TECHNICAL REPORT

SIMILARITY QUERIES - TRANSFORMATION RULES AND PROOFS

YASIN N. SILVA, Arizona State University, ysilva@asu.edu
WALID G. AREF, Purdue University, aref@cs.purdue.edu
PER-AKE LARSON, Microsoft Research, palarson@microsoft.com
SPENCER S. PEARSON, Arizona State University, sspearso@asu.edu
MOHAMED H. ALI, Microsoft Corporation, mali@microsoft.com

School of Mathematical and Natural Sciences
Arizona State University
September 10, 2012
A. TRANSFORMATION RULES FOR SIMILARITY-AWARE OPERATORS

Combining/Separating Similarity Selection Predicates

R1. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_2) \equiv \sigma_{e_1}(\sigma_{e_2}(e_2)) \)
R2. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_2) \equiv \sigma_{e_2}(\sigma_{e_1}(e_2)) \)
R3. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{\text{e_2}}(e_2) \neq \sigma_{\text{e_1}}(\sigma_{\text{e_2}}(e_2)) \)
R4. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{\text{e_2}}(e_2) \neq \sigma_{\text{e_1}}(\sigma_{\text{e_2}}(e_2)) \)

Combining/Separating Similarity Join and Similarity Selection

When the selection predicate attribute is the inner attribute in the join predicate:

R5. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_2) \equiv \sigma_{e_1}(\sigma_{e_2}(e_2)) \)
R6. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_2) \equiv \sigma_{e_2}(\sigma_{e_1}(e_2)) \)
R7. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_2) \neq \sigma_{\text{KN}}(\sigma_{e_1}(e_2)) \)
R8. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{e_2}(e_2) \neq \sigma_{\text{e_1}}(\sigma_{e_2}(e_2)) \)
R9. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{e_2}(\sigma_{\text{e_1}}(e_2)) \)
R10. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{e_2}(\sigma_{\text{e_1}}(e_2)) \)
R11. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{\text{e_2}}(e_2) \neq \sigma_{\text{KN}}(\sigma_{e_1}(e_2)) \)
R12. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R13. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R14. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \neq \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R15. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R16. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R17. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R18. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R19. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_2) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)

When the selection predicate attribute is the outer attribute in the join predicate:

R20. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_1) \equiv \sigma_{e_2}(\sigma_{e_1}(e_2)) \)
R21. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_1) \equiv \sigma_{e_2}(\sigma_{e_1}(e_2)) \)
R22. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_1) \equiv \sigma_{e_2}(\sigma_{e_1}(e_2)) \)
R23. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KN}}(\sigma_{e_1}(e_2)) \)
R24. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KN}}(\sigma_{e_1}(e_2)) \)
R25. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R26. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R27. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R28. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R29. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R30. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)
R31. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{e_2}(e_1) \equiv \sigma_{\text{KD}}(\sigma_{e_1}(e_2)) \)

Combining/Separating Similarity Join Predicates

When the attributes in the predicates have a single direction (e1→e2, e2→e3):

R32. \(\sigma_{e_1}(e_2) \cap \sigma_{e_2}(e_3) \equiv \sigma_{e_1}(\sigma_{e_2}(e_3)) \)
R33. \(\sigma_{\text{KN}}(e_1) \cap \sigma_{\text{e_2}}(e_3) \equiv \sigma_{\text{KN}}(\sigma_{e_1}(e_2)) \)
R34. \(\sigma_{\text{KD}}(e_1) \cap \sigma_{\text{KD}}(e_3) \not\equiv \sigma_{\text{KD}}(\sigma_{e_2}(e_3)) \)
When the predicates' attributes do not have a single direction (e₁→e₂, e₂←e₃):

\[\alpha_{e_1}(e_1,e_2, e_2,e_3)(E) \equiv \alpha_{e_2}(e_1,e_2, e_3,e_2)(E) \equiv \alpha_{e_3}(e_1,e_2, e_2,e_3)(E) \]
When predicates θ_1 and θ_2 involve only the attributes of E and F, respectively:

R78. $\sigma_{\theta_1}(E \bowtie_{\theta_1}(e,f) F) \equiv (\sigma_{\theta_1}(E)) \bowtie_{\theta_1}(e,f) F$.
R79. $\sigma_{\theta_2}(E \bowtie_{\theta_2}(e,f) F) \equiv (\sigma_{\theta_2}(F)) \bowtie_{\theta_2}(e,f) F$.
R80. $\sigma_{\theta_1}(E \bowtie_{\theta_1}(e,f) F) \equiv (\sigma_{\theta_1}(E)) \bowtie_{\theta_1}(e,f) F$.
R81. $\sigma_{\theta_2}(E \bowtie_{\theta_2}(e,f) F) \equiv (\sigma_{\theta_2}(F)) \bowtie_{\theta_2}(e,f) F$.

Distribution of Similarity Selection over Join

R82. $\sigma_{\theta_{EC}}(E \bowtie_{\theta}(e,f) F) \equiv (\sigma_{\theta_{EC}}(E)) \bowtie_{\theta_{EC}}(e,f) F$.
R83. $\sigma_{\theta_{EF}}(E \bowtie_{\theta_{EF}}(e,f) F) \equiv (\sigma_{\theta_{EF}}(E)) \bowtie_{\theta_{EF}}(e,f) F$.
R84. $\sigma_{\theta_{KNN,CE}}(E \bowtie_{\theta_{KNN,CE}}(e,f) F) \equiv (\sigma_{\theta_{KNN,CE}}(E)) \bowtie_{\theta_{KNN,CE}}(e,f) F$.
R85. $\sigma_{\theta_{KNN,CF}}(E \bowtie_{\theta_{KNN,CF}}(e,f) F) \equiv (\sigma_{\theta_{KNN,CF}}(E)) \bowtie_{\theta_{KNN,CF}}(e,f) F$.

