IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks

Yu ("Tony") Zhang Lynne E. Parker

Distributed Intelligence Laboratory
Electrical Engineering and Computer Science Department
University of Tennessee, Knoxville TN, USA

IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010
About multirobot tasks

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalition Formation</td>
<td>Mainly for loosely-coupled</td>
</tr>
<tr>
<td></td>
<td>COBOS [Fua and Ge, 2005]</td>
</tr>
<tr>
<td></td>
<td>MR co. form. [Vig and Adams, 2006]</td>
</tr>
<tr>
<td></td>
<td>Tightly-coupled (req. tight coord.)</td>
</tr>
<tr>
<td></td>
<td>Hoplites [Kalra et al., 2005]</td>
</tr>
<tr>
<td></td>
<td>Capability sharing</td>
</tr>
<tr>
<td></td>
<td>ASyMTRe [Parker and Tang, 2006]</td>
</tr>
<tr>
<td>Coalition Execution</td>
<td>IQ based approach [Zhang and Parker, 2010] (ICRA)</td>
</tr>
<tr>
<td>Formation + Execution</td>
<td>Previously Unavailable</td>
</tr>
<tr>
<td></td>
<td>In this paper: how to Extend ASyMTRe and Combine with IQ?</td>
</tr>
</tbody>
</table>

Y. Zhang and L.E. Parker

IQ-ASyMTRe for Tightly-Coupled Multirobot Tasks
Tightly-coupled multirobot tasks

- Heterogeneous robots with different capabilities
- Individual robots incapable of accomplishing the task

(a) [Gerkey and Mataric, 2001]
(b) [Parker and Tang, 2006]
Requirements for achieving the tasks

(a) [Gerkey and Mataric, 2001] (b) [Parker and Tang, 2006]
Requirements for achieving the tasks

Coalition formation:

- Use ASyMTRe to **enable capability sharing**

(a) [Gerkey and Mataric, 2001]
(b) [Parker and Tang, 2006]
Requirements for achieving the tasks

Coalition formation:
- Use ASyMTRe to **enable capability sharing**

Coalition execution:
- Use the IQ approach to **satisfy sensor constraints introduced**

(a) [Gerkey and Mataric, 2001]
(b) [Parker and Tang, 2006]
Requirements for achieving the tasks

Coalition formation:
- Use ASyMTRe to enable capability sharing

Coalition execution:
- Use the IQ approach to satisfy sensor constraints introduced

(a) [Gerkey and Mataric, 2001]
(b) [Parker and Tang, 2006]
Coalition formation

ASyMTRe [Parker and Tang, 2006] divides robot capabilities into:

- Motor Schema (MS)
- Environmental Sensor (ES)
- Perceptual Schema (PS)
- Communication Schema (CS)
ASyMTRe [Parker and Tang, 2006] divides robot capabilities into:

- Motor Schema (MS)
- Environmental Sensor (ES)
- Perceptual Schema (PS)
- Communication Schema (CS)

(a) [Parker and Tang, 2006]
ASyMTRe [Parker and Tang, 2006] divides robot capabilities into:

- Motor Schema (MS)
- Environmental Sensor (ES)
- Perceptual Schema (PS)
- Communication Schema (CS)

Capability sharing is implicitly achieved

(a) [Parker and Tang, 2006]
Requirements for achieving the tasks

Coalition formation:
- Use ASyMTRe to enable capability sharing

Coalition execution:
- Use the IQ approach to satisfy sensor constraints introduced

(a) [Gerkey and Mataric, 2001] (b) [Parker and Tang, 2006]
Coalition execution

An information quality based approach [Zhang and Parker, 2010] (ICRA) for satisfying sensor constraints through:

- Computing the information quality measure based on:
 - sensor characteristics
Coalition execution

An information quality based approach [Zhang and Parker, 2010] (ICRA) for satisfying sensor constraints through:

- Computing the information quality measure based on:
 - sensor characteristics
 - environmental influence
Coalition execution

An information quality based approach [Zhang and Parker, 2010] (ICRA) for satisfying sensor constraints through:

- Computing the information quality measure based on:
 - sensor characteristics
 - environmental influence
- Selecting motion that leads to the best information quality measure
Combining the two approaches

