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ABSTRACT 

 
The combination of rapid urban growth and climate change places stringent 

constraints on multisector sustainability of cities. Green infrastructure provides a great 

potential for mitigating anthropogenic-induced urban environmental problems; 

nevertheless, studies at city and regional scales are inhibited by the deficiency in 

modelling the complex transport coupled water and energy inside urban canopies. This 

dissertation is devoted to incorporating hydrological processes and urban green 

infrastructure into an integrated atmosphere-urban modelling system, with the goal to 

improve the reliability and predictability of existing numerical tools. Based on the 

enhanced numerical tool, the effects of urban green infrastructure on environmental 

sustainability of cities are examined.  

Findings indicate that the deployment of green roofs will cool the urban 

environment in daytime and warm it at night, via evapotranspiration and soil insulation. 

At the annual scale, green roofs are effective in decreasing building energy demands for 

both summer cooling and winter heating. For cities in arid and semiarid environments, an 

optimal trade-off between water and energy resources can be achieved via innovative 

design of smart urban irrigation schemes, enabled by meticulous analysis of the water-

energy nexus. Using water-saving plants alleviates water shortage induced by population 

growth, but comes at the price of an exacerbated urban thermal environment. Realizing 

the potential water buffering capacity of urban green infrastructure is crucial for the long-

term water sustainability and subsequently multisector sustainability of cities. 

Environmental performance of urban green infrastructure is determined by land-
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atmosphere interactions, geographic and meteorological conditions, and hence it is 

recommended that analysis should be conducted on a city-by-city basis before actual 

implementation of green infrastructure. 
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CHAPTER 1 INTRODUCTION 

1.1. Literature Review 

Global population has become increasingly urbanized: about 52% of the world’s 

population live in cities in 2012, and this proportion is projected to increase to 67% by 

2050 (United Nations 2012). During the past decades, natural terrains have been 

continuously converted to urban landscapes to meet the ever-increasing demand of the 

expanding urban population (Seto et al. 2011). Urbanization changes the surface energy 

and moisture balances (Yang et al. 2013), leading to higher temperatures in urban areas 

as compared to surrounding rural areas, which is known as the Urban Heat Island (UHI) 

effect and has been considered as one of the major challenges posed to human beings in 

the 21st century (Arnfield 2003, Rizwan et al. 2008). The adverse effects induced by UHI 

include but are not limited to, elevated temperatures (Tran et al. 2006, Imhoff et al. 2010), 

increased energy consumption (Fung et al. 2006, Hirano and Fujita 2012), air 

pollution (Sarrat et al. 2006, Nazaroff 2013), heat-related mortality and morbidity (Tan et 

al. 2010, Mishra and Ramgopal 2013), and disruption to ecosystems (Eigenbrod et al. 

2011). On the other hand, global climate change is forecasted to cause more frequent 

occurrences of climatic extremes, such as heat waves and severe floods, imposing 

additional challenges on urban environment (Field et al. 2014). The synergistic 

interactions between UHIs and heat waves (Li and Bou-Zeid 2013) make cities become 

unprecedentedly vulnerable to environmental problems in the future that adaptation and 

mitigation strategies are critical to alleviate UHIs and their subsequent adverse 

environmental effects. 

 



2 

During the past decades, numerous strategies have been proposed, developed and 

implemented to mitigate UHIs, including reflective materials (Synnefa et al. 2006, 2008), 

materials with high optical and thermal performances (Ma et al. 2002, Karlessi et al. 2009, 

Yang et al. 2016b), green roofs (Dvorak and Volder 2010), urban parks and trees (Bowler 

et al. 2010, Shashua-Bar et al. 2011), heat sinks (Geros et al. 2005), to name a few. 

Among these techniques, green roofs, urban parks, and shade trees can be grouped as the 

urban green infrastructure. Green infrastructure is recognized as an effective method for 

mitigating UHIs that provides multi-scale ecological, economic and social benefits for the 

urban environment (Mell 2010). Maximum surface temperature of vegetated surface can 

be more than 20 K cooler than that of engineering materials (Wilmers 1988). Urban green 

infrastructure cools the built-up environment mainly through two mechanisms, i.e. 

evapotranspiration and shading. Via evapotranspiration, vegetation redistributes the 

available solar energy incident on the land surface for latent heat of vaporization and 

reduces the sensible heat flux. In terms of the shading effect, tree canopies block 

transportation of solar radiation that the shaded areas receive less heat and subsequently 

have a lower surface temperature.   

Recent years have seen rapidly increasing number of studies on green infrastructure. 

A systematic quantitative review identified a total of 115 original research papers on 

urban trees published between 1981 and 2011 (Roy et al. 2012). Another review study 

found 74 articles that had measured ground-level cooling effect of urban green 

infrastructure (Bowler et al. 2010). Though the cooling effect is affected by patch sizes, 

geographical and climatic conditions, a meta-analysis of data suggested that an urban 

park would be around 1 oC cooler than a non-green site on average (Bowler et al. 2010). 
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With its capacity to reduce temperatures, urban green infrastructure can decrease building 

energy consumption (Niachou et al. 2001, Wong et al. 2003, Yang and Wang 2015, 

Wang et al. 2016) and enhance outdoor thermal comfort of pedestrians (Lin et al. 2010, 

Park et al. 2012). A simulation study found that the installation of green roof can save the 

annual energy consumption of a five-story commercial building in Singapore by 0.6 – 

14.5% (Wong et al. 2003). The high surface area and roughness of green infrastructure 

make it an effective sink for urban air pollutants. Using a dry deposition model, Yang et 

al. (2008) suggested that 198000 m2 of green roofs could remove a total of 1675 kg air 

pollutants in one year for Chicago. The soil layer of urban green infrastructure also 

provides benefits for stormwater runoff retention (Mentens et al. 2006).   

Most of the existing studies on urban green infrastructure has been limited to field 

measurements and simulation results at neighbourhood scales, upscaling the results of 

these studies for guidance on green infrastructure for a city or regional scale is difficult, 

due to the substantial influence of surface heterogeneity (Ramamurthy et al. 2014). For 

city and regional scales, a modelling approach is more feasible than in-situ experiments 

as building green infrastructure involves high capital cost and stakeholder communication. 

The lack of studies of green infrastructure at city and regional scales is mainly owing to 

the complexity of coupled water and energy transport inside urban canopies. Numerical 

simulations of urban green infrastructure necessarily require realistic  representations of 

urban surface processes and land-atmosphere interactions (Song and Wang 2015). 

Among the available urban land surface models, the family of urban canopy models 

(UCMs) have been demonstrated as a useful tool for capturing the coupled water and 

energy budgets over urban areas (Kusaka et al. 2001, Martilli et al. 2002, Wang et al. 
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2013). An international effort was conducted to compare a wide range of these urban 

canopy models and to evaluate them against site observations (Grimmond et al. 2010, 

2011). It is identified that the latent heat flux is the one for which the models 

demonstrated the least capability. This is because most models are inadequate in 

calculating urban water budgets due to the oversimplified representation of complex 

urban hydrological processes and urban vegetation. Various problems exist: for example, 

Masson (2000) modelled surface intercepted water as small reservoirs and took snow 

effects into consideration in urban areas, but without resolving the anthropogenic water 

budget explicitly. Lee and Park (2008) and Wang (2014a) included tall trees in the urban 

canopy model but neglected subsurface moisture transport. Outdoor irrigation, the 

important moisture source for urban green infrastructure, is also neglected in most of the 

existing urban canopy models (Yang and Wang, 2015). The net effect of the simplified 

representations is that the root-mean-square error between the predicted and observed 

latent heat fluxes can be up to the same order of magnitude as the latent heat flux per se 

(Grimmond et al. 2010, 2011). This significant deviation consequently introduces errors 

into the modelling of urban climate and impacts the reliability and accuracy of predicted 

effects of urban green infrastructure. 

 

1.2. Study Objectives 

Based on the background and identified deficiency in studies of urban green 

infrastructure discussed in Chapter 1.1, this study is intended to implement physically-

based representation of urban green infrastructure into the urban canopy model. 

Subsequently, by coupling the urban canopy model with a mesoscale atmospheric model, 
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regional impact of urban green infrastructure can be quantified. The dissertation will 

mainly address the following key issues on environmental performance of urban green 

infrastructure: 

1) Impact of green roofs on building energy efficiency and urban climate at the city 

scale under different geographical and climatic conditions; 

2) Potential of adjusting irrigation schemes for urban lawn to achieve optimal 

water-energy trade-off; 

3) Seasonal variation of the effect of green roofs on regional hydroclimate in a 

coupled land-atmosphere system; 

4) Potential water buffering capacity of urban green infrastructure and its 

implications for water management towards a city of multisector sustainability. 

