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Perceptron
• 2018/11/15

Ø Announcement:
q Slides for this lecture are here

http://www.public.asu.edu/~yzhan442/teaching/CSE571/Lectures/perceptron.pdf

Slides are largely based on information from http://ai.berkeley.edu, Russel and 

Hinton from http://www.cs.toronto.edu/~tijmen/csc321

http://www.public.asu.edu/~yzhan442/teaching/CSE571/Lectures/perceptron.pdf
http://ai.berkeley.edu/
http://www.cs.toronto.edu/~tijmen/csc321
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• Required reading (red means it will be on your exams):

o R&N: Chapter 18.1-2

Last Time

• Machine Learning
• Introduction

• Neural networks

• Perceptron –
an earlier learning framework
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Outline for today
• Perceptron

• Neural network types
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• For non-mathematicians, this is going to be tougher than the previous 
material. 
– You may have to spend a long time studying the next few slides. 

• If  you are not used to thinking about hyper-planes in high-dimensional 
spaces, now is the time to learn. 

• To deal with hyper-planes in a 14-dimensional space:
– visualize a 3-D space and say “fourteen” to yourself  very loudly. 
– Everyone does it. 
– But remember that going from 13-D to 14-D creates as much extra complexity as 

going from 2-D to 3-D. 

Perceptron
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• This space has one dimension per weight. 

• A point in the space represents a particular setting of  all the weights. 

• Assuming that we have eliminated the threshold, each training case can 
be represented as a hyperplane through the origin. 
– The weights must lie on one side of  this hyper-plane to get the answer correct. 



Human-aware RoboticsWeight space
• Consider a binary classification 

setting (>= 0 class 1; < 0 class 0)

• Each training case defines a 
plane (shown as a black line) 
– The plane goes through the origin 

and is perpendicular to the input 
vector. 

– On one side of  the plane the output 
is wrong because the scalar product 
of  the weight vector with the input 
vector has the wrong sign. 
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• To get all training cases right we need to 
find a point on the right side of  all the 
planes. 
– There may not be any such point! 

• If  there are any weight vectors that get 
the right answer for all cases:
– they lie in a hyper-cone with its apex at the 

origin. 
– So the average of  two good weight vectors is a 

good weight vector.
– The problem is convex. 

Why does this simple learning method work?
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• Consider the squared distance 
da2 + db2 between any feasible 
weight vector and the current 
weight vector. 
– Hopeful claim: Every time the 

perceptron makes a mistake, the 
learning algorithm moves the 
current weight vector closer to all 
feasible weight vectors

• Problem case: The weight 
vector may not get closer to 
this feasible vector! 



Human-aware RoboticsWhy the learning procedure works

• So consider “generously 
feasible” weight vectors 
that lie within the feasible 
region by a margin at least 
as great as the length of  the 
input vector that defines 
each constraint plane.
– Every time the perceptron 

makes a mistake, the squared 
distance to all of  these 
generously feasible weight 
vectors is always decreased by 
at least the squared length of  
the update vector. 
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• Each time the perceptron makes a mistake, the current 

weight vector moves to decrease its squared distance 
from every weight vector in the “generously feasible” 
region. 

• The squared distance decreases by at least the squared 
length of  the input vector. 

• So after a finite number of  mistakes, the weight vector 
must lie in the feasible region if  this region exists!
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• If  you are allowed to choose the features by hand and if  you use enough 

features, you can do almost anything
– For binary input vectors, we can have a separate feature unit for each of  the exponentially 

many binary vectors and so we can make any possible discrimination on binary input 
vectors. 

– This type of  table look-up won’t generalize. 

• But once the hand-coded features have been determined, there are very 
strong limitations on what a perceptron can learn. 



Human-aware RoboticsWhat binary threshold neuron cannot do
• A binary threshold output unit cannot even tell if  two 

single bit features are the same! 
– Positive cases (same value): (1,1) 1; (0,0) 1 
– Negative cases (different value): (1,0) 0; (0,1) 0 

• The four input-output pairs give four inequalities that 
are impossible to satisfy: 



Human-aware RoboticsA Geometric view 
Imagine “data-space” in which the axes 
correspond to components of  an
input vector. 

– Each input vector is a point in this space. 
– A weight vector defines a plane in data-

space. 
– The weight plane is perpendicular to the 

weight vector and misses the origin by a 
distance equal to the threshold. 
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• Suppose we just use pixels as the 
features. 