For coalition formation, use ASyMTRe to:
- Search coalition solution

For coalition execution, use the IQ based approach to:
- Maintain sensor constraints
Combining the two approaches

For coalition formation, use ASyMTRe to:
- Search coalition solution

For coalition execution, use the IQ based approach to:
- Maintain sensor constraints

However, $2 = 1 + 1$?
Challenges

Limitations of ASyMTRe for task execution:

(a) Incomplete definition of information type

In the robot navigation task:

(a) Irretrievable information
Challenges

Limitations of ASyMTRe for task execution:

(a) Incomplete definition of information type
(b) Application specific design of PSs

In the robot navigation task:

(a) Irretrievable information
(b) Leader at back
Challenges

Limitations of ASyMTRe for task execution:

(a) Incomplete definition of information type
(b) Application specific design of PSs
(c) Inconsideration of environmental influence

In the robot navigation task:

(a) Irretrievable information
(b) Leader at back
(c) Environmental influence
Contributions

- **Associating referents with information**
 - provides a complete definition of information type

 Guarantees the feasibility of solutions

- **Introducing information conversions**
 - provides more flexibility

 Avoids application specific PS design

- **Combining ASyMTRe and the IQ approach**
 - enables dynamic coalition formation and execution

 Achieves a general solution for tightly-coupled multirobot tasks
A complete definition of information type

\(F_i(Ref_{1:N_i}) : \)

- \(N_i \) is the number of referents for \(F_i \)
- \(Ref_j \) is the \(j \)th referent for \(F_i \)

For example: \(F_G(X) \), \(F_G(r_{red}) \)
A complete definition of information type

\[F_i(Ref_{1:N_i}) : \]

- \(N_i \) is the number of referents for \(F_i \)
- \(Ref_j \) is the \(j \)th referent for \(F_i \)

For example: \(F_G(X) \), \(F_G(r_{red}) \)

\[F_R(r_{blue}, r_{red}) \text{ retrievable?} \]
A complete definition of information type

\[F_i(Ref_{1:N_i}) : \]
- \(N_i \) is the number of referents for \(F_i \)
- \(Ref_j \) is the \(j \)th referent for \(F_i \)

For example: \(F_G(X), F_G(r_{red}) \)

\[F_R(r_{blue}, r_{red}) \text{ retrievable?} \]

A complete reference of information
ASyMTRe requires application specific PS design:

(a) Leader at front

(b) Leader at back

c) [Parker and Tang, 2006]
Table: COMMON INFORMATION CONVERSIONS

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$</td>
<td>global + relative \rightarrow global</td>
</tr>
<tr>
<td>$F_R(Y, X) \rightarrow F_R(X, Y)$</td>
<td>relative \rightarrow relative</td>
</tr>
<tr>
<td>$F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$</td>
<td>relative + relative \rightarrow relative</td>
</tr>
</tbody>
</table>
Information conversions

Table: COMMON INFORMATION CONVERSIONS

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$</td>
<td>global + relative → global</td>
</tr>
<tr>
<td>$F_R(Y, X) \rightarrow F_R(X, Y)$</td>
<td>relative → relative</td>
</tr>
<tr>
<td>$F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$</td>
<td>relative + relative → relative</td>
</tr>
</tbody>
</table>

- $F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$
- $F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$
Table: COMMON INFORMATION CONVERSIONS

<table>
<thead>
<tr>
<th>Information Conversion</th>
<th>Resulting Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$</td>
<td>global + relative \rightarrow global</td>
</tr>
<tr>
<td>$F_R(Y, X) \rightarrow F_R(X, Y)$</td>
<td>relative \rightarrow relative</td>
</tr>
<tr>
<td>$F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$</td>
<td>relative + relative \rightarrow relative</td>
</tr>
</tbody>
</table>

Leader at front: CS: $F_G(r_{blue}) +$ Camera: $F_R(r_{blue}, r_{red})$
Information conversions

Table: COMMON INFORMATION CONVERSIONS

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$</td>
<td>global + relative \rightarrow global</td>
</tr>
<tr>
<td>$F_R(Y, X) \rightarrow F_R(X, Y)$</td>
<td>relative \rightarrow relative</td>
</tr>
<tr>
<td>$F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$</td>
<td>relative + relative \rightarrow relative</td>
</tr>
</tbody>
</table>

