
Human-aware Robotics

1

Perceptron
• 2018/11/15

Ø Announcement:
q Slides for this lecture are here

http://www.public.asu.edu/~yzhan442/teaching/CSE571/Lectures/perceptron.pdf

Slides are largely based on information from http://ai.berkeley.edu, Russel and

Hinton from http://www.cs.toronto.edu/~tijmen/csc321

http://www.public.asu.edu/~yzhan442/teaching/CSE571/Lectures/perceptron.pdf
http://ai.berkeley.edu/
http://www.cs.toronto.edu/~tijmen/csc321

Human-aware Robotics

2

• Required reading (red means it will be on your exams):

o R&N: Chapter 18.1-2

Last Time

• Machine Learning
• Introduction

• Neural networks

• Perceptron –
an earlier learning framework

Human-aware Robotics

3

Outline for today
• Perceptron

• Neural network types

Human-aware Robotics

• For non-mathematicians, this is going to be tougher than the previous
material.
– You may have to spend a long time studying the next few slides.

• If you are not used to thinking about hyper-planes in high-dimensional
spaces, now is the time to learn.

• To deal with hyper-planes in a 14-dimensional space:
– visualize a 3-D space and say “fourteen” to yourself very loudly.
– Everyone does it.
– But remember that going from 13-D to 14-D creates as much extra complexity as

going from 2-D to 3-D.

Perceptron

Human-aware RoboticsWeight space
• This space has one dimension per weight.

• A point in the space represents a particular setting of all the weights.

• Assuming that we have eliminated the threshold, each training case can
be represented as a hyperplane through the origin.
– The weights must lie on one side of this hyper-plane to get the answer correct.

Human-aware RoboticsWeight space
• Consider a binary classification

setting (>= 0 class 1; < 0 class 0)

• Each training case defines a
plane (shown as a black line)
– The plane goes through the origin

and is perpendicular to the input
vector.

– On one side of the plane the output
is wrong because the scalar product
of the weight vector with the input
vector has the wrong sign.

Human-aware RoboticsWeight space
• Consider a binary classification

setting (>= 0 class 1; < 0 class 0)

• Each training case defines a
plane (shown as a black line)
– The plane goes through the origin

and is perpendicular to the input
vector.

– On one side of the plane the output
is wrong because the scalar product
of the weight vector with the input
vector has the wrong sign.

Human-aware RoboticsThe cone of feasible solutions

• To get all training cases right we need to
find a point on the right side of all the
planes.
– There may not be any such point!

• If there are any weight vectors that get
the right answer for all cases:
– they lie in a hyper-cone with its apex at the

origin.
– So the average of two good weight vectors is a

good weight vector.
– The problem is convex.

Why does this simple learning method work?

Human-aware RoboticsWhy the learning procedure works (first attempt)

• Consider the squared distance
da2 + db2 between any feasible
weight vector and the current
weight vector.
– Hopeful claim: Every time the

perceptron makes a mistake, the
learning algorithm moves the
current weight vector closer to all
feasible weight vectors

• Problem case: The weight
vector may not get closer to
this feasible vector!

Human-aware RoboticsWhy the learning procedure works

• So consider “generously
feasible” weight vectors
that lie within the feasible
region by a margin at least
as great as the length of the
input vector that defines
each constraint plane.
– Every time the perceptron

makes a mistake, the squared
distance to all of these
generously feasible weight
vectors is always decreased by
at least the squared length of
the update vector.

Human-aware RoboticsInformal sketch of proof of convergence
• Each time the perceptron makes a mistake, the current

weight vector moves to decrease its squared distance
from every weight vector in the “generously feasible”
region.

• The squared distance decreases by at least the squared
length of the input vector.

• So after a finite number of mistakes, the weight vector
must lie in the feasible region if this region exists!

Human-aware RoboticsThe limitations of perceptron
• If you are allowed to choose the features by hand and if you use enough

features, you can do almost anything
– For binary input vectors, we can have a separate feature unit for each of the exponentially

many binary vectors and so we can make any possible discrimination on binary input
vectors.

– This type of table look-up won’t generalize.

• But once the hand-coded features have been determined, there are very
strong limitations on what a perceptron can learn.

Human-aware RoboticsWhat binary threshold neuron cannot do
• A binary threshold output unit cannot even tell if two

single bit features are the same!
– Positive cases (same value): (1,1) 1; (0,0) 1
– Negative cases (different value): (1,0) 0; (0,1) 0

• The four input-output pairs give four inequalities that
are impossible to satisfy:

Human-aware RoboticsA Geometric view
Imagine “data-space” in which the axes
correspond to components of an
input vector.