Distribution of Similarity Selection over Similarity Join

R86. $\sigma_{\theta_{EC}}(E \bowtie_{\theta_{EC}}(e,f) F) \equiv (\sigma_{\theta_{EC}}(E)) \bowtie_{\theta_{EC}}(e,f) F$.
R87. $\sigma_{\theta_{EC}}(E \bowtie_{\theta_{EC}}(e,f) F) \equiv (\sigma_{\theta_{EC}}(E)) \bowtie_{\theta_{EC}}(e,f) F$.
R88. $\sigma_{\theta_{EC}}(E \bowtie_{\theta_{EC}}(e,f) F) \equiv (\sigma_{\theta_{EC}}(E)) \bowtie_{\theta_{EC}}(e,f) F$.
R89. $\sigma_{\theta_{EC}}(E \bowtie_{\theta_{EC}}(e,f) F) \equiv (\sigma_{\theta_{EC}}(E)) \bowtie_{\theta_{EC}}(e,f) F$.
R90. $\sigma_{\theta_{KNN,CE}}(E \bowtie_{\theta_{KNN,CE}}(e,f) F) \equiv (\sigma_{\theta_{KNN,CE}}(E)) \bowtie_{\theta_{KNN,CE}}(e,f) F$.
R91. $\sigma_{\theta_{KNN,CF}}(E \bowtie_{\theta_{KNN,CF}}(e,f) F) \equiv (\sigma_{\theta_{KNN,CF}}(E)) \bowtie_{\theta_{KNN,CF}}(e,f) F$.

Associativity of Similarity Join Operators

When the attributes in the predicates have a single direction ($e \rightarrow f, f \rightarrow g$):

R102. $G \bowtie_{\theta_{A1}(e,f)} (E \bowtie_{\theta_{A2}(e,f)} F) \equiv (G \bowtie_{\theta_{A1}(e,f)}) \bowtie_{\theta_{A2}(e,f)} (F \bowtie_{\theta_{A2}(e,f)}) G$.
R103. $G \bowtie_{\theta_{KNN1}(e,f)} (E \bowtie_{\theta_{KNN2}(e,f)} F) \equiv (G \bowtie_{\theta_{KNN1}(e,f)}) \bowtie_{\theta_{KNN2}(e,f)} (F \bowtie_{\theta_{KNN2}(e,f)}) G$.
R104. $G \bowtie_{\theta_{KNN1}(e,f)} (E \bowtie_{\theta_{KNN2}(e,f)} F) \equiv (G \bowtie_{\theta_{KNN1}(e,f)}) \bowtie_{\theta_{KNN2}(e,f)} (F \bowtie_{\theta_{KNN2}(e,f)}) G$.
R105. $G \bowtie_{\theta_{KNN1}(e,f)} (E \bowtie_{\theta_{KNN2}(e,f)} F) \equiv (G \bowtie_{\theta_{KNN1}(e,f)}) \bowtie_{\theta_{KNN2}(e,f)} (F \bowtie_{\theta_{KNN2}(e,f)}) G$.

When the predicates’ attributes do not have a single direction ($e \rightarrow f, f \rightarrow g$):

R106. $G \bowtie_{\theta_{A1}(e,f)} (E \bowtie_{\theta_{A2}(e,f)} F) \equiv (G \bowtie_{\theta_{A1}(e,f)}) \bowtie_{\theta_{A2}(e,f)} (E \bowtie_{\theta_{A2}(e,f)}) F$.
R107. $G \bowtie_{\theta_{KNN1}(e,f)} (G \bowtie_{\theta_{KNN1}(e,f)}) \bowtie_{\theta_{KNN2}(e,f)} (G \bowtie_{\theta_{KNN2}(e,f)}) F$.
Applying Selection with a SJ predicate over Cross Product

R110. \(\sigma_{\theta_{e}(e,f)}(E \bowtie_{\theta_{e}(e,f)} F) \equiv E \bowtie_{\theta_{e}(e,f)} (\sigma_{\theta_{e}(e,f)}(F)). \)
R111. \(\sigma_{\theta_{kNN}(e,f)}(E \bowtie_{\theta_{kNN}(e,f)} F) \equiv E \bowtie_{\theta_{kNN}(e,f)} (\sigma_{\theta_{kNN}(e,f)}(F)). \)
R112. \(\sigma_{\theta_{kD}(e,f)}(E \bowtie_{\theta_{kD}(e,f)} F) \equiv E \bowtie_{\theta_{kD}(e,f)} (\sigma_{\theta_{kD}(e,f)}(F)). \)
R113. \(\sigma_{\theta_{A}(e,f)}(E \bowtie_{\theta_{A}(e,f)} F) \equiv E \bowtie_{\theta_{A}(e,f)} (\sigma_{\theta_{A}(e,f)}(F)). \)

Rules that Take Advantage of Distance Function Properties

Pushing Selection Predicate under Originally Unrelated \(\varepsilon \)-Join Operand.

R114. \(\sigma_{\theta(e)}(E \bowtie_{\theta_{e}(e,f)} F) \equiv (\sigma_{\theta(e)}(E)) \bowtie_{\theta_{e}(e,f)} (\sigma_{\theta_{e}(e,f)}(F)). \)

\(\varepsilon \)-Selection Predicate under Originally Unrelated \(\varepsilon \)-Join Operand.