Leader at back: CS: $F_G(r_{blue}) + CS: F_R(r_{red}, r_{blue})$
Information conversions

Table: COMMON INFORMATION CONVERSIONS

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$</td>
<td>global + relative \rightarrow global</td>
</tr>
<tr>
<td>$F_R(Y, X) \rightarrow F_R(X, Y)$</td>
<td>relative \rightarrow relative</td>
</tr>
<tr>
<td>$F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$</td>
<td>relative + relative \rightarrow relative</td>
</tr>
</tbody>
</table>

(b) Leader at back: CS: $F_G(r_{blue}) + CS: F_R(r_{red}, r_{blue})$

Information conversions provide more flexibility
Solution space and potential solutions

(a) A solution space
Solution space and potential solutions

(a) A solution space

(b) A potential solution in (a)
Solution space and potential solutions

(a) A solution space

(b) A potential solution in (a)

- Additional schema connection constraints are introduced.
IQ for information type

\[Q_i(\text{Conf}_{1:N_i}) \text{ returns the IQ measure for } F_i, \text{ given:} \]

- \(\text{Conf}_{1:N_i} \), configurations for \(\text{Ref}_{1:N_i} \)
- Current environment settings in the sensor’s FOV
IQ for information type

\[Q_i(Conf_{1:N_i}) \] returns the IQ measure for \(F_i \), given:

- \(Conf_{1:N_i} \), configurations for \(Ref_{1:N_i} \)
- Current environment settings in the sensor’s FOV
IQ for information type

\[Q_i(\text{Conf}_{1:N_i}) \] returns the IQ measure for \(F_i \), given:

- \text{Conf}_{1:N_i}, configurations for \(\text{Ref}_{1:N_i} \)
- Current environment settings in the sensor’s FOV

(a) Environmental influence

Enables dynamic-environment reasoning for coalition formation
Algorithm outline

while true do
 if a coalition is set up then
 if IQ is fairly high then
 Execute goal command. -- Coalition execution
 else if IQ is too low then
 Break the current coalition.
 else
 Execute the chosen motion to increase the IQ. -- Maintain sensor constraints
 end if
 else
 Search for a potential solution.
 Set up a coalition. -- Dynamic coalition Formation
 end if
end while
Challenges - summary

- To provide a complete definition of information type
 - Associate referents with information types

- To avoid application specific design of PSs
 - Introduce information conversions

- To consider environmental influence
 - Incorporate information quality
Table: COMMON INFORMATION CONVERSIONS

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_G(X) + F_R(Y, X) \rightarrow F_G(Y))</td>
<td>global + relative → global</td>
</tr>
<tr>
<td>(F_R(Y, X) \rightarrow F_R(X, Y))</td>
<td>relative → relative</td>
</tr>
</tbody>
</table>

Table: ROBOT NAVIGATION TASK

<table>
<thead>
<tr>
<th>Fiducial Only</th>
<th>Fiducial & Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. ES: (F_G(local))</td>
</tr>
<tr>
<td>1. CS: (F_G(X)), ES: (F_R(X, local))</td>
<td>2. CS: (F_G(X)), ES: (F_R(X, local))</td>
</tr>
<tr>
<td>2. CS: (F_G(X)), CS: (F_R(local, X))</td>
<td>3. CS: (F_G(X)), CS: (F_R(local, X))</td>
</tr>
<tr>
<td>3. CS: (F_G(X)), CS: (F_R(X, local))</td>
<td>4. CS: (F_G(X)), CS: (F_R(X, local))</td>
</tr>
<tr>
<td>4. CS: (F_G(X)), CS: (F_R(local, X))</td>
<td>5. CS: (F_G(X)), CS: (F_R(local, X))</td>
</tr>
</tbody>
</table>
Simulation – solution space

Add in: \(F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y) \)

Table: ROBOT NAVIGATION TASK

<table>
<thead>
<tr>
<th>Fiducial & Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ES: (F_G(\text{local}))</td>
</tr>
<tr>
<td>2. CS: (F_G(X)), ES: (F_R(X, \text{local}))</td>
</tr>
<tr>
<td>3. CS: (F_G(X)), CS: (F_R(\text{local}, X))</td>
</tr>
<tr>
<td>4. CS: (F_G(X)), CS: (F_R(\text{local}, X))</td>
</tr>
<tr>
<td>5. CS: (F_G(X)), CS: (F_R(\text{local}, X))</td>
</tr>
<tr>
<td>6. CS: (F_G(X)), CS: (F_R(\text{local}, Y)), CS: (F_R(X, Y))</td>
</tr>
<tr>
<td>7. CS: (F_G(X)), CS: (F_R(X, Y)), CS: (F_R(\text{local}, Y))</td>
</tr>
</tbody>
</table>
Simulation – environment reasoning