  

1.3. Organization of this Dissertation 

This dissertation is organized as follows. Chapter 2 describes the implementation of 

urban hydrological processes into the urban canopy model and its impact on predicting 

the coupled water and energy budgets over built terrains. Chapter 3 investigates the 

relationship between water and energy consumption in the urban environment, and 

discusses the potential of developing a smart irrigation scheme for the optimal water-

energy trade-off in a desert city. Chapter 4 presents the effect of green roofs on urban 

hydroclimate in a coupled land-atmosphere system. The impact of urban hydrological 

processes at the regional scale is assessed for two major metropolitan areas in the United 

States. Chapter 5 explores the water buffering capacity of urban green infrastructure in 

the Phoenix metropolitan area and discusses the long-term water sustainability under the 
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challenge of future climate change and population growth. Chapter 6 summarizes the 

entire study and concludes the key findings on environmental performance of urban green 

infrastructure. Recommendations for future research directions are also given in Chapter 

6.  
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CHAPTER 2 IMPACT OF GREEN ROOFS ON BUILDING ENERGY EFFICIENCY 

AND URBAN CLIMATE 

2.1. Introduction 

Green roof, rooftop with a vegetation layer, has been proved as an effective system 

to alleviate some urban environmental problems under a wide range of climate conditions 

through field observations (Santamouris et al. 2007, Jim and He 2010). However, at the 

city and regional scale, a numerical model that well captures energy as well as water 

budget on green roof in the urban environment is still missing. On the other hand, while 

existing urban canopy models have shown overall good performance in capturing urban 

surface energy balance and boundary-layer structure, they are inadequate in calculating 

urban water budgets due to the oversimplified representation of complex urban 

hydrological processes (Grimmond et al. 2010, 2011). To understand the environmental 

effect of green roofs, implementing a physically-based parameterization into the urban 

canopy model with an accurate representation of the hydrological processes is therefore 

critical.  

Compared to natural landscapes, urban environments consist of a considerable 

fraction of paved surfaces. Though a pavement is able to store water due to surface 

porosity, local slope gradient and surface depressions, evaporation from paved surfaces 

has been largely neglected in urban canopy models. Evaporation arising from water-

holding pavement surfaces, especially during and shortly after precipitation, contributes a 

substantial fraction of moisture fluxes arising from a built environment (Ramamurthy and 

Bou-Zeid 2014). Another dimension of complexity in urban hydrology arises from the 

anthropogenic sources, examples including water release from commercial buildings 
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(Moriwaki et al. 2008) and urban irrigation (Johnson and Belitz 2012). In addition, in 

contrast to natural terrains, a considerable fraction of urban vegetation presents as 

isolated patches, such as hedges, roadside trees, and garden plants. Along the upwind 

edge of a vegetation canopy surrounded by a lower roughness surface, due to the lack of 

obstacles to both radiation and airflow, the advection and ‘clothesline effect’ (Hagishima 

et al. 2007) lead to higher rates of evapotranspiration. Patchy urban vegetation has 

therefore higher rate of potential evapotranspiration, a phenomenon known as the oasis 

effect (Oke 1979).  

To address the challenges in modelling the urban water cycle, Wang et al. (2011a, 

2013) developed an improved urban canopy model to incorporate detailed hydrological 

processes, including evaporation over vegetated and engineered surfaces, sub-facet 

heterogeneity for water transport, and green roof systems. Capability of the model has 

been validated by field measurements under different climate conditions (Sun et al. 2013, 

Wang et al. 2013). More recently, Miao and Chen (2014) formulated urban irrigation, 

oasis effect, and anthropogenic latent heat into a single layer urban canopy model. It is 

noteworthy that their evaporation parameterization over impervious surfaces was based 

on an empirical decay function, and the model was only tested for the Beijing 

metropolitan area. Inspired by the recent work, the aim of our study in this Chapter is to 

further improve and test the reliability and predictability of the urban canopy model. We 

adopted the single layer urban canopy model (SLUCM), a widely-used urban 

parameterization scheme in the Weather Research and Forecasting (WRF) system, as the 

basis for incorporating physically-based representation of urban hydrological processes. 

Our objectives are to: (1) enhance and evaluate the modelling of urban hydrological 
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processes in the current SLUCM, and (2) assess the capacity of physical parametrizations 

of multilayer green roofs in mitigating urban environmental problems at the city scale. 

Numerical simulations are driven by meteorological forcing and compared against 

surface energy budgets, both obtained from eddy-covariance measurements at four 

metropolitan areas, namely Beijing (China), Montréal (Canada), Vancouver (Canada), 

and Phoenix (U.S.). 

  

2.2. Representation of Urban Hydrological Processes 

2.2.1 Single layer urban canopy model 

A schematic of the single layer urban canopy model is shown in Fig. 2.1a. Building 

arrays are represented as a two-dimensional and longitudinally infinite street canyon. To 

better capture the urban water cycle, we include the following hydrological processes in 

the new model: (1) energy and water balance of multilayer green roofs, (2) evaporation 

from engineered pavements, (3) urban irrigation, (4) anthropogenic latent heat, and (5) 

urban oasis effect. A detailed description of each process is provided below. Compared to 

the current SLUCM scheme in the WRF model, the urban canopy model developed here 

explicitly accounts for the surface heterogeneity. In particular, building roofs consist of 

green roofs and engineered roofs with different hydrothermal properties (Fig. 2.1b). The 

surface energy balance in the new SLUCM is given by: 

 n FR Q LE H G    , (0.1) 

where Rn is the net radiation, QF is the anthropogenic heat, LE, H and G are the latent, 

sensible and ground heat fluxes respectively.  
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Figure 2.1. Schematics for (a) the single layer urban canopy model, and (b) a green roof 

and an engineered roof. Subscripts R, W, and G denote properties of roof, wall and 

ground, respectively; deng in (b) is the maximum water-holding depth of the paved surface. 

 

In particular, the latent heat flux arising from a WRF urban grid cell consisting of both 

urban (impervious) and vegetation landscape is computed as (Chen and Dudhia 2001): 

 ( ) (1 )urb ALH urb veg urbLE LE Q f LE f    , (0.2) 

 veg H p oasisLE C E  ,  (0.3) 

 (1 ) (1 ) 2urb gr gr gr r g wLE rf LE r f LE r LE hLE      , (0.4) 

(a) 

(b) 
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where QALH is the anthropogenic latent heat, furb is the fraction of urban landscape; 

subscripts urb, veg, gr, r, g, and w denote the urban landscape, vegetation landscape, 

green roof, roof, ground and wall respectively; Ep is the potential evaporation rate; CH is a 

coefficient that accounts for the impacts of other variables on the evaporation; αoasis is the 

oasis parameter; and dimensionless variables r and h represent the normalized roof width 

and building height respectively. The WRF model adopts a “tile” approach, where latent 

heat fluxes over built surfaces LEurb is calculated using the single layer urban canopy 

model and LEveg is computed using the Noah land surface model. 

 

2.2.2 Water balance of multilayer green roofs 

A schematic of the multilayer green roof system is shown in Fig. 2.1b. Compared to 

a conventional roof, it has three additional layers on top of the concrete deck, viz. the 

vegetation-soil, the growing media and the drainage layers. All three layers consist of 

porous materials and their volumetric water content θ is computed by vertically 

discretizing the layer. Temporal and spatial distribution of θ in the intermediate layers is 

given by the diffusive form of the Richards equation: 

 
2

2
( ) ( )D K

t z z

    
 

  
,  (0.5) 

where D(θ) and K(θ) are the θ-dependent hydraulic diffusivity and conductivity 

respectively. This form is derived from Darcy’s law assuming rigid, isotropic and 

homogeneous soils. Total latent heat flux over a green roof is then calculated from: 

 gr dir c tLE LE LE LE   ,  (0.6) 
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where subscripts dir, c, and t represent direct evaporation from top soil layer, evaporation 

of precipitation intercepted by vegetation canopy and transpiration via vegetation. Details 

of these three components can be found in the community Noah land surface model 

developed by Chen and Dudhia (2001). Intensive and extensive roofs are two major types 

of existing green roofs. Within the green roof system, depths of the vegetation-soil layer 

and growing medium layer are strongly related to plant types and root depths, which can 

vary from about 0.05 m to more than 1 m depending on vegetation types (Dvorak and 

Volder 2010). For simplicity, in this Chapter we used a constant thickness of 0.15 m for 

both growing medium and soil-vegetation layers. The drainage layer is a thin layer 

constructed to transport drainage moisture away, and therefore its depth is not explicitly 

modelled.  

 

2.2.3 Evaporation over paved surfaces 

In contrast to natural landscapes (soils and vegetation), engineered surfaces admit 

much simpler hydrological processes. As illustrated in Fig. 2.1b, for a paved roof, a 

water-holding layer exists above the impervious datum due to the porosity of pavement. 

The layer also exists on wall and road surfaces. Water is retained within this layer and 

acts as the source for evaporation. The latent heat flux over engineered pavements is 

given by (Wang et al. 2013): 

 p
eng

LE E
d

  ,  (0.7) 

Where ϕ is the porosity of engineered materials, deng is the maximum water-holding depth 

dependent on pavement materials, and δ is the water retention depth given by: 
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t



0, if   d
eng

max(0, P E
p
), if 0   d

eng
, P  0

P Ep , if 0   deng , P  0










,  (0.8) 

where P is the precipitation intensity. Previous studies have assigned different values to 

deng; for example, Grimmond and Oke (1986) used a value of 0.59 mm to represent the 

retention capacity of impervious surfaces. Recently, Ramamurthy and Bou-Zeid (2014) 

adopted a value of 1 mm for ground concrete and asphalt pavements. In this study, we set 

deng to be 1 mm, 0.2 mm and 1 mm for engineered roof, wall and ground surfaces, 

respectively. 

 

2.2.4 Urban irrigation 

A number of methods for estimating urban irrigation have been previously 

developed, including the use of field measurements, the minimum-month method, and 

energy balance formulas (Mayer et al. 1999, Senay et al. 2007). However, many of these 

methods are computationally expensive and inaccurate at the city or regional scale 

(Johnson and Belitz 2012). The impact of summertime irrigation was qualitatively 

discussed in previous studies for several cities, e.g. Beijing (Miao and Chen 2014), 

Phoenix (Diem and Brown 2003) and Vancouver (Grimmond and Oke 1986). Timing, 

duration and amount of irrigation vary from city to city and are subject to change with 

vegetation types as well as local practices and regulations. Irrigation is therefore difficult 

to represent at the city scale. For simplicity, here we assume that urban irrigation is 

conducted for a 2-h period from 1800 to 2000 local time each day from May to 

September in all study cities. When irrigated, moisture of the top two soil layers (0.4 m 



14 

thick) of urban lawns or green roofs is set to reach a threshold value of 0.33 where 

transpiration is not limited by water availability. Such treatment is used to broadly 

represent, rather than exactly match, urban irrigation schemes in a variety of cities. 