R115. \(\sigma_{\theta_{\varepsilon_{1},\varepsilon_{2}}(e,f)}(E \bowtie_{\theta_{\varepsilon_{1},\varepsilon_{2}}(e,f)} F) \equiv (\sigma_{\theta_{\varepsilon_{1},\varepsilon_{2}}(e,f)}(E)) \bowtie_{\theta_{\varepsilon_{1},\varepsilon_{2}}(e,f)} (\sigma_{\theta_{\varepsilon_{1},\varepsilon_{2}}(e,f)}(F)). \)

Associativity Rule that Enables Join on Originally Unrelated Attributes.

R116. \((\varepsilon \bowtie_{\theta_{e}(e,f)} F) \bowtie_{\theta_{e}(f,g)} G \equiv (\varepsilon \bowtie_{\theta_{e}(e,f),\theta_{e}(f,g)} (\sigma_{\theta_{e}(e,f),\theta_{e}(f,g)}(F)) \bowtie_{\theta_{e}(f,g)} (\sigma_{\theta_{e}(f,g)}(G)). \)

Eager and Lazy Transformations with SJ and SGB

Eager and Lazy Transformations with SGB and Join:

R117. The Eager and Lazy transformations can be extended to the case of SGB and regular join as shown in Theorem 1 (Section 4.4.1).

Eager and Lazy Transformations with Group-by and SJ:

R118. The Eager and Lazy aggregation transformations can be extended to the case of SJ and group-by as shown in Theorem 2 (Section 4.4.2).

Eager and Lazy Transformations with SGB and SJ:

R119. The Eager and Lazy Aggregation transformations can be extended to the case of SJ and SGB as shown in the Theorem 3 (Section 4.4.3).

Pushing Similarity Predicate from Join-Around to Group-by:

R120. The similarity predicate of the Join-Around can be completely pushed down to a grouping operator as specified in Section 4.4.4.

Pushing Similarity Predicate from \(\varepsilon \)-Join to Group-by:

R121. The similarity predicate of the \(\varepsilon \)-Join can be partially pushed down to a grouping operator as specified in Section 4.4.5.

Distribution of Selection and Similarity Selection over SGB (SGB-U, SGB-A, SGB-D)

R122. \(\sigma_{\theta(G)}((g,S)\Gamma_{F(A)}(E)) \neq (g,S)\Gamma_{F(A)}(\sigma_{\theta(G)}(E)). \)
R123. \(\sigma_{\theta_{e}(G)}((g,S)\Gamma_{F(A)}(E)) \neq (g,S)\Gamma_{F(A)}(\sigma_{\theta_{e}(G)}(E)). \)
R124. \(\sigma_{\theta_{kNN,G}}((g,S)\Gamma_{F(A)}(E)) \neq (g,S)\Gamma_{F(A)}(\sigma_{\theta_{kNN,G}}(E)). \)

Distribution of Similarity Selection over \(\cup, \cap \) and \(\text{–} \)

R125. \(\sigma_{\theta_{e}(e)}(E_1 \cup E_2) \equiv (\sigma_{\theta_{e}(e)}(E_1)) \cup (\sigma_{\theta_{e}(e)}(E_2)). \)
Distribution of Projection over Similarity Join

If \(\theta \) involves only attributes of \(L_1 \cup L_2 \), and additionally for \(k \)-based operations, \(E.\text{PrimKey} \in L_1 \) and \(F.\text{PrimKey} \in L_2 \):

R137. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta(e,f)} F) \equiv (\Pi_{L_1}(E)) \bowtie_{\theta(e,f)} (\Pi_{L_2}(F)) \).
R138. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta_{k\text{NN}}(e,f)} F) \equiv (\Pi_{L_1}(E)) \bowtie_{\theta_{k\text{NN}}(e,f)} (\Pi_{L_2}(F)) \).
R139. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta_{k\text{DP}}(e,f)} F) \equiv (\Pi_{L_1}(E)) \bowtie_{\theta_{k\text{DP}}(e,f)} (\Pi_{L_2}(F)) \).
R140. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta_{A}(e,f)} F) \equiv (\Pi_{L_1}(E)) \bowtie_{\theta_{A}(e,f)} (\Pi_{L_2}(F)) \).

If \(L_1 \) and \(L_2 \) are sets of attributes from \(E \) and \(E \), respectively; \(L_3 \) contains attributes that are involved in the join predicate but are not in \(L_1 \cup L_2 \); \(L_4 \) contains attributes that are involved in the join predicate but are not in \(L_1 \cup L_2 \); and additionally for \(k \)-based operations, \(E.\text{Primkey} \in (L_1 \cup L_3) \) and \(F.\text{Primkey} \in (L_2 \cup L_4) \):

R141. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta(e,f)} F) \equiv \Pi_{L_1 \cup L_3}(\Pi_{L_1 \cup L_2}(E)) \bowtie_{\theta(e,f)} (\Pi_{L_2 \cup L_4}(F)) \).
R142. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta_{k\text{NN}}(e,f)} F) \equiv \Pi_{L_1 \cup L_2}(\Pi_{L_1 \cup L_3}(E)) \bowtie_{\theta_{k\text{NN}}(e,f)} (\Pi_{L_2 \cup L_4}(F)) \).
R143. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta_{k\text{DP}}(e,f)} F) \equiv \Pi_{L_1 \cup L_2}(\Pi_{L_1 \cup L_3}(E)) \bowtie_{\theta_{k\text{DP}}(e,f)} (\Pi_{L_2 \cup L_4}(F)) \).
R144. \(\Pi_{L_1 \cup L_2}(E \bowtie_{\theta_{A}(e,f)} F) \equiv \Pi_{L_1 \cup L_2}(\Pi_{L_1 \cup L_3}(E)) \bowtie_{\theta_{A}(e,f)} (\Pi_{L_2 \cup L_4}(F)) \).
B. ADDITIONAL PROOFS