– Each input vector is a point in this space.
– A weight vector defines a plane in data-

space.
– The weight plane is perpendicular to the

weight vector and misses the origin by a
distance equal to the threshold.

Human-aware RoboticsDiscriminate simple patterns under translation with wraparound

• Suppose we just use pixels as the
features.

• Can a binary threshold unit
discriminate between different
patterns that have the same number of
on pixels?
– Not if the patterns can translate with wrap-

around!

Human-aware RoboticsSketch of a proof that a binary decision unit cannot discriminate
patterns with the same number of on pixels

• For pattern A, use training cases in all possible translations.
– Each pixel will be activated by 4 different translations of pattern A.
– So the total input received by the decision unit over all these patterns will be four times

the sum of all the weights.

• For pattern B, use training cases in all possible translations.
– Each pixel will be activated by 4 different translations of pattern B.
– So the total input received by the decision unit over all these patterns will be four times

the sum of all the weights.

• But to discriminate correctly, every single case of pattern A must provide
more input to the decision unit than every single case of pattern B.
– This is impossible if the sums over cases are the same!

Human-aware RoboticsWhy this result is devastating for Perceptrons

• The whole point of pattern recognition is to recognize patterns despite
transformations like translation.

• Minsky and Papert’s “Group Invariance Theorem” says that the part of a
Perceptron that learns cannot learn to do this if the transformations
form a group.
– Translations with wrap-around form a group.

• To deal with such transformations, a Perceptron needs to use multiple
feature units to recognize transformations of informative sub-patterns
– So the tricky part of pattern recognition must be solved by the hand-coded feature

detectors, not the learning procedure!

Human-aware RoboticsLearning with Hidden units
• Networks without hidden units are very limited in the input-output

mappings they can learn to model.
– More layers of linear units do not help. Its still linear.
– Fixed output non-linearities are not enough.

• We need multiple layers of adaptive, non-linear hidden units. But how can
we train such nets?
– We need an efficient way of adapting all the weights, not just the last layer. This is hard.
– Learning the weights going into hidden units is equivalent to learning features.
– This is difficult because nobody is telling us directly what the hidden units should do.

This is neural networks! (sometimes referred to as multi-layer perceptrons)

Human-aware RoboticsFeed-forward neural network

These are the commonest type of neural
network in practical applications.

• The first layer is the input and the last
layer is the output.

• If there is more than one hidden layer,
we call them “deep” neural networks.

They compute a series of transformations
• The activities of the neurons in each

layer are a non-linear function of the
activities in the layer below.

Human-aware RoboticsRecurrent neural network

These have directed cycles in their
connection graph.

• That means you can sometimes get back
to where you started by following the
arrows.

They can have complicated dynamics and
this can make them very difficult to train.

• There is a lot of interest at present in
finding efficient ways of training
recurrent nets.

They are more biologically realistic.

Human-aware RoboticsRecurrent neural network for modeling sequences

Recurrent neural networks are a very natural
way to model sequential data:

• They are equivalent to very deep nets
with one hidden layer per time slice.

• Except that they use the same weights at
every time slice and they get input at
every time slice.

They have the ability to remember
information in their hidden state for a long
time.

• But its very hard to train them to use
this potential.

Human-aware RoboticsAn example of what recurrent neural network can do

Ilya Sutskever (2011) trained a special type of recurrent neural net to
predict the next character in a sequence.

After training for a long time on a string of half a billion characters from
English Wikipedia, he got it to generate new text.

• It generates by predicting the probability distribution for the next character
and then sampling a character from this distribution.

• Below shows an example of the kind of text it generates. Notice how
much it knows!

In 1974 Northern Denver had been overshadowed by CNL, and several Irish
intelligence agencies in the Mediterranean region. However, on the Victoria, Kings
Hebrew stated that Charles decided to escape during an alliance. The mansion
house was completed in 1882, the second in its bridge are omitted, while closing is
the proton reticulum composed below it aims, such that it is the blurring of
appearing on any well-paid type of box printer.

Human-aware RoboticsSymmetrically connected networks

These are like recurrent networks, but the connections between units are
symmetrical (they have the same weight in both directions).

• John Hopfield (and others) realized that symmetric networks are much
easier to analyze than recurrent networks.

• They are also more restricted in what they can do because they obey an
energy function.

• For example, they cannot model cycles.

Symmetrically connected nets without hidden units are called “Hopfield nets”.

Human-aware RoboticsSymmetrically connected networks with hidden units

These are called “Boltzmann machines”
• They are much more powerful models than Hopfield nets.
• They are less powerful than recurrent neural networks
• They have a beautifully simple learning algorithm.

Human-aware Robotics

25

Outline for today
• Perceptron

• Neural network types