Environment reasoning ability

Table: NAVIGATION TASK

<table>
<thead>
<tr>
<th>Fiducial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CS: $F_G(X)$, ES: $F_R(X, local)$</td>
</tr>
<tr>
<td>2. CS: $F_G(X)$, CS: $F_R(local, X)$</td>
</tr>
<tr>
<td>3. CS: $F_G(X)$, CS: $F_R(X, local)$</td>
</tr>
<tr>
<td>4. CS: $F_G(X)$, CS: $F_R(local, X)$</td>
</tr>
</tbody>
</table>

$F_G(X) + F_R(r_{red}, X)$
Simulation – environment reasoning

Environment reasoning ability

Table: NAVIGATION TASK

<table>
<thead>
<tr>
<th>Fiducial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CS: $F_G(X)$, ES: $F_R(X, \text{local})$</td>
</tr>
<tr>
<td>2. CS: $F_G(X)$, CS: $F_R(\text{local}, X)$</td>
</tr>
<tr>
<td>3. CS: $F_G(X)$, CS: $F_R(X, \text{local})$</td>
</tr>
<tr>
<td>4. CS: $F_G(X)$, CS: $F_R(\text{local}, X)$</td>
</tr>
</tbody>
</table>

\[F_G(\text{r_blue}) \]

(b) One in view
Simulation – environment reasoning

Environment reasoning ability

Table: NAVIGATION TASK

<table>
<thead>
<tr>
<th>Fiducial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CS: $F_G(X)$, ES: $F_R(X, local)$</td>
<td></td>
</tr>
<tr>
<td>2. CS: $F_G(X)$, CS: $F_R(local, X)$</td>
<td></td>
</tr>
<tr>
<td>3. CS: $F_G(X)$, CS: $F_R(X, local)$</td>
<td></td>
</tr>
<tr>
<td>4. CS: $F_G(X)$, CS: $F_R(local, X)$</td>
<td></td>
</tr>
</tbody>
</table>

$F_G(r_{blue})$ or $F_G(r_{yellow})$
Simulation – environment reasoning

Environment reasoning ability

Table: NAVIGATION TASK

<table>
<thead>
<tr>
<th>Fiducial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CS: $F_G(X)$, ES: $F_R(X, local)$</td>
</tr>
<tr>
<td>2. CS: $F_G(X)$, CS: $F_R(local, X)$</td>
</tr>
<tr>
<td>3. CS: $F_G(X)$, CS: $F_R(X, local)$</td>
</tr>
<tr>
<td>4. CS: $F_G(X)$, CS: $F_R(local, X)$</td>
</tr>
</tbody>
</table>

$F_G(r_{yellow})$

(d) Obstacle in view
Dynamic coalition formation and execution
Physical experiment – navigation task

Flexibility of information conversions

Leader at front

Leader at back
Contributions

- **Associating referents with information**
 - provides a complete definition of information type

Guarantees the feasibility of solutions

- **Introducing information conversions**
 - provides more flexibility

Avoids application specific PS design

- **Combining ASyMTRe and the IQ approach**
 - enables dynamic coalition formation and execution

Achieves a general solution for tightly-coupled multirobot tasks
References

 COBOS: Cooperative backoff adaptive scheme for multirobot task allocation.

 Sold!: Auction methods for multi-robot coordination.
 IEEE Transactions on Robotics and Automation, Special Issue on Multi-robot Systems.

 Hoplites: A market-based framework for planned tight coordination in multirobot teams.
 In *Proc. of the IEEE Int’l. Conf. on Robotics and Automation.*

Building multirobot coalitions through automated task solution synthesis.

Proc. of the IEEE, 94(7):1289–1305.

Multi-robot coalition formation.

A general information quality based approach for satisfying sensor constraints in multirobot tasks.

In IEEE International Conference on Robotics and Automation.