PROOF SKETCH OF RULE R2. Consider a generic tuple \(t_E \) of \(E \). We will show that for any possible value of \(t_E \), the results generated by the plans of both sides of the rule are the same. The top part of Fig. 44 gives a graphical representation of Rule R2. Using the conceptual evaluation order of similarity queries, we can transform the left part of the rule to an equivalent expression that uses the intersection operation as represented in the middle part of Fig. 44. We will use this second version of the rule in the remaining part of the proof. The bottom part of Fig. 44 gives the different possible regions for the value of \(t_E \). Notice that the region marked as kNN, which comprises regions C and D, represents the region that contains the kNN closest neighbors of \(C_2 \).

1. When the value of \(t_E \) belongs to A. In the LHS plan, \(t_E \) is not selected in any of the selection operators since it does not satisfy any of the Similarity Selection predicates. Thus, no output is generated by this plan. In the RHS plan, \(t_E \) is filtered out by the kNN-Selection. No tuple flows to the \(\varepsilon \)-Selection. Thus, no output is generated by this plan either.

2. When the value of \(t_E \) belongs to B. In the LHS plan, \(t_E \) is selected in the \(\varepsilon \)-Selection but not in the kNN-Selection. The intersection operator does not produce any output and consequently no output is generated by this plan. In the RHS plan, \(t_E \) is filtered out by the kNN-Selection. No tuple flows to the \(\varepsilon \)-Selection. Thus, no output is generated by this plan either.

3. When the value of \(t_E \) belongs to C. In the LHS plan, \(t_E \) is selected by both Similarity Selection operators. Consequently, \(t_E \) belongs to the output of the intersection operator. \(t_E \) belongs to the output of the LHS plan. In the RHS plan, \(t_E \) is selected by the kNN-Selection. \(t_E \) is also selected by the \(\varepsilon \)-Selection. Thus, \(t_E \) also belongs to the output of the RHS plan.

4. When the value of \(t_E \) belongs to D. In the LHS plan, \(t_E \) is selected in the kNN-Selection but not in the \(\varepsilon \)-Selection. The intersection operator does not produce any output and consequently no output is generated by this plan. In the RHS plan, \(t_E \) is selected by the kNN-Selection but filtered out by the \(\varepsilon \)-Selection. Thus, no output is generated by this plan either.

\[\square \]
Proof Sketch of Rule R5. Assume that $\theta_{E_1}(e_1,e_2)$ is defined over relations E_1 and E_2, and that the input relation E is the cross product of all the relations involved in the similarity-aware predicates, i.e., $E = E_1 \times E_2$. Furthermore, assume that the join attributes are $E_1.e_1$ and $E_2.e_2$. Consider a generic tuple t_{E_1} of E_1. We will show that for any possible pair (t_{E_1},t_{E_2}), where t_{E_2} is a tuple of E_2, the results generated by the plans of both sides of the rule are the same (we consider the first equivalence of R5). The top part of Fig. 45 gives a graphical representation of Rule R5. Using the conceptual evaluation order of similarity queries, we can transform the left part of the rule to an equivalent expression that uses the intersection operation as represented in the middle part of Fig. 45. We will use this second version of the rule in the remaining part of the proof. The bottom part of Fig. 45 gives the different possible regions for the value of $t_{E_2}.e_2$.

1. When the value of $t_{E_2}.e_2$ belongs to A. In the LHS plan, the pair (t_{E_1},t_{E_2}) is not selected in any similarity-aware operator since it does not satisfy any of their predicates. Thus, no output is generated by this plan. In the RHS plan, (t_{E_1},t_{E_2}) is filtered out by the bottom selection since $\text{dist}(t_{E_2}.e_2,C) \geq \varepsilon_2$. No tuple flows to the top operator. Thus, no output is generated by this plan either.

2. When the value of $t_{E_2}.e_2$ belongs to B. In the LHS plan, the pair (t_{E_1},t_{E_2}) is selected in the left Similarity Selection but not in the right one. The intersection operator does not produce any output and consequently no output is generated by this plan. In the RHS plan, (t_{E_1},t_{E_2}) is filtered out by the bottom selection since $\text{dist}(t_{E_2}.e_2,C) > \varepsilon_2$. No tuple flows to the top operator. Thus, no output is generated by this plan either.

3. When the value of $t_{E_2}.e_2$ belongs to M. In the LHS plan, the pair (t_{E_1},t_{E_2}) is selected in both similarity-aware operators. Consequently, (t_{E_1},t_{E_2}) belongs to the output of the intersection operator. (t_{E_1},t_{E_2}) belongs to the output of the LHS plan. In the RHS plan, (t_{E_1},t_{E_2}) is selected by the bottom selection since $\text{dist}(t_{E_2}.e_2,C) \leq \varepsilon_2$. (t_{E_1},t_{E_2}) is also selected by the top selection since $\text{dist}(t_{E_1}.e_1,t_{E_2}.e_2) \leq \varepsilon_1$. Thus, the pair (t_{E_1},t_{E_2}) belongs also to the output of the RHS plan.