Development of a physically-based irrigation model remains an open challenge in urban 

hydroclimate modelling.    

 

2.2.5 Anthropogenic latent heat 

The importance of anthropogenic heat in an urban area has been long recognized 

and studied since the 1980s (Oke 1988, Grimmond 1992). To date, however, most studies 

have assumed that the anthropogenic heat is sensible heat in nature without accounting 

the latent heat component. In the current SLUCM, anthropogenic heat was modelled as a 

fixed diurnal profile added to the sensible heat flux. Several recent studies suggested that 

water vapour emissions by cooling systems constitute a substantial portion of latent heat 

flux in urban areas (Sailor et al. 2007, Miao and Chen 2014); in central Tokyo, this flux 

was shown to exceed 500 W m-2 during summer (Moriwaki et al. 2008). The diurnal 

variation of anthropogenic latent heat follows the schedule of human activity and is 

relatively independent of season (Moriwaki et al. 2008). Anthropogenic latent heat in the 

surface energy budget is given by: 

 ALH ALHMAX ALHQ Q f , (0.9) 

where QALHMAX is the daily maximum anthropogenic latent heat value dependent on the 

season and fALH is a diurnally-varying coefficient. Miao and Chen (2014) developed a 

diurnal profile of fALH for the Beijing metropolitan area based on predicted LE from the 

single layer urban canopy model and meteorological observations. Their diurnal profile 
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matches with daily human activities and is similar to that of Tokyo derived by Moriwaki 

et al. (2008). We adopt this profile to represent the general diurnal variability of urban 

anthropogenic latent heat and apply it to Vancouver, Montréal and Phoenix in subsequent 

simulations. QALHMAX is estimated to be 17.0, 41.9, 24.4 and 18.0 W m　2 for spring, 

summer, fall and winter in Beijing, respectively (Miao and Chen 2014). In Vancouver, 

monthly average anthropogenic latent heat is estimated using a top-down methodology 

developed by Sailor and Lu (2004). 

Seasonal anthropogenic latent heat data is not available for Phoenix and Montréal, 

although previous studies have estimated daily maximum anthropogenic heat values for 

Montréal (Lemonsu et al. 2010) and Phoenix (Sailor and Hart 2006). In this Chapter, we 

adopt the approach of Bateni and Entekhabi (2012) to partition the total anthropogenic 

heat into sensible and latent heat components. Given a small temperature perturbation, 

based on a linear stability analysis to restore the land surface to thermodynamic 

equilibrium, the ratio of anthropogenic latent heat to sensible heat is computed as (Yang 

and Wang 2014b): 

 ALHMAX

ASHMAX

Q

Q




 ,  (0.10) 

 ALHMAX ASHMAX AHMAXQ Q Q  ,  (0.11) 

where QAHMAX is the daily maximum anthropogenic heat value, QASHMAX is the daily 

maximum anthropogenic sensible heat value, Δ is the slope of the saturation vapour 

pressure curve, γ is the psychrometric constant, and β is the moisture availability 

parameter: β = 0 for completely dry surfaces and 1 for saturated surface. Yang et al. 

(2013) evaluated the method against field measurements over lake, vegetation, and 
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suburban land surfaces. It was found that a reasonable choice of β is about 0.5 in fall and 

about 1.5 in summer over a vegetated surface. The value of β exceeds 1 in summers 

because of the additional transpiration process by urban vegetation. Assuming the latent 

heat flux over impervious surfaces is negligible in the absence of rainfall, moisture 

availability of the city is calculated using: 

 (1 )veg urbf   ,  (0.12) 

where βveg is set as 1.0, 1.5, 0.5 and 0.2 for spring, summer, fall and winter, respectively. 

This method, albeit not exact, provides a usable scheme to estimate anthropogenic 

sensible and latent heat where detailed data are not available. 

 

2.2.6 Urban oasis effect 

The urban oasis effect on plant transpiration rate has been addressed in several field 

experiments. A schematic of this effect is shown in Fig. 2.2. Without obstacles to 

radiation and airflow, patchy vegetation in urban areas has higher rates of potential 

evapotranspiration than large-area vegetation in natural environment. Oke (1979) found 

that the actual evapotranspiration from an irrigated suburban lawn was about 1.3 times 

greater than that from an irrigated rural pasture. Hagishima et al. (2007) conducted 

experiments using 203 nearly homogeneous potted plants and concluded that scattered 

small plants had a transpiration rate about 1.6 times that of large vegetation. Miao and 

Chen (2014) used meteorological observations with the SLUCM and obtained an oasis 

parameter of about 1.5 for Beijing. Here we adopt a value of 1.5 to account for the oasis 

effect on potential evapotranspiration rate of urban vegetation. 

 



17 

 

Figure 2.2. Schematics for oasis effect: comparing potential evapotranspiration (PET) 

over vegetated surfaces in urban and rural areas. 

 

2.3. Study Metropolitan Areas 

To evaluate the enhanced single layer urban canopy model, flux measurements were 

collected from eddy-covariance towers in four metropolitan areas, viz. Beijing, Phoenix, 

Vancouver and Montréal. Basic meteorological quantities such as wind speed, wind 

direction, air temperature and relative humidity were also measured at these sites. In the 

Beijing metropolitan area, three-layer flux observations were carried out at 47, 140 and 

280 m of the Chinese Academy of Sciences’ 325-m-high Meteorological and 

Environmental Observation Tower (Miao et al. 2012). Footprint analysis by Wang et al. 

(2009) demonstrated that the flux measurement at 140 m covered a major fraction of the 

Beijing metropolitan area (20 km × 20 km). For Vancouver and Montréal, datasets were 

acquired from the Environmental Prediction in Canadian Cities (EPiCC) network 

(http://www.epicc.ca), which conducted measurements to evaluate the urban 

meteorological numerical systems used at the Meteorological Service of Canada. Here we 
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use data from the Vancouver Sunset tower location and the Montréal urban residential 

site. More details can be found in Bergeron and Strachan (2012) for the Montréal site, 

and in Tooke et al. (2009) and van der Laan et al. (2011) for Vancouver. In Phoenix, 

observations were obtained from the eddy-covariance tower deployed at Maryvale, West 

Phoenix, through the Central Phoenix Project Long Term Ecological Research program. 

Local-scale surface energy balance of the area has been measured for the entire calendar 

year 2012 (Chow et al. 2014).  

 

2.4. Model Evaluation and Discussion 

Here we present simulation results from the SLUCM with enhanced modelling of 

urban hydrological processes, compared against measurement datasets collected at the 

four aforementioned metropolitan areas. Hereafter, we refer to the current SLUCM as the 

old SLUCM, and the version with proposed hydrological processes as the new SLUCM. 

In this Chapter, models are run in an offline (stand-alone) mode. Simulations are driven 

by half-hourly meteorological dataset measured from eddy covariance towers, including 

wind speed, wind direction, air temperature, relative humidity, atmospheric pressure, 

incoming shortwave and longwave radiation, and precipitation. Without records of large-

scale deployment of green roofs in any of these study cities during the measurement 

periods, simulations are performed with 0% green roof fraction.  

Performance of the SLUCM and coupled hydrological processes relies heavily on 

the accurate determination of input parameters (Loridan et al. 2010; Wang et al. 2011b; 

Yang and Wang 2014a). As field measurements of all input parameters of the model are 

rarely possible, we only collect sensitive parameters of the model. Loridan et al. (2010) 
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performed an extensive evaluation of the SLUCM and found that the latent heat flux is 

most sensitive to the vegetation fraction. In Beijing, land cover and building 

characteristics have been reported by Wang et al. (2009). Urban land-surface parameters 

were obtained from high resolution lidar data for Vancouver (Goodwin et al. 2009), and 

from satellite imagery as well as public Geographic Information System data for 

Montréal (Lantz and Wang 2010). In Phoenix, Myint et al. (2011) developed a set of 

multi-scale decision rules and supervised approaches using an object-based classifier, and 

achieved an overall accuracy higher than 90% in urban land cover classification. This 

method is employed to acquire vegetation fraction of a 1 km × 1 km area centred at the 

eddy-covariance tower in Phoenix. At each site, area-averaged albedo is estimated from 

measured incoming and outgoing shortwave radiations during a diurnal cycle on a 

summer clear day. Facet albedo values are then assigned (i.e., for roof, wall and ground) 

to achieve the correct overall surface albedo.  

In addition to those obtained from field analysis, default values are used for the rest 

of the parameters. Currently, urban canopy parameters are prescribed in the SLUCM for 

three urban land-use categories: low-density residential, high-density residential, and 

industrial and commercial. We use the industrial and commercial category to represent 

the Beijing study site, and the high-density residential category for Phoenix, Montréal 

and Vancouver. Properties of different vegetated surfaces are also prescribed in the 

model. Based on results from Loridan et al. (2010), we select the cropland/grassland 

category to represent the urban vegetation for Beijing, and the mixed shrubland/grassland 

category for Phoenix, Montréal and Vancouver. Urban canopy parameters and simulation 

periods for the four study sites are summarized in Table 2.1. Due to limited data 
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availability, the simulation for Montréal is only run for 20 and 35 days during spring and 

summer 2009, respectively. 

