Motivation

The Problem
- Analyzing massive amounts of data is critical for many commercial and scientific applications. However, this task can require processing tens to hundreds of terabytes of data.
- Big Data systems like Apache Hadoop and Apache Spark and their programming frameworks enable the analysis of very large datasets in a highly parallel and scalable way.
- Grouping operations are among the most useful operators for data processing and analysis.
- Simple grouping operations are fast but don’t capture complex groups. Clustering techniques capture complex groups but are slow.

Our Solution
1. A similarity group is defined as a set of points where each point is within a specific similarity window.
2. We propose HMRG and SPSRG, a both MapReduce and Spark based algorithm to efficiently identify similarity groups in large datasets.
3. Our algorithm is based on partitioning the data into smaller partitions. Each partitioning round uses a set of special points named pivots. Each data point will be associated with the group corresponding to its closest pivot.
4. Even though the algorithm processes the data in parallel over many nodes, it guarantees that each similarity group is generated only once.

Test Setup

Dataset Generator
- Our parametrized data generator produces datasets that contain clusters with certain properties.
- The generator enables the customization of:
 - Number of Groups
 - # of records per group and record repetition
 - # of Scale Factors (SF) and # of records per SF
 - Epsilon value
 - Dimensionality
- Record format: Line ID, Aggregation Value, Vector
- Size: 200K records (Scale Factor 1) - 1M records (SF5)

Experiments
1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (200D, 300D, 400D, 500D)
3. Execution time varying number of nodes (2, 4, 8, 10 nodes)

Platform
- Cloud-based computer clusters in Google Cloud Platform

Algorithms
1. Implemented using Hadoop (MapReduce) and Spark
2. Similarity Group-by (MRGroupBy, SPGroupBy) proposed similarity grouping operator
4. Group-by (MRGroupBy, SPGroupBy) standard non-similarity-based database grouping operator

Algorithm of a Single Round

General Similarity Grouping Algorithm

Overall Algorithm:
- Execute the next round
- For each partition P_i obtained in this round
 - If P_i can be processed in a single node, then we do so
 - Else, we save P_i for further processing
- For each partition P_i saved for further processing
 - Execute a new round to re-partition P_i

Key Properties of Each Round of the Algorithm:
- We can increase the number of pivots (k) such that all the partitions are small enough to be processed in a single node.
- For the unlikely case that we still have a large partition, we support additional partitioning rounds.

To properly support a multi-round approach that only outputs each identified cluster once, we keep track of the history of partitions that a records has been assigned to during the execution of our algorithm.

Algorithm of a Single Round

1. Partition the data [Map]
 - Duplicate the points in overlapping areas (each base partition is extended by epsilon)
 - Structure of each record: [RecordID, RecordContent, AssignedPartition, BasePartition]
 - BasePartition: This is the ID of the pivot that is closest to the current record
 - assignedPartition: This is the ID of the pivot associated to the current partition

2. For each partition P_i, cluster the points in P_i [Reduce]
 - For each point, we know the value of d by looking at the AssignedPartition component of any record
 - Structure of each cluster C_i: [SetOfPoints, f_1, f_2, ..., f_d]
 - Observe that the array has k elements, where k is the number of pivots
 - f_j is a binary tag that is 1 if there is at least one record in the Cluster such that X_base Partition = x_j otherwise

3. For each base partition P_i, output the clusters (without duplicating clusters) [Reduce]
 - For each Cluster C_i in partition P_i
 - minFlag = index of minimum value in C_i[f_1, f_2, ..., f_d] that is 1
 - If (i = minFlag) then output C_i, otherwise don’t output it (it will be outputted somewhere else)

Example: Case of 2 Pivots

Performance with Increasing Dataset Size

Performance while Increasing Cluster Size and Dataset Size

Performance with Increasing Dimensionality

References
1) Tang, M., Tahboub, R., Aref, W., Atallah, M., Malaki, Q., Ouzzani, M., Silva, Y.N. Similarity Group-by Operators for Multi-dimensional Relational Data. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28, 2, pp 510-523, 2016