When the value of $t_{E_2}.e_2$ belongs to D. In the LHS plan, the pair (t_{E_1},t_{E_2}) is selected in the right Similarity Selection but not in the left one. The intersection operator does not produce any output and consequently no output is generated by this plan. In the RHS plan, (t_{E_1},t_{E_2}) is selected in the bottom selection since $\text{dist}(t_{E_2}.e_2,C) \leq \varepsilon_2$ but it is filtered out by the top selection. Thus, no output is generated by this plan either. □
PROOF SKETCH OF RULE R32. Assume that $\theta_{e1}(e1,e2)$ is defined over relations E_1 and E_2, and $\theta_{e2}(e2,e3)$ over relations E_2 and E_3. Assume also that the input relation E is the cross product of all the relations involved in the similarity-aware predicates, i.e., $E = E_1 \times E_2 \times E_3$. Furthermore, assume that the join attributes in θ_{e2} are E_1,e_1 and E_2,e_2, and in θ_{e3} are E_2,e_2 and E_3,e_3. Consider a generic tuple t_{e1} of E_1. We will show that for any possible triplet (t_{e1},t_{e2},t_{e3}), where t_{e2} is a tuple of E_2, and t_{e3} is a tuple of E_3, the results generated by the plans of both sides of the rule are the same (we consider the equivalence between the first and third components of R32). The top part of Fig. 46 gives a graphical representation of Rule R32. Using the conceptual evaluation order of similarity queries, we can transform the left part of the rule to an equivalent expression that uses the intersection operation as represented in the middle part of Fig. 46. We will use this second version of the rule in the remaining part of the proof. The bottom part of Fig. 46 gives the different possible regions for the values of t_{e2},e_2 and t_{e3},e_3. Note that the regions for t_{e3},e_3 have been specified based on a generic tuple t_{e2} with t_{e2},e_2 in region B.

1. When the value of t_{e2},e_2 belongs to A. In the LHS plan, the triplet (t_{e1},t_{e2},t_{e3}) is not selected in any similarity-aware operator since it does not satisfy any of their predicates. Thus, no output is generated by this plan. In the RHS plan, (t_{e1},t_{e2},t_{e3}) is filtered out by the bottom selection since $dist(t_{e1},e_1,t_{e2},e_2) > \varepsilon_1$. No tuple flows to the top operator. Thus, no output is generated by this plan either.

2. When the value of t_{e2},e_2 belongs to B and the value of t_{e3},e_3 belongs to C. In the LHS plan, the triplet (t_{e1},t_{e2},t_{e3}) is selected in the left Similarity Selection since $dist(t_{e1},e_1,t_{e2},e_2) \leq \varepsilon_1$ but not in the right one since $dist(t_{e2},e_2,t_{e3},e_3) \leq \varepsilon_2$. The intersection operator does not produce any output and consequently no output is generated by this plan. In the RHS plan, (t_{e1},t_{e2},t_{e3}) is selected in the bottom selection since $dist(t_{e1},e_1,t_{e2},e_2) \leq \varepsilon_1$ but it is filtered out by the top selection since $dist(t_{e2},e_2,t_{e3},e_3) > \varepsilon_2$. Thus, no output is generated by this plan either.

3. When the value of t_{e2},e_2 belongs to B and the value of t_{e3},e_3 belongs to D. In the LHS plan, the triplet (t_{e1},t_{e2},t_{e3}) is selected in both similarity-aware operators since $dist(t_{e1},e_1,t_{e2},e_2) \leq \varepsilon_1$ (left) and $dist(t_{e2},e_2,t_{e3},e_3) \leq \varepsilon_2$ (right). Consequently, (t_{e1},t_{e2},t_{e3}) belongs to the output of the intersection operator. (t_{e1},t_{e2},t_{e3}) belongs to the output of the LHS plan. In the RHS plan, (t_{e1},t_{e2},t_{e3}) is selected by the bottom selection since $dist(t_{e1},e_1,t_{e2},e_2) \leq \varepsilon_1$. (t_{e1},t_{e2},t_{e3}) is also selected by the top selection since $dist(t_{e2},e_2,t_{e3},e_3) \leq \varepsilon_2$. Thus, (t_{e1},t_{e2},t_{e3}) also belongs to the output of the RHS plan.
Proof sketch of Rule R66. In the LHS expression of the equivalence, all the join links satisfy $\text{dist}(e_1,e_2) \leq \varepsilon$. Given that the distance function dist is symmetric, $\text{dist}(e_1,e_2) = \text{dist}(e_2,e_1)$. Thus, the condition $\text{dist}(e_2,e_1) \leq \varepsilon$ in the LHS expression will produce the same set of join links.

Proof sketch of Rule R103. Assume that the join attributes in θ_{kNN_1} are E,e and F,f and the join attributes in θ_{kNN_2} are F,f and G,g. Consider a generic tuple t_E of E. We will show that for any possible triplet (t_E,t_F,t_G), where t_F is a tuple of F and t_G is a tuple of G, the results generated by the plans of both sides of the rule are the same. The top part of Fig. 47 gives a graphical representation of Rule R103. The bottom part of this figure gives the different possible regions for the values of t_F,f and t_G,g. Note that the regions for t_G,g have been specified based on a generic tuple t_F with t_F,f in region B. The region marked as $k\text{NN}_1$ represents the segment that contains the $k\text{NN}_1$ closest neighbors of t_E in F. The region marked as $k\text{NN}_2$ represents the segment that contains the $k\text{NN}_2$ closest neighbors of t_F in G. Note that for a given $k\text{NN}$-Join (θ_{kNN_1} or θ_{kNN_2}) and a given outer tuple t, the join identifies the same set of k nearest neighbors of t in both plans. This is the case since (i) $k\text{NN}$-Join over R_1 and R_2 makes use of primary keys in both input relations ($R_1.pk_1$, $R_2.pk_2$) and ignores tuples in R_2 that have the same primary key, and (ii) the set of different values of $R_2.pk_2$ in the inner input of both plans is the same. Furthermore, note that the set of different values of $R_2.pk_2$ in the inner input of both plans corresponds to the set of all different values of $R_2.pk_2$ in the base relation R_2.