 

Table 2.1. Urban canopy parameters and simulation periods for study metropolitan areas. 

Input parameters Unit Phoenix Beijing Vancouver Montréal 

h (building height) m 7.5a 18.3d 4.9e 8.35f 

lroof (roof width) m 9.4a 10a 12.3e 14f 

lroad (road width) m 9.4a 10a 9.4a 25.2f 

furb (urban fraction) - 0.844b 0.783d 0.68e 0.72f 

αR (albedo of roof) - 0.16 0.2 0.1 0.12 

αW (albedo of wall) - 0.16 0.2 0.1 0.12 

αG (albedo of road) - 0.16 0.2 0.1 0.12 

QAHMAX W m-2 10.3c *1 *2 24.0g 

Vegetation - shrubland/ 

grassland 

cropland/ 

grassland 

shrubland/ 

grassland 

shrubland/ 

grassland 

Simulation period - 04/17/12- 

12/31/12 

06/30/09-

06/30/10 

01/22/09- 

10/31/09 

04/03/09- 

08/31/09# 

Spring - 04/17/12- 

05/31/12 

03/01/10-

05/31/10 

03/01/09- 

05/31/09 

04/03/09- 

04/23/09 

Summer - 06/01/12- 

08/31/12 

07/01/09-

08/31/09 

06/01/09- 

08/31/09 

06/01/09- 

08/31/09# 

a: Default values prescribed in Noah/SLUCM; b: Myint et al. (2011); c: Sailor and Hart (2006); d: 

Wang et al. (2009); 

e: Goodwin et al. (2009); f: Lantz and Wang (2010); g: Lemonsu et al. (2010) 

*1: Seasonal data of anthropogenic latent heat available from Miao and Chen (2014) 

*2: Seasonal data of anthropogenic latent heat available from Sailor and Lu (2004) 
#: Gap exists due to data availability during the simulation period 
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Figure 2.3. Averaged diurnal profiles of modelled and observed H, LE and Rn for (a) 

Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 

 

Model predictions and field observations of H, LE and Rn are compared in Fig. 2.3. 

Located in a semiarid region, Phoenix has less latent heat flux compared to the other 

three metropolitan areas. It is clear from Fig. 2.3 that due to the lack of realistic urban 

hydrological processes, the old SLUCM significantly underestimates LE with a 

discrepancy of more than 40 W m-2 at 1400 local time. With the incorporation of urban 

hydrological processes, the new SLUCM is able to predict LE with improved accuracy as 

compared to field measurements, with a deviation of less than 10 W m-2 at 1400 local 
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time for all study areas. Constrained by the surface energy balance, the increase in LE in 

the new SLUCM leads to less available energy for H and G. It is found that (not shown 

here) about 70% of the reduction is redistributed to H. This implies that the inclusion of 

hydrological processes in the model has an important impact on the partition of available 

energy into turbulent fluxes, without significantly altering the soil thermal storage. Figure 

2.3 also illustrates that the incorporation of hydrological processes also improves the 

prediction of daytime net radiation, leading to improved estimates of daytime surface 

temperatures by the new SLUCM. In addition, the surface energy residual (Rn + QF – H – 

LE – G) is calculated over the entire simulation period. Mean residuals for all study sites 

are less than 0.15 W m-2, indicating the surface energy balance is maintained after the 

implementation of hydrological processes. 

Considering the seasonal variation of urban irrigation, we further evaluate model 

results against observations at the intra-annual scale. Results from spring and summer 

periods are plotted in Figs. 2.4 and 2.5, respectively. Predicted LE by the new SLUCM is 

in good agreement with field observations (with absolute error less than 30 W m-2) except 

that a substantial deviation of 60 W m-2 is found at Vancouver in spring. It is noteworthy 

that Vancouver has larger LE in spring than in summer due to high precipitation; the 

opposite is found in other three cities. This discrepancy in spring is possibly related to 

missing hydrological processes in the current model (e.g. snow melting), necessitating a 

continuous improvement of the single layer urban canopy model in the future. During 

summer, the increase of LE is about 100% larger than that in spring due to irrigation in 

the model; accuracy of prediction of LE is notably improved at all study sites. 

Nevertheless, a significant deviation in H is observed in Vancouver, which is up to about 
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50 W m-2 around noon. In general, Figs. 2.4 and 2.5 show that the new SLUCM is 

capable of reproducing seasonal patterns of turbulent heat fluxes at study cities except 

Vancouver. 

  

  

  

Figure 2.4. Averaged diurnal profiles of modelled and observed H and LE in spring for (a) 

Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 
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Figure 2.5. Averaged diurnal profiles of modelled and observed H and LE in summer for 

(a) Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 

 

To quantitatively assess the impact of the proposed hydrological processes, root-

mean-square error (RMSE) between observed and modelled results is computed for the 

entire simulation period. The statistics are summarized in Table 2.2, and are presented in 

Fig. 2.6 to facilitate visualization of the results. Despite the locations,  
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Table 2.2. Summary of the median, maximum, minimum, 25th and 75th percentile of the 

RMSE (W m-2) between model prediction and observation. 

Site Statistics 
Old SLUCM New SLUCM 

H LE Rn H LE Rn 

Beijing Median 2.3 13.5 21.0 4.3 2.7 29.6 

Minimum 0.0 4.6 1.5 0.0 0.1 0.3 

25th percentile 1.2 9.6 7.2 1.3 0.6 5.5 

75th percentile 7.1 21.3 51.6 8.0 4.4 44.1 

Maximum 13.3 37.9 93.7 13.3 7.6 67.4 

Phoenix Median 10.6 11.5 13.1 6.1 1.8 4.5 

Minimum 1.3 1.3 4.1 0.4 0.0 0.0 

25th percentile 5.2 5.7 9.4 4.3 0.8 3.7 

75th percentile 19.4 31.5 30.7 9.2 2.3 11.7 

Maximum 31.8 45.8 42.7 15.3 10.2 14.6 

Vancouver Median 3.3 17.4 3.2 3.9 3.8 11.8 

Minimum 0.0 5.1 0.0 0.0 0.1 1.1 

25th percentile 1.4 8.3 0.6 2.1 1.7 9.7 

75th percentile 10.1 47.2 39.2 14.0 11.1 25.7 

Maximum 17.6 62.5 58.3 33.3 20.7 47.8 

Montréal Median 7.3 15.5 12.6 7.2 5.0 26.7 

Minimum 0.0 6.6 0.3 1.5 0.1 1.2 

25th percentile 2.5 9.1 6.9 4.2 3.3 20.3 

75th percentile 17.7 31.1 73.2 12.4 8.4 56.0 

Maximum 32.6 42.0 111.9 42.5 17.0 96.1 

 

RMSEs from the new SLUCM are notably smaller than those from the old SLUCM 

with respect to LE. Averaged median RMSE of the four study sites are 14.5 and 3.3 W m-

2 for the old and new SLUCM, respectively. With respect to H, the old SLUCM has good 
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overall performance among all study sites, with a median RMSE of 5.9 W m-2; the model 

performance is slightly better for Beijing and Vancouver, and much improved for 

Montréal and Phoenix in terms of maximum RMSE. In addition, the averaged median 

RMSEs for H and LE for the new SLUCM are 5.4 and 3.3 W m-2, respectively, which are 

significantly better than the corresponding median RMSEs of 22 and 26 W m-2 averaged 

over the group of 32 urban energy balance models at the final stage (where all urban 

canopy models were fine-tuned with input of most detailed field parameters) (Grimmond 

et al. 2011). 

From Figs. 2.3-2.6, it is evident that the major improvement of the new SLUCM is 

in its capability of predicting LE, as a result of the enhanced physical representation of 

urban hydrological processes. Among the proposed hydrological processes, evaporation 

over pavement surfaces only takes effect during and shortly after precipitation due to the 

low water-holding capacity. Considering the substantial fraction of paved surface in 

urban areas, we specifically look into LE during rainfall periods to examine the impact of 

different parametrization schemes. 

The SLUCM is run with old (empirical decay function by Miao and Chen (2014)) 

and new (resolving water-holding layer in Chapter 2.2.3) schemes respectively. Figure 

2.7 shows the result of comparison in summer period in Beijing and Phoenix. It is clear 

that the old parametrization scheme overestimates LE after the onset of rainfall. Large 

differences are observed throughout the period with a maximum error of about 80 W m-2 

in Beijing and about 120 W m-2 in Phoenix. In contrast, the new evaporation scheme (Eq. 

(2.8)) yields more realistic predictions of LE with better agreement with field 

measurements, with maximum errors less than 40 and 70 W m-2 in Beijing and Phoenix, 
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respectively. This new parametrization scheme for engineered surfaces can markedly 

enhance prediction of LE and subsequently improve the representation of urban water 

cycle during and after rainfall events. 

 

   

 

 

 

 

 

 

 

 

 

Figure 2.6. Box plots of RMSE between observed and model predicted H, LE and Rn for 

(a) Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. Top and bottom of the box 

represent the 75th and 25th percentile, the horizontal line indicates the median, top and 

bottom bars are the maximum and minimum values, respectively. 
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Figure 2.7. Averaged LE after rainfall events during a summer period from two 

evaporation parametrization schemes for (left) Beijing during 6/30/09-8/30/09 (averaged 

over 4 major rainfall events), and (right) Phoenix during 7/03/12-8/31/12 (averaged over 

4 major rainfall events). 

