value of \(i\) by looking at the \(AssignedPartition\) component of any record.
 - Structure of each cluster \(C_i\): \(\{\text{SetOfPoints} | f_1, f_2, ..., f_t\}\)
 - Observe that the array has \(k\) elements, where \(k\) is the number of pivots
 - \(f_i\) is a binary flag that is 1 if there is at least one record \(X\) in the Cluster such that \(X.BasePartition = i\), 0 otherwise

3. For each cluster \(C_i\) in partition \(P_i\)
 - \(\text{minFlag} = \text{index of minimum value in } C_i[|f_1, f_2, ..., f_t|]\) that is 1
 - If \(i = \text{minFlag}\) then output \(C_i\), otherwise don’t output it (it will be outputted somewhere else)

Example: Case of 2 Pivots

General Considerations
1. A similarity group is defined as a set of points where each point is within \(\epsilon\) from any other point in the group.
2. MR-SGB is proposed as:
 1. An initial way to explore the distribution and clusters in the data.
 2. An alternative and more compact way to identify pairs of similar objects (Similarity Join).
3. Our algorithm will be based on partitioning the data into smaller partitions. The algorithm will partition the data around a set of special points named pivots.
4. We will have one partition for each pivot.
5. A cluster could potentially be contained in multiple partitions but it should be outputted/generated in only one.
6. Our criteria will be to output the cluster in the partition that corresponds to the minimum base partition of the points contained in the cluster.

For instance if we have 4 pivots and the cluster has points that belong to base partitions 2 and 3, then this cluster should be outputted when Partition 2 is being processed.

Initial Dataset (2D space)

Partitioning and Generation of Similarity Groups

Goals:
- Partition the initial dataset into two partitions such that we can still identify all the similarity groups \((G_1, G_2)\)
- Each similarity group should be generated in only one partition

Solution (using two pivots/partitions):
- Partition the input using two pivots \((P_0\) and \(P_1\) such that each point belongs to the partition of its closest pivot
- Additionally, duplicate the points in the \(t\)-windows \((C\) and \(D)\).
- Part0 = \(A + C + D\), Part1 = \(C + D + B\).
- Identify the similarity groups in each partition as follows:

In partition Part0:
- If group
 - Solely in A: Generate
 - In A and C: Generate
 - Solely in C: Generate
 - In A and D: Generate
 - In C and D: Generate
 - Solely in D: Generate
- If group
 - Ignore

In partition Part1:
- If group
 - Solely in A: Generate
 - In A and C: Generate
 - Solely in C: Generate
 - In A and D: Generate
 - In C and D: Generate
 - Solely in D: Generate
- In the example, similarity groups \(G_1, G_2, G_3,\) and \(G_4\) are generated in Part0 while \(G_5, G_6,\) and \(G_7\) in Part1

Example: Case of 2 Pivots