• Can a binary threshold unit 
discriminate between different 
patterns that have the same number of  
on pixels? 
– Not if  the patterns can translate with wrap-

around! 
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patterns with the same number of  on pixels

• For pattern A, use training cases in all possible translations. 
– Each pixel will be activated by 4 different translations of  pattern A. 
– So the total input received by the decision unit over all these patterns will be four times 

the sum of  all the weights. 

• For pattern B, use training cases in all possible translations. 
– Each pixel will be activated by 4 different translations of  pattern B. 
– So the total input received by the decision unit over all these patterns will be four times 

the sum of  all the weights. 

• But to discriminate correctly, every single case of  pattern A must provide 
more input to the decision unit than every single case of  pattern B. 
– This is impossible if  the sums over cases are the same!



Human-aware RoboticsWhy this result is devastating for Perceptrons

• The whole point of  pattern recognition is to recognize patterns despite 
transformations like translation. 

• Minsky and Papert’s “Group Invariance Theorem” says that the part of  a 
Perceptron that learns cannot learn to do this if  the transformations 
form a group. 
– Translations with wrap-around form a group. 

• To deal with such transformations, a Perceptron needs to use multiple 
feature units to recognize transformations of  informative sub-patterns
– So the tricky part of  pattern recognition must be solved by the hand-coded feature 

detectors, not the learning procedure!
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• Networks without hidden units are very limited in the input-output 

mappings they can learn to model. 
– More layers of  linear units do not help. Its still linear. 
– Fixed output non-linearities are not enough. 

• We need multiple layers of  adaptive, non-linear hidden units. But how can 
we train such nets? 
– We need an efficient way of  adapting all the weights, not just the last layer. This is hard.
– Learning the weights going into hidden units is equivalent to learning features. 
– This is difficult because nobody is telling us directly what the hidden units should do. 

This is neural networks! (sometimes referred to as multi-layer perceptrons)



Human-aware RoboticsFeed-forward neural network

These are the commonest type of  neural 
network in practical applications. 

• The first layer is the input and the last 
layer is the output. 

• If  there is more than one hidden layer, 
we call them “deep” neural networks. 

They compute a series of  transformations
• The activities of  the neurons in each 

layer are a non-linear function of  the 
activities in the layer below. 
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These have directed cycles in their 
connection graph. 

• That means you can sometimes get back 
to where you started by following the 
arrows. 

They can have complicated dynamics and 
this can make them very difficult to train. 

• There is a lot of  interest at present in 
finding efficient ways of  training 
recurrent nets. 

They are more biologically realistic. 
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Recurrent neural networks are a very natural 
way to model sequential data:

• They are equivalent to very deep nets 
with one hidden layer per time slice. 

• Except that they use the same weights at 
every time slice and they get input at 
every time slice. 

They have the ability to remember 
information in their hidden state for a long 
time. 

• But its very hard to train them to use 
this potential. 
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Ilya Sutskever (2011) trained a special type of  recurrent neural net to 
predict the next character in a sequence. 

After training for a long time on a string of  half  a billion characters from 
English Wikipedia, he got it to generate new text. 

• It generates by predicting the probability distribution for the next character 
and then sampling a character from this distribution. 

• Below shows an example of  the kind of  text it generates. Notice how 
much it knows! 

In 1974 Northern Denver had been overshadowed by CNL, and several Irish 
intelligence agencies in the Mediterranean region. However, on the Victoria, Kings 
Hebrew stated that Charles decided to escape during an alliance. The mansion 
house was completed in 1882, the second in its bridge are omitted, while closing is 
the proton reticulum composed below it aims, such that it is the blurring of  
appearing on any well-paid type of  box printer. 
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These are like recurrent networks, but the connections between units are 
symmetrical (they have the same weight in both directions). 

• John Hopfield (and others) realized that symmetric networks are much 
easier to analyze than recurrent networks. 

• They are also more restricted in what they can do because they obey an 
energy function. 

• For example, they cannot model cycles. 

Symmetrically connected nets without hidden units are called “Hopfield nets”. 
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These are called “Boltzmann machines”
• They are much more powerful models than Hopfield nets. 
• They are less powerful than recurrent neural networks
• They have a beautifully simple learning algorithm. 
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