 

Furthermore, for each hydrological process proposed in this study, the relative 

contribution is calculated as the ratio (percentage) between the change of LE by turning 

off the particular process and the overall change of LE by turning on all hydrological 

processes. It is found that evaporation over engineered pavements has the least relative 

contribution (less than 0.1%), because it is only effective during and shortly after 

precipitation. The relative contribution from irrigation varies from about 6.7% in Beijing 

to about 69.0% in Phoenix. The oasis effect contributes more (> 10%) to the overall LE 

changes in Phoenix, Vancouver and Montréal, than that in Beijing. It is mainly because 

the urban cropland/grassland (Beijing) has higher actual rate of evapotranspiration 

limited by available energy (i.e. supply) rather than the potential rate (i.e. atmospheric 
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demand). The anthropogenic latent heat is determined by population density and the 

urban category of the measurement site. Therefore its contribution varies vastly for 

different cities, ranging from about 0.5% in Vancouver to about 50% in Beijing. 

  

2.5. Green Roof Simulations 

In this section the new SLUCM model is applied to explore the effect of green roof 

systems on urban hydroclimate, especially on the modification of urban water/energy 

budgets. We study five scenarios with different green roof fractions, viz. 0%, 25%, 50%, 

75%, and 100% of the total roof area. Simulations are conducted for a five-day period in 

mid-summer for the four study cities: Beijing, (June 19-24, 2010), Phoenix (July 05-10, 

2012), Vancouver (July 16-21, 2009), and Montréal (June 02-07, 2009), driven by 

measured meteorological forcing. The selected periods were characterized by clear sky 

conditions with no precipitation. The initial soil moisture of green roofs is assumed to be 

the same as that of the ground vegetation. Note that urban irrigation is used for 

subsequent simulations; therefore model results represent the maximum (potential) 

capacity of evaporative cooling and energy savings by green roofs. 
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Figure 2.8. Model predicted Ts with various green roof fractions during a 5-day summer 

period for (a) Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 

 

Predicted surface temperature (Ts), sensible and latent heat flux with different green 

roof area fractions are shown in Figs. 2.8-2.10. With increased green roof fraction and 

therefore a stronger evaporative cooling effect, urban Ts and H decrease while LE 

increases, as expected. Figures 2.8-2.10 demonstrate the range of modelled Ts, H, and LE 

that rooftop modification can produce in each city. Replacing 25% of the rooftop with 

green roofs can reduce daily peak Ts by 1 to 2 oC in study areas. If green roofs are 
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implemented over the entire city, reduction in daily peak Ts can be up to 5 to 10 oC, 

consistent with values reported by Santamouris (2014). Compared to Beijing and 

Montréal, Phoenix and Vancouver have larger reductions in Ts. In Phoenix, the reduction 

is partly due to the presence of a larger roof fraction (see Table 2.1), which provides more 

area for green roof systems. In addition, the dry atmosphere in the semi-arid environment 

in Phoenix induces higher potential evapotranspiration, which in turn leads to more 

significant cooling. In Vancouver, though its urban fraction is the lowest among all study 

cities, it has the highest roof- to urban-area ratio, leading to more effective cooling per 

unit urban area by green roofs. Greater available surface energy, as a result of more solar 

radiation in Phoenix and lower albedo in Vancouver, also contributes significantly to 

larger increase of LE and reduction of Ts in the two cities. 

Figure 2.9 illustrates that green roofs are capable of substantially reducing sensible 

heat flux in urban areas. As H is determined by the difference between surface and air 

temperature, the magnitude of reduction in H follows the trend of reduction in Ts. 

Installation of green roofs over the entire available rooftop area can decrease daily peak 

H by about 100 W m-2 in Beijing and Montréal, and about 160 W m-2 in Phoenix and 

Vancouver. At night, the cooling effect becomes insignificant as the energy source for 

evaporation, i.e. solar radiation, vanishes. Due to the larger heat capacity of moist soils as 

compared to pavement materials, nighttime Ts and H on green roofs are higher than 

conventional roofs. The warming effect of green roofs at night is more evident in low-

latitude areas that accumulate more thermal energy during daytime. Among study cities, 

the nighttime warming (as compared to the case without green roofs) is less than 1 oC in 
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Vancouver and Montréal, but can be more than 2 oC in Beijing and Phoenix. Overall, the 

nighttime temperature increase is much smaller than daytime temperature reduction. 

 

 

Figure 2.9. Model predicted H with various green roof fractions during a 5-day summer 

period for (a) Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 
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consistent with the result of a previous sensitivity study (Yang and Wang 2014a). 

However, as green roof fraction increases from 75% to 100%, the increment of LE 

becomes much smaller, revealing a complex mechanism of surface energy partitioning 

for green roof systems in this range.  

 

 

Figure 2.10. Model predicted LE with various green roof fractions during a 5-day 

summer period for (a) Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 
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On one hand, the decreased H due to surface cooling contributes more available 

energy for evapotranspiration (LE increases), whereas the associated reduction in 

buoyancy weakens the turbulent mixing and retains more moisture at the surface (LE 

decreases). Results in Fig. 2.10 indicate the existence of a threshold capacity, beyond 

which further increasing green roof fraction will have negligible effect on LE. 

 

 

Figure 2.11. Model predicted Qin with various green roof fractions during a 5-day 

summer period for (a) Beijing, (b) Phoenix, (c) Vancouver and (d) Montréal. 
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Moreover, the cooling effect by green roofs in turn leads to saving of cooling energy 

consumption of buildings, especially in summers. To assess green roofs’ impact on the 

building energy consumption, we calculate the heat flux conducted into the building 

through the roof (Qin). A roof thermal insulation value of R30 is used in all simulations. 

 

 

Figure 2.12. Model predicted Qin with various green roof fractions during a 5-day period 

for (a) Beijing from January 20-25, 2010, (b) Phoenix from December 06-11, 2012, (c) 

Vancouver from March 08-13, 2009 and (d) Montréal from April 06-11, 2009. 
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Model predicted Qin with different green roof area fractions in various cities are 

shown in Fig. 2.11 for the summer period. The peak Qin occurs around 1800 local time, 

whereas daily peak Ts occurs at about 1400 local time. The time lag of about 4 hours 

implies the temporal gap between the hottest time and the largest cooling demands of 

buildings (Wang 2014b). During the study period, diurnal peak Qin values without green 

roofs are greater than 15 W m-2 at all study areas, up to 50 W m-2 in Phoenix. With green 

roofs, Qin can be reduced to nearly zero throughout the day in Vancouver and Montréal, 

and to less than 7 W m-2 in Beijing and Phoenix, implying significant potential saving of 

building cooling energy in summers. 

To illustrate the impacts of green roofs on building energy consumption in cool 

seasons, a second set of 5-day simulations (different from previous simulation periods in 

mid-summers) are conducted for Vancouver (March 08-13, 2009), Phoenix (December 6-

11, 2012), Beijing (January 20-25, 2010), and Montréal (April 06-11, 2009). In Fig. 2.12, 

diurnal profiles of Qin exhibit a similar trend to those in summers, where negative values 

indicate outward heat fluxes with a heating demand for building interiors. During the 

simulation period, highest peak Qin of 18 W m-2 and lowest peak Qin of 43 W m-2 are 

observed in Phoenix and Beijing, respectively. Implementation of green roofs can 

increase these peaks to about 4 W m-2 and 9 W m-2 in corresponding cities, suggesting a 

considerable saving of heating loads. This demonstrates that the insulation effect from 

additional layers in a green roof system is important in improving building energy 

efficiency under cool-to-cold climates. 
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2.6. Summary 

In this Chapter, physical urban hydrological parametrizations were implemented into 

the single layer urban canopy model, including (1) anthropogenic latent heat, (2) urban 

irrigation, (3) urban oasis effect, (4) evaporation over engineered pavements, and (5) 

multilayer green roofs. Comparisons against field measurements show that the enhanced 

SLUCM has improved accuracy in predicting turbulent fluxes over urban areas, 

especially the latent heat flux. The new model is able to capture not only the diurnal cycle 

but also intra-annual variations of H and LE in various cities. With the parametrization of 

water holding capacity of paved surfaces, actual LE is better captured during and shortly 

after rainfall periods.  

It is shown that when well irrigated, green roofs are effective in enhancing latent 

heat flux, and reducing surface temperature and sensible heat flux through evaporative 

cooling. For building energy efficiency, green roofs are found to be effective in 

decreasing not only summer cooling but also winter heating demands, through the 

combined evaporative cooling and insulation effect. Though environmental benefits of 

green roofs are encouraging based on the simulation results, their actual performance is 

sensitive to geographic and meteorological conditions and is critically limited by the 

availability of water resources. 

In general, results of the new SLUCM are promising, even with a large number of 

default urban parameters, as prescribed in the WRF model. Nevertheless, for specific 

cities, e.g. Vancouver, the presence of model-measurement deviation requires more 

meticulous determination of the input parameter space to achieve optimal values. In 

addition, the lack of snow/ice hydrology in current urban modelling systems necessitates 
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further development of physically-based urban parametrization schemes, especially those 

related to the coupled energy-water transport mechanisms.   



39 

CHAPTER 3 OPTIMIZING URBAN IRRIGATION FOR THE TRADE-OFF 

BETWEEN ENERGY AND WATER CONSUMPTION 

3.1. Introduction 

Urban areas account for 67-76% of global energy use (Seto and Dhakal 2014), with 

the percentages expected to increase under future urban expansion. Buildings are the 

dominant energy consumers in the cities, around 40% of the total final energy 

consumption in the United States and the European Union is in the building sector 

(Retzlaff 2008, European Commission 2012). In recent years there has been a growing 

concern about the energy consumption as it is the largest contributor to global CO2 

emissions, which is the leading cause of climate change (Seto and Dhakal 2014). 

Building energy consumption in cities is closely related to environmental temperatures 

(Akbari 2009), on which urban irrigation has indirect effects by controlling the supply of 

surface moisture for evapotranspiration of urban green infrastructure. 