1. When the value of t_F,f belongs to B and the value of t_G,g belongs to D. In the LHS plan, the pair (t_E,t_F) belongs to the output of the bottom $k\text{NN}$-Join (θ_{kNN_1}) since t_F is one of the $k\text{NN}_1$ closest neighbors of t_E in F. (t_E,t_F) flows to the top $k\text{NN}$-Join. The triplet (t_E,t_F,t_G) belongs also to the output of the top $k\text{NN}$-Join (θ_{kNN_2}) since t_G is one of the $k\text{NN}_2$ closest neighbors of t_F in G. Consequently, (t_E,t_F,t_G) belongs to the output of the LHS plan. In the RHS plan, (t_F,t_G) belongs to the output of the bottom $k\text{NN}$-Join (θ_{kNN_2}) since t_G is one of the $k\text{NN}_2$ closest neighbors of t_F in G. The triplet (t_E,t_F,t_G) belongs also to the output of the top $k\text{NN}$-Join (θ_{kNN_1}) since t_F is one of the $k\text{NN}_1$ closest neighbors of t_E in F. Thus, (t_E,t_F,t_G) belongs also to the output of the RHS plan. Note that in the RHS plan, the bottom join (θ_{kNN_2}) matches each inner tuple of F to its closest $k\text{NN}_2$ neighbors in G. The output of this join will contain all the values of $F.pk_2$ (the primary key of F) in the base relation F. Consequently, the set of all different values of $F.pk_2$ in the inner input of θ_{kNN_1} is the same in both plans. Therefore, for a given inner tuple t, the join θ_{kNN_1} will find the same set of $k\text{NN}_1$ nearest neighbors of t in both plans.

2. When the value of t_F,f belongs to B and the value of t_G,g belongs to C. In the LHS plan, the pair (t_E,t_F) belongs to the output of the bottom $k\text{NN}$-Join (θ_{kNN_1}) since t_F is one of the $k\text{NN}_1$ closest neighbors of t_E in F. (t_E,t_F) flows to the top $k\text{NN}$-Join. The triplet (t_E,t_F,t_G) belongs also to the output of the top $k\text{NN}$-Join (θ_{kNN_2}) since t_G is one of the $k\text{NN}_2$ closest neighbors of t_F in G. Consequently, the set of all different values of $F.pk_2$ in the inner input of θ_{kNN_1} is the same in both plans. Therefore, for a given inner tuple t, the join θ_{kNN_1} will find the same set of $k\text{NN}_1$ nearest neighbors of t in both plans.
closest neighbors of \(t_E \) in \(F \). \((t_E,t_F)\) flows to the top kNN-Join. However, the triplet \((t_E,t_F,t_G)\) does not belong to the output of the top kNN-Join \((\theta_{kNN2})\) since \(t_G \) is not one of the \(k_{NN2} \) closest neighbors of \(t_F \) in \(G \). Consequently, no output is generated by this plan. In the RHS plan, \((t_F,t_G)\) does not belong to the output of the bottom kNN-Join \((\theta_{kNN1})\) since \(t_G \) is not one of the \(k_{NN1} \) closest neighbors of \(t_F \) in \(F \). No tuple flows to the top join. Thus, no output is generated by this plan either.

3. When the value of \(t_F t_E \) belongs to \(A \). In the LHS plan, the pair \((t_E,t_F)\) does not belongs to the output of the bottom kNN-Join \((\theta_{kNN1})\) since \(t_F \) is not one of the \(k_{NN1} \) closest neighbors of \(t_E \) in \(F \). No tuple flows to the top join. Consequently no output is generated by this plan. In the RHS plan, \((t_F,t_G)\) may or may not belong to the output of the bottom kNN-Join \((\theta_{kNN2})\). However, any triplet \((t_E,t_F,t_G)\) does not belong to the output of the top kNN-Join \((\theta_{kNN2})\) since \(t_F \) is not one of the \(k_{NN1} \) closest neighbors of \(t_E \) in \(F \). Thus, no output is generated by this plan either.

Proof Sketch of Rule R115 (GR15). Note that pushing \(\varepsilon \)-Selection under the outer input of the \(\varepsilon \)-Join has already been studied in Rule R86. We focus here on the validity of pushing the \(\varepsilon \)-Selection operation under the inner input of the \(\varepsilon \)-Join. Assume that the selection predicate \(\theta_{\varepsilon_1,c}(e) \) is \(dist(e,C) \leq \varepsilon_1 \) and the join predicate \(\theta_{\varepsilon_2}(e,f) \) is \(dist(e,f) \leq \varepsilon_2 \).

1. Due to Triangular Inequality, \(dist(f,C) \leq dist(f,e) + dist(e,C) \).
2. Due to Commutativity, we have that \(dist(f,C) \leq dist(e,f) + dist(e,C) \).
3. Using in (2) the fact that \(dist(e,f) \leq \varepsilon_2 \), \(dist(f,C) \leq \varepsilon_2 + dist(e,C) \).
4. Using in (3) the fact that \(dist(e,C) \leq \varepsilon_1 \), \(dist(f,C) \leq \varepsilon_1 + \varepsilon_2 \).