While numerous means for reducing building energy consumption have been 

investigated, the impact of various urban irrigation schemes on building energy efficiency 

has been less explored. Irrigation-induced cooling on near-surface temperature over 

agricultural land has been extensively documented in both observational (Sacks et al. 

2009) and modelling (Bonfils and Lobell 2007, Lobell and Bonfils 2008) studies. In 

summers, daily maximum air temperature over 100% irrigated area can be 5 oC cooler 

than that over non-irrigated area in California (Lobell and Bonfils 2008). On the other 

hand, though the importance of irrigation in modelling urban energy and water budget 

has been recognized (Mitchell et al. 2008, Vahmani and Hogue 2014), the explicit impact 

of irrigation on urban environmental temperature and building energy consumption has 
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rarely been studied. Irrigation of private gardens consumes 16-34% of the total water 

supplied to an urban area, let alone the water used for irrigating large open space such as 

public parks and golf courses (Mitchell et al. 2001). For residential areas within the city 

of Los Angeles, nearly 225 × 106 m3 of water was used for irrigation per year (LADWP 

2001). Such amount of irrigation can increase evapotranspiration and cool the urban 

environment considerably, leading to significantly lower cooling load, especially in 

densely built areas.   

Under the challenge of future climate change, water becomes a more precious 

resource in cities (Vairavamoorthy et al. 2008). Current irrigation practices in most cities 

are scheduled between sunset and sunrise in order to avoid rapid moisture loss. However, 

from an energy saving perspective, irrigation should be conducted during daytime as 

evaporative cooling is driven by available solar radiation at the surface. In this case, 

irrigating urban vegetation leads to improved building energy efficiency, albeit the trade-

off and balance between water and energy resources need to be carefully measured. 

Different from agricultural irrigation whose objective is mainly on the yield of produces 

(Topak et al. 2010), urban irrigation apparently needs a new paradigm by considering the 

environmental sustainability of cities (e.g. mitigate urban heat islands and save building 

energy consumption).  

Understanding the relationship between water and energy consumption in the urban 

environment is essential to develop an optimal urban irrigation scheme. In this Chapter 

the single layer urban canopy model, described in Chapter 2 with realistic representation 

of urban hydrological processes, is employed to identify the environmental impact of 

urban irrigation in the Phoenix metropolitan area. A variety of uncontrolled and 
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controlled irrigation schemes is investigated, including (1) daily constant scheme, (2) 

soil-moisture-controlled scheme, and (3) soil-temperature-controlled scheme. 

Considering the seasonal variation of meteorological conditions and irrigation demands, 

the net saving of individual scheme is quantified at an annual scale. The trade-off 

between water and energy consumption are addressed by adopting the combined 

monetary saving as a measure of environmental co-benefit. The indirect benefit of 

irrigation on outdoor thermal comfort of pedestrians is also discussed. 

  

3.2. Numerical Experiment Design 

3.2.1 Irrigation schemes 

The Phoenix metropolitan area is selected as the study area for this Chapter. The 

simulation period was one entire calendar year, 2012. Phoenix has a population of more 

than 1.5 million in 2015, and is the sixth most populous city in the United States (U.S. 

Census Bureau 2016). Located in a semi-arid environment, Phoenix has a tremendous 

demand for cooling compared to other cities (Sivak 2008), thus providing a large 

potential for building energy saving through optimizing irrigation schemes (Gober et al. 

2010). In Phoenix, xeric and mesic are two typical vegetated residential landscapes. Xeric 

sites usually comprise drip-irrigated, low water-use native and/or desert-adapted plants, 

while mesic sites mainly consist of turf grass and shade trees (Middel et al. 2014). 

Though xeric landscaping helps to conserve water resource, mesic landscaping provides 

valuable environmental services by, e.g. reducing urban warming and improving 

stormwater management, and is aesthetically appealing (Chow and Brazel 2012). 
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A schematic of irrigation in the single layer urban canopy layer is shown in Fig. 3.1. 

Focusing on irrigation of mesic neighborhoods, four different urban irrigation schemes 

are tested for Phoenix. Scheme 1 is the baseline case with no irrigation during the entire 

simulation period. Scheme 2 is a daily constant scheme that represents current irrigation 

practice over mesic residential landscapes in Phoenix. Daily irrigation amount is 

estimated by dividing monthly irrigation data from an in-situ measurement by the number 

of days in each month. Following a previous study, irrigation is scheduled at 2000 local 

time every day in this scheme (Yang et al. 2015a). Sensitivity analysis finds that the 

irrigation time at night has limited impacts on model results. Scheme 3 is a soil-moisture-

controlled scheme proposed as a potential urban irrigation paradigm. The idea is to 

maintain soil moisture at a certain level to keep evaporative cooling effective all the time. 

Whenever the moisture content of top soil layer (θtop) drops below a critical value, 

irrigation is carried out to increase the moisture. The amount of irrigation each time is set 

to be the same as that in the daily constant scheme. Scheme 4 is similar to the soil-

moisture-controlled scheme but uses the soil temperature as the controlling variable. 

Targeted on reducing urban environmental temperature during hot periods, the scheme 

activates urban irrigation once the temperature of top soil layer exceeds a threshold value. 

Each time the irrigation amount also equals to the daily irrigation amount of scheme 2. 

During prolonged daytime period of hot summers, this scheme may easily lead to over 

irrigation. To avoid waste of water resource, the irrigation amount is then regulated by 

either the daily irrigation amount of scheme 2 or the difference between θtop and saturated 

soil moisture, whichever is smaller. For cool to cold months where soil temperature is 
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consistently lower than the threshold value, essential irrigation is conducted to maintain 

soil moisture above the wilting point to support biological functions of mesic vegetation. 

Volo et al. (2014) has conducted a comparative analysis of the impact of irrigation 

scheduling at both mesic and xeric sites in Phoenix. Typical wilting point for mesic site is 

found to be from 0.15 to 0.24. In this study, the lower bound value 0.15 is used as the 

wilting point and the upper bound value 0.24 is used as the controlling moisture for the 

soil-moisture-controlled irrigation scheme. Residual and saturated soil moisture is set to 

be 0.10 and 0.50. With respect to the threshold soil temperature for irrigation activation 

in the soil-temperature-controlled scheme, a value of 22 oC is adopted as the first step to 

illustrate performance of the scheme. 

 

 

Figure 3.1. A schematic of lawn irrigation in residential areas. The two-dimensional “big 

canyon” representation is adopted to represent the urban area with the longitudinal 

dimension (canyon length) much larger than the planar dimensions (building height and 

road width). 
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3.2.2 Model evaluation 

The single layer urban canopy model developed in Chapter 2 is used to quantify the 

impact of urban irrigation. Accuracy of the UCM in capturing the energy and water 

budgets of Phoenix is crucial to accurately assess the impact of urban irrigation on 

environmental temperature and building energy consumption. In Chapter 2 the 

performance of the UCM for Phoenix has been evaluated using annually averaged diurnal 

profiles of turbulent heat fluxes. Considering the variation of meteorological conditions 

and irrigation demands, the UCM is tested with calibrated parameters at a daily basis in 

this Chapter. Half-hourly meteorological forcing is obtained from the eddy-covariance 

tower deployed at Maryvale, West Phoenix. The experiment site has a footprint area of 

about 1 km × 1 km, of which about 48.4% is impervious surface, 36.8% is bare soil, and 

14.6% is vegetation (Yang et al. 2015a). Daily constant irrigation (i.e. scheme 2) is added 

into the model to represent practical supply for soil moisture.  

Comparison of predicted and observed average ground temperature (Tg), canyon air 

temperature (Tcan), sensible heat flux (H), and latent heat flux (LE) is shown in Fig. 3.2. 

Gaps in data points are due to failure and maintenance of individual sensors. It is clear 

from the graphs that model predictions agree with observations reasonably well except 

for LE in certain months. Discrepancy between observed and predicted LE is about 30% 

in October and November. This deviation is largely caused by the spatial variability and 

uncertainty in precipitation and irrigation data. For the entire simulation period, root 

mean square errors are 1.39 oC, 1.02 oC, 12.51 W m-2, and 7.36 W m-2 for Tg, Tcan, H, and 

LE, respectively. The calibrated input parameters are then adopted for subsequent 

analysis in this Chapter. 
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Figure 3.2. Comparison of predicted and observed average (a) Tg, (b) Tcan, (c) H, and (d) 

LE in Phoenix during the entire simulation period. 
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3.3. Results and Discussion 

3.3.1 Comparison between different irrigation schemes 

On the basis of the demonstrated skill of the UCM in reproducing energy and water 

budgets for Phoenix, a series of simulations was conducted to investigate the effect of 

various irrigation schemes on environmental temperature, building energy consumption, 

and outdoor thermal comfort at an annual scale. In 2010, vegetative cover of the Phoenix 

metropolitan area was estimated to be about 12% (City of Phoenix, 2010). Aiming to 

create a healthier, more livable and prosperous desert city, the City of Phoenix has 

initiated a Tree and Shade Master Plan to achieve the recommended average tree 

coverage of 25% by American Forest for southwestern cities (City of Phoenix, 2010). 

Projecting the increase onto residential areas, mesic neighborhoods may have a 

vegetative cover of more than 30%. For subsequent simulations, a combination of 35% 

vegetative cover and 65% impervious surface is used to represent mesic residential 

landscape in the near future. 