The expression in (4) \(dist(f,C) \leq \varepsilon_1 + \varepsilon_2 \) represents an \(\varepsilon \)-Selection predicate that can be applied on \(f \). This predicate is in fact the predicate being applied on \(f \) in the inner input of the RHS part of Rule R115.

Proof Sketch of Rule R116 (GR16). Assume that in the LHS part of Rule R116, the join predicate \(\theta_{e_1}(e,f) \) is \(dist(e,f) \leq \varepsilon_1 \) and the join predicate \(\theta_{e_2}(f,g) \) is \(dist(f,g) \leq \varepsilon_2 \). The order of attributes in these expressions is irrelevant because the distance function is Commutative.

1. Due to Triangular Inequality, \(dist(e,g) \leq dist(e,f) + dist(f,g) \).
2. Since \(dist(e,f) \leq \varepsilon_1 \) and \(dist(f,g) \leq \varepsilon_2 \), \(dist(e,g) \leq \varepsilon_1 + \varepsilon_2 \).

The expression in (2) \(dist(e,g) \leq \varepsilon_1 + \varepsilon_2 \) represents a join predicate that can be applied on \(e \) and \(g \). This predicate is in fact the predicate being applied on \(e \) and \(g \) in the left join of the RHS part of Rule R116. Note that the RHS part of the rule requires a second join that applies the two join predicates of the LHS part because some tuples that do not satisfy these predicates can be present in the output of the join between \(e \) and \(g \).

Proof Sketch of Theorem 1. Consider a group \(G_d \) generated by \(g [NGA_d, Seg_d alpha[C_d]r_d] \) for some instance \(r_d \) of \(R_d \). Due to conditions (iii) and (iv), all the rows of \(G_d \) have the same values of \(GA_d \) and the joining attributes. Every tuple of \(G_d \) joins with the same set of tuples \(SA_d(G_d) \). Let \(S_d(G_d) \) be the subset of \(SA_d(G_d) \) that has a unique value of \(GA \). Consider two groups of \(g [NGA_d, Seg_d alpha[C_d]r_d] \): \(R_{d1} \) and \(R_{d2} \). There are two cases to be considered.

Case 1: \(G_{d1}[GA_d] \sim G_{d2}[GA_d] \) and \(S_d(G_{d1})[GA_d] \sim S_d(G_{d2})[GA_d] \). In \(E_2 \), the results of the join operations represented by the following two expressions are merged into the same similarity group by the second SGB.

1. \((F_{d1}[AA_d], COUNT)\pi[NGA_d, GA_d, AA_d(G_{d1})] \times S_d(G_{d1}) \).
2. \((F_{d2}[AA_d], COUNT)\pi[NGA_d, GA_d, AA_d(G_{d2})] \times S_d(G_{d2}) \).
In E_1, each row of G_{d1} and G_{d2} joins with $S_d(G_{d1})$ and $S_u(G_{d2})$ respectively and all the resulting rows are also merged by the second SGB. Due to condition (i), the aggregation values in the resulting row of the following expressions in E_1 and E_2 respectively are the same.

3. $F_d[AA_d, \pi_{AA}[GA_d, GA_u, AA_d, AA_u, AA_d, AA_u] \land ((G_{d1} \times S_d(G_{d1})) \cup_A (G_{d2} \times S_u(G_{d2})))$.
4. $F_d[FAA_d, \pi_{FAA}[GA_d, GA_u, FAU_u]][((F_d[AA_d, \pi_{AA}[NGA_d, GA_d^+, AA_d]G_{d1}) \times S_d(G_{d1})) \cup_A ((F_d[AA_d, \pi_{AA}[NGA_d, GA_d^+, AA_d]G_{d2}) \times S_u(G_{d2})))$.

Due to condition (ii), the aggregation values in the resulting row of the following expressions in E_1 and E_2, respectively, are the same.

5. $F_u[AA_u, \pi_{AA}[GA_d, GA_u, AA_d, AA_u]((G_{d1} \times S_d(G_{d1})) \cup_A (G_{d2} \times S_u(G_{d2})))$.
6. $F_u[AA_u, CNT][\pi_{AA}[GA_d, GA_u, AA_u, CNT]]((\text{COUNT} \pi_{AA}[NGA_d, GA_d^+, AA_d]G_{d1}) \times S_d(G_{d1}))$ \cup_A ((\text{COUNT} \pi_{AA}[NGA_d, GA_d^+]G_{d2}) \times S_u(G_{d2})))$.

Case 2: $G_{d1}[GA_d] \not\sim G_{d2}[GA_d] \lor S_d(G_{d1})[GA_d] \not\sim S_u(G_{d2})[GA_d]$. In E_2, the results of the join operations represented by (1) and (2) are not merged into the same similarity group by the second SGB. In E_1, each row of G_{d1} and G_{d2} joins with $S_d(G_{d1})$ and $S_u(G_{d2})$, respectively, but the resulting rows are not merged by the second SGB. Due to condition (i), the aggregation values in the resulting row of the following expressions in E_1 and E_2, respectively, are the same.

7. $F_d[AA_d, \pi_{AA}[GA_d, GA_u, AA_d, AA_u]G_{d1} \times S_d(G_{d1}))$.
8. $F_d[AA_d, \pi_{AA}[GA_d, GA_u, AA_u]G_{d2} \times S_u(G_{d2}))$.