Figure 3.3 shows the temporal distribution of θtop and water consumption of all 

schemes. The annual variability is markedly different for different schemes: for daily 

constant irrigation scheme, water use pattern roughly follows a bell curve, with the peak 

consumption in the pre-monsoon summer, June; the soil-moisture-controlled scheme 

maintains θtop at a relatively constant level, water consumption increases with soil 

temperature and the trend is similar to that of daily constant scheme. Irrigation of the soil-

temperature-controlled scheme has the most drastic seasonal variation, with water use 

mainly concentrated in the summer owing to elevated temperatures. Peak water 
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consumption in July and August for the soil-temperature-controlled scheme is 4 times 

more than that of other two schemes.  

 

  

  
Figure 3.3. Simulated temporal distribution of (a) θtop, and (b) water consumption among 

different irrigation schemes in Phoenix in 2012. 
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the heat exchange between wall surface and canyon air. Second, different cooling of the 

ground surface impacts the amount of longwave radiation emitted towards building 

surface. Detailed results and discussion on the difference in heat transfer are shown in 

subsequent sections. 

 

3.3.1.1 Effect of irrigation schemes on environmental temperatures  

By replenishing soil moisture for evapotranspiration, urban irrigation has direct 

cooling impacts on the ground temperature. Note that the UCM does not dynamically 

simulate the growth and wilt of vegetation. Vegetation is assumed to be fully functional 

as long as θtop is maintained above the wilting point of mesic landscape. Figure 3.4 

demonstrates the reduction of Tg, Tcan, and wall temperature (Tw) by various irrigation 

schemes as compared to the no-irrigation case. Calculation of these temperatures involves 

complicated energy and moisture transport in cities due to urban geometry and thermal 

interaction. Please refer to Wang et al. (2013) for detailed computational process. Under 

the same meteorological condition, evaporative cooling is determined by the volumetric 

moisture content of top soil layer. Consequently, the magnitude of reduction in Tg among 

different schemes (Fig. 3.4a) follows closely the relative magnitude of θtop in Fig. 3.3a. 

The soil-moisture-controlled scheme has a larger reduction of Tg than other schemes 

during the winter, whereas the soil-temperature-controlled irrigation induces the greatest 

cooling in the summer. Maximum monthly reduction in Tg is about 2.1 oC in the winter 

and about 6.3 oC in the summer. When moisture content is relatively constant (e.g. the 

soil-moisture-controlled scheme), evapotranspiration of urban vegetation is regulated by 
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available radiation at the surface, resulting in the larger cooling in summer compared to 

other seasons.  

 

 

 

Figure 3.4. Monthly reduction in (a) Tg, (b) Tw, and (c) Tcan by various irrigation schemes 

as compared to the baseline (no-irrigation) case. Scale of the vertical axis is different for 

subplots. 

(a) 

(c) 

(b) 



50 

Through the thermal interaction inside the street canyon, urban irrigation has 

indirect cooling impacts on building surface as lower ground temperature reduces thermal 

radiation emitted towards the wall. Reduced temperatures subsequently weaken the 

sensible heat flux arising from ground and wall surfaces, leading to the cooling of canyon 

air. Effect of different irrigation schemes on Tcan and Tw is plotted in Figs. 3.4b and 3.4c, 

respectively. Monthly variation of the reductions in Tcan and Tw is nearly identical to that 

of reduction in Tg. Maximum monthly cooling in June is less than 4.0 oC for Tcan and 3.0 

oC for Tw, which is significantly lower than the direct cooling effect on Tg. It is 

noteworthy that the cooler canyon air and wall surface in turn affect the 

evapotranspiration process of ground vegetation, thus results here represent the effect of 

urban irrigation in a built environment with interactive exchange of thermal energy. 

Equation Chapter (Next) Section 1 

3.3.1.2 Effect of irrigation schemes on building energy consumption 

Figure 3.4 clearly illustrates that urban irrigation cools the built environment 

throughout the annual cycle. Reduced environmental temperature can save cooling load 

of buildings during warm to hot seasons, it nevertheless increases heating demand of 

buildings in cool to cold seasons. To quantify the net impact of urban irrigation on 

building energy efficiency, the one-dimensional heat conduction equation through walls 

is solved as:  

 
   

2

2

,
,w

T x t
T x t

t x


 


 
,  (1.1) 

where T is temperature inside the building envelop as a function of position x and time t, 

and α = k / ρc is the thermal diffusivity, with ρ the density, c the specific heat, k the 
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thermal conductivity, and the subscript w denoting walls. The heat equation can be 

solved analytically using Green’s function approach (Wang et al. 2011a) using 

convolution integral. Given the temporal scale of this study (annual), and the fact that 

convolution requires the saving of all temporal history of the thermal field evolution 

inside the wall (for 1 year) and is not computationally effective, the finite difference 

method is adopted to solve the heat equation, by discretizing the wall into a finite number 

of layers. The temperature profile inside the wall in the i-th layer at time instant j is 

solved as: 
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,  (1.2) 

where x and t are the space and time intervals respectively. This equation is solved with a 

constant inner wall surface temperature boundary condition.  

Building energy consumption consists of thermal load, plug load, equipment load, 

and lighting load. The analysis here focuses on thermal load as the rest is relatively 

independent of outdoor meteorological condition. Thermal load is the amount of heating 

and cooling energy that needs to be added to or removed from the building to maintain 

thermal comfort and control moisture for occupants. Thermal load of buildings is 

determined by the combination of external thermal load and internal thermal load. 

External loads are made up of heat transmitted through the envelope (roof, wall, and 

ground), solar gain through windows, heat loss/gain through leaks, infiltration and 

ventilation, while internal loads include heat generated by people, lighting, and 

equipment. Note that though the UCM is capable of reproducing energy and water 
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budgets for urban area, its ability in simulating building structural details is limited. 

Therefore, several factors are neglected when estimating building energy consumption.  

Firstly, internal thermal load of buildings is neglected. For the studied residential 

area in Phoenix, single family house is the major building type (Chow et al. 2014). 

Sparsely populated with little activity and energy-intensive equipment, single family 

house is generally dominated by external thermal loads. Secondly, latent load of 

buildings is ignored. This assumption is acceptable for Phoenix as latent load constitutes 

only about 21% of the annual ventilation load under hot and dry climate (Harriman III et 

al. 1997). Thirdly, the contribution of heat flux transmitted through roof and ground floor 

is not accounted for, as pilot analysis indicates that irrigation in the street canyon has 

limited effects on roof temperature and soil temperature under building ground floor. 

Fourthly, due to model limitation, windows are not simulated that subsequent results 

represent buildings without windows. Lastly, the efficiency of air conditioning system 

and the variation of the building interior temperature are not considered. Because the 

efficiency of air conditioning system is always less than 1, actual energy used for heating 

and cooling would be larger than the heat flux transmitted through building envelope. 

Based on these assumptions, building energy consumption is estimated as the heat flux 

transmitted through the wall in this study, given by: 

 
 

/ 2

j
w in bj

in
in

k T T
Q

d


 ,  (1.3) 

where j
inQ   is the heat flux entering the building via walls at time step j, din is the 

thickness of the innermost (discrete) layer, j
inT   is temperature of the innermost layer at 

the same time calculated using Eq. (3.3), and Tb is the inner wall surface temperature. A 
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positive Qin indicates a cooling demand of the building, while a negative value means a 

heating demand.  

 

 

 

 

Figure 3.5. Monthly (a) water consumption, (b) heating penalty, and (c) cooling saving 

by various irrigation schemes as compared to the no-irrigation case. 

(a) 

(c) 

(b) 
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In the UCM, heat transfer within building wall is computed using a multi-layer 

algorithm, which enables capturing evolution of temperature and heat transfer within the 

wall as compared to a single-layer algorithm. Here a R5 insulation wall sheathing is 

considered based on Energy Star recommendation and a typical value of 0.9 W m-1 K-1 is 

used for kw. Inner wall surface temperature is assumed to be maintained at 24 oC by 

indoor heating, ventilation, and air-conditioning (HVAC) systems for the entire 

simulation period.  

Figure 3.5 presents the monthly water consumption, heating penalty (additional 

building heating demand), and cooling saving (reduced building cooling demand) by 

different irrigation schemes as compared to the no-irrigation case. In cool to cold season 

(November to March), the soil-moisture-controlled scheme consumes about 0.29 cubic 

meter water per square meter vegetated ground area for irrigation, notably larger than 

0.22 m3 m-2 in daily constant scheme and 0.16 m3 m-2 in the soil-temperature-controlled 

irrigation. Relatively high moisture level maintained by the soil-moisture-controlled 

scheme significantly increases the heating demand of buildings. Monthly maximum 

penalty can be up to about 6.3 kWh m-2 in early spring and the annual heating penalty is 

more than 45 kWh m-2. On the other hand, with irrigation concentrated in summer, the 

soil-temperature-controlled scheme has the least heating penalty as well as the largest 

cooling saving. Total water consumption of the scheme in summer is 1.23 m3 m-2, which 

is about tripled compared to the consumption of 0.38 m3 m-2 in other two schemes. 