Due to condition (ii), the aggregation values in the resulting row of the following expressions in E_1 and E_2, respectively, are the same.

9. $F_d[AA_u, \pi_{AA}[GA_d, GA_u, AA_d, AA_u]((G_{d1} \times S_d(G_{d1}))$.
10. $F_u[AA_u, CNT][\pi_{AA}[GA_d, GA_u, AA_u, CNT]]((\text{COUNT} \pi_{AA}[NGA_d, GA_d^+]G_{d1}) \times S_d(G_{d1}))$.

\[\square\]

Proof Sketch of Theorem 2. The validity of this theorem relies on the following properties.

P1. Given R_d' and R_u' instances of R_d and R_u respectively, the result of $(R_d' \bowtie_{C_0} R_u')$ is equivalent to the result of $(R_d' \bowtie_{\theta} R_u')$ where θ = disjunction of $(R_d.C0_\theta=x \land R_u.C0_\theta=y)$ for every different link (x,y) of the result of $(R_d' \bowtie_{C_0} R_u')$.

P2. θ, as defined in P1, remains unchanged and valid when R_d' is augmented with tuples that have already present values of $R_d':C0_d$, i.e., duplicates, or when such tuples are removed from R_d'.

The validity of this theorem can be shown by following these steps:

For every R_d' and R_u' instances of R_d and R_u, respectively,

1. E_1: $F[AA_d, AA_d, \pi_{AA}[GA_d, GA_u, AA_d, AA_u] g [GA_d, GA_u, AA_d, AA_u] g [GA_d, GA_u, AA_d, AA_u] \theta (R_d' \bowtie_{C_0} R_u')$, is equivalent to:

 E_1: $F[AA_d, AA_d, \pi_{AA}[GA_d, GA_u, AA_d, AA_u] g [GA_d, GA_u, AA_d, AA_u] g [GA_d, GA_u, AA_d, AA_u] \theta (R_d' \bowtie_{C_0} R_u')$,

 where θ is defined as in P1.

2. E_1: $F[AA_d, AA_d, \pi_{AA}[GA_d, GA_u, AA_d, AA_u] g [GA_d, GA_u, AA_d, AA_u] (R_d' \bowtie_{C_0} R_u')$. is equivalent to:

 E_1: $F[AA_d, AA_d, \pi_{AA}[GA_d, GA_u, AA_d, AA_u] (R_d' \bowtie_{C_0} R_u')$,

 where θ is defined as in P1.

12
Table VI. Common distance functions

<table>
<thead>
<tr>
<th>Distance Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-norm Distance</td>
<td>p-norm distance of two vectors ((x_1, x_2, ..., x_n)) and ((y_1, y_2, ..., y_n)) is defined as:</td>
</tr>
<tr>
<td>1-norm distance =</td>
<td>(\sum_{i=1}^{n}</td>
</tr>
<tr>
<td>2-norm distance =</td>
<td>(\left(\sum_{i=1}^{n}</td>
</tr>
<tr>
<td>p-norm distance =</td>
<td>(\left(\sum_{i=1}^{n}</td>
</tr>
<tr>
<td>infinity-norm distance =</td>
<td>(\lim_{p \to \infty} \left(\sum_{i=1}^{n}</td>
</tr>
<tr>
<td>Cosine Distance 1</td>
<td>(CD_1(A,B) = 1 - CS(A,B)), where (A) and (B) are vectors and (CS(A,B)) is the Cosine Similarity. (CS(A,B) = \frac{A \cdot B}{|A| |B|})</td>
</tr>
<tr>
<td>Cosine Distance 2</td>
<td>(CD_2(A,B) = \arccos(CS(A,B)))</td>
</tr>
<tr>
<td>Discrete Metric Function</td>
<td>(DM(x,y) = 0) if (x = y), (1) otherwise, where (x) and (y) are numbers.</td>
</tr>
<tr>
<td>Longest Common Subsequence</td>
<td>(LCS(X,Y) =) longest subsequence common to strings or time series (X) and (Y).</td>
</tr>
<tr>
<td>Edit Distance with Equal Weights</td>
<td>(ED(X,Y) =) minimum number of operations needed to transform string (X) into string (Y). Allowed operations: insertion, deletion, and substitution of a single character.</td>
</tr>
<tr>
<td>Edit Distance with Different Weights</td>
<td>(ED(X,Y) =) min((w(E))), where (E) is a sequence of edit operations that transforms string (X) into string (Y) and (w) is a weight function that assigns a nonnegative real number (w(x, y)) to each elementary edit operation.</td>
</tr>
<tr>
<td>Hamming Distance</td>
<td>(HD(X,Y) =) number of positions in which the characters of strings (X) and (Y) are different.</td>
</tr>
<tr>
<td>Jaccard Distance</td>
<td>(JD(A,B) = 1 - JS(A,B)), where (JS(A,B) = \frac{</td>
</tr>
</tbody>
</table>

\[E^2: \pi_{d_0}[GA_{\bar{d}}, GA_{\bar{a}}, FAA/\langle FA_{\bar{a}}[AA_{\bar{a}}, CNT], FA_{\bar{a}}[FAA_{\bar{a}}] \rangle g [GA_{\bar{d}}, GA_{\bar{a}}]\sigma_0(C_d) R_{d'} \bowtie_{R} R_{a}],\]

because of the eager and lazy aggregation main theorem for regular operators.

3. **C. DEFINITION OF COMMON DISTANCE FUNCTIONS**

Table VI shows the definition of common distance functions.