Compared to the control case (no-irrigation), the maximum monthly saving is more than 

20 kWh m-2 in June. For the entire simulation period, total heating penalty and cooling 

saving is about 32 and 116 kWh m-2, respectively. 
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3.3.1.3 Effect of irrigation schemes on net cost 

The saving of summer cooling load by lawn irrigation is concomitant with the cost 

of increased water usage: it takes water to cool an arid city. The trade-off between water 

and energy consumption naturally leads to the classic question of cost-benefit: Is the 

saving of cooling energy from urban irrigation worth the cost of water resources? Water 

conservation has been a primary concern in Phoenix as the city receives water from 

upstream basins and groundwater pumping. Outdoor water use per capita in Phoenix 

surpasses rates in other cities. A cost-benefit analysis by combing water and energy 

consumptions can provide a quantitative estimate, serving as a reasonable economic 

measure of the environmental sustainability of various irrigation schemes. For unit 

consistency, total cost is given by: 

 total water electricitycost veg in
t t

w
P f W P Q

h
  

 
  ,  (1.4) 

where Pwater and Pelectricity are the unit prices of water and electricity usage respectively, 

w/h is ration between ground and wall areas, fveg is the areal fraction of vegetation over 

ground surface, and W is the water consumption rate. The absolute value function is used 

to account for electricity consumption by both cooling and heating demand of the 

building. Note that water cost has a unit of cubic meter water per square meter vegetated 

ground area, and is multiplied by the fraction of vegetated ground area to wall surface 

area (w/h)fveg for unit conversion. The resulted total cost is in dollar per square meter 

wall area. 

Electricity price is obtained from the basic plan of local company Salt River Project 

(http://www.srpnet.com/prices/home/basicfaq.aspx#2) and water price is acquired from 
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the city of Phoenix (https://www.phoenix.gov/waterservices/customerservices/rateinfo). 

Table 3.1 summarizes the electricity and water prices for Phoenix, both prices have a 

strong seasonal variation with high charges in summer. Note that the Salt River Project 

also offers a Time-of-Use plan and an EZ-3 plan in which electricity price is higher 

during on-peak hours. The choice of electricity plans may affect the results of total 

monetary saving, however, comparison between different plans is beyond the scope of 

this study. 

Table 3.1. Summary of electricity and water prices in Phoenix. 

Month 
Electricity price 

(ȼ kWh-1) 

Water price 

($ m-3) 

January 8.03 1.00 

February 8.03 1.00 

March 8.03 1.00 

April 8.03 1.19 

May 12.31 1.19 

June 12.31 1.32 

July 12.83 1.32 

August 12.83 1.32 

September 12.31 1.32 

October 12.31 1.19 

November 8.03 1.19 

December 8.03 1.00 
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Monthly saving in total cost of different irrigation schemes as compared to the no-

irrigation case is shown in Fig. 3.6. Results show that during hot seasons, irrigating more 

water leads to more total saving. Maximum monthly saving can be up to about $2.5 m-2 

in the soil-temperature-controlled scheme for June and August. In cool to cold months 

when heating demand dominates, additional moisture from irrigation results in increased 

total cost (negative values in Fig. 3.6). Monthly cost of the soil-moisture-controlled 

scheme is about $0.13 m-2 higher than that of the soil-temperature-controlled scheme 

throughout the winter. Table 3.2 summarizes the annual water use, electricity 

consumption, and total cost of all schemes. Among investigated schemes, the soil-

moisture-controlled scheme has the largest total cost. Compared to daily constant 

irrigation, it consumes more water and has higher total cost, primarily due to the 

increased heating penalty during cool seasons. The soil-temperature-controlled scheme 

has a significantly larger annual water usage, which is 60% more than that of other two 

schemes. However, the cost of water can be offset by the saving in cooling energy. 

Overall, the soil-temperature-controlled irrigation scheme is the most efficient in 

reducing annual total cost of mesic neighborhoods. 

Table 3.2 shows that saving by the soil-temperature-controlled irrigation is relatively 

insignificant as compared to the total cost of daily constant irrigation. One plausible 

reason is that the current irrigation practice in Phoenix is well planned as water is a 

precious resource for the desert city. It is important to keep in mind that the soil-

temperature-controlled irrigation is more effective in reducing urban temperatures during 

the summer than the current irrigation scheme, thus providing benefits of a better living 
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environment to residents, and being more cost-effective. At last, it is worth to point out 

that results on net cost are achieved based on the assumption and simplification listed in 

section 3.3.1.2. Modification of any condition, especially the efficiency of air 

conditioning system, may revamp the energy-water trade-off and lead to significant 

variation in efficiencies of investigated irrigation schemes.  

 

Figure 3.6. Monthly total saving by various irrigation schemes as compared to the no-

irrigation case. 

 

Table 3.2. Summary of annual water usage, energy consumption, and total cost of all 

study irrigation schemes. 

No- 

irrigation 

Daily 

constant 

Soil-moisture-

controlled 

Soil-temperature-

controlled 

Water usage (m3 m-2) 0 1.04 1.09 1.79 

Energy consumption 

(kWh m-2) 1405.8 1335.7 1336.3 1321.6 

Annual total cost ($ m-2) 151.29 143.28 143.32 142.44 
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3.3.1.4 Effect of irrigation schemes on outdoor thermal comfort 

In addition to alleviating environmental temperature and building energy demand, 

urban irrigation has important implications for thermal comfort of pedestrians in outdoor 

urban environment. With a large city size, warm and dry climate, and significant amount 

of clear days, Phoenix is among the hubs of urban heat islands in the United States where 

people experience intense thermal discomfort during hot days in outdoor or non-air-

conditioned indoor environments (Brazel et al. 2000). The quantification of outdoor 

thermal comfort in urban areas is complicated, due to many environmental factors, 

including but not limited to temperature, humidity, wind speed, radiative exposure, and 

ambient evaporative and sensible fluxes (Mishra and Ramgopal 2013). Evaluation of the 

outdoor thermal comfort may be performed using various indices. In this study, the Index 

of Thermal Stress (ITS) developed by Givoni (1963) is selected to identify the impact of 

urban irrigation on outdoor thermal comfort for Phoenix. ITS is a measure of the rate at 

which the human body must give up moisture to the environment in order to maintain 

thermal equilibrium, defined by: 

 
max

exp 0.6 0.12
E

ITS E
E

  
    

  
,  (1.5) 

where E is the cooling rate produced by sweat which is required for equilibrium, and Emax 

is the evaporative capacity of the air. E is given by: 

 nE M W R C    ,  (1.6) 

where M is the body’s metabolic rate, W is the energy transformed into mechanical work, 

Rn and C are the environmental heat exchanges due to radiation and convection, 

respectively. Detailed calculation of Emax, Rn and C using meteorological variables can be 
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found in (Shashua-Bar et al. 2011), where the net metabolic heat gain (M-W) is taken as a 

constant 70 W m-2 for the pedestrian. Pearlmutter et al. (2007) has employed the index to 

assess outdoor thermal comfort condition in urban canyon with different geometries. 

 

Table 3.3. Summary of monthly averaged ITS of all study irrigation schemes. 

Month 

ITS (W m-2) 

No-

irrigation 

Daily 

constant 

Soil-moisture-

controlled 

Soil-temperature-

controlled 

January 172.2 169.6 168.9 170.7 

February 237.7 233.8 233.0 235.2 

March 338.4 333.5 332.3 335.2 

April 452.8 438.7 436.9 439.6 

May 578.0 554.4 553.9 555.1 

June 658.9 627.1 626.4 625.3 

July 628.8 605.2 603.2 602.9 

August 614.0 595.2 594.0 590.7 

September 531.5 533.4 534.1 529.1 

October 358.6 345.7 346.4 348.7 

November 235.5 229.5 229.0 231.8 

December 151.7 149.8 149.0 150.3 

  

The ITS for pedestrians doing gentle outdoor activities (e.g. walking) in the street 

canyon is calculated. Monthly averaged ITS in different irrigation schemes are 
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summarized in Table 3.3. Givoni (1963) conducted a series of empirical experiments to 

correlate ITS with subjective thermal sensation. An ITS between 280 and 400 W m-2 

indicates a “hot” thermal condition and above 400 W m-2 is “very hot”. Following their 

definition, outdoor thermal comfort condition will be very hot for pedestrians from April 

to September in Phoenix. 

 

 

Figure 3.7. Monthly reduction of ITS by various irrigation schemes as compared to the 

no-irrigation case. 

 

Reduction of ITS by different irrigation schemes as compared to the no-irrigation 

case is shown in Fig. 3.7. By reducing environmental temperature and increasing 

humidity, urban irrigation leads to reduction in ITS throughout the year except for 

September. Due to four major rainfall events, September has a significantly higher 

relative humidity than other months. Further moisture brought by irrigation under the 

humid condition thus results in degradation of outdoor thermal comfort. In hot summer, 

reduction of ITS by the soil-temperature-controlled scheme is more significant than that 

of other two schemes. Maximum reduction is about 35 W m-2 in June. It is noteworthy 
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that outdoor human thermal comfort is a rather subjective measure that is related to 

physiological aspects of pedestrians, which can vary from region to region. The results of 

this study indicate a rather qualitatively positive impact of urban irrigation on outdoor 

thermal comfort in Phoenix. 

 

3.3.2 Optimal soil temperature for the soil-temperature-controlled irrigation 

The comparative analysis in section 3.3.1 indicates that the soil-temperature-

controlled irrigation is the best scheme in terms of annual total saving. The governing 

mechanism of the scheme is to generate saving in cooling energy in summers as well as 

to minimize heating penalty during winters. The use of water to cool a city in summers 

necessarily points to the intricate balance of water-energy nexus. Is there an optimal 

temperature regulating the soil-temperature-controlled irrigation that can maximize the 

combined saving of energy and water resources? To address this question, a set of 

simulations with six controlling top-soil temperatures (in addition to the initial 

controlling temperature of 22 oC) is carried out, namely 20, 21, 23, 24, 25, and 26 oC, 

above which the soil-temperature-controlled irrigation will be activated.  

Figure 3.8 demonstrates the annual saving in energy, water and the combined cost 

by different soil-temperature-controlled irrigation schemes as compared to the no-

irrigation case. Positive values in the graph denote net saving. At a lower activating 

temperature, the soil-temperature-controlled scheme consumes more water during hot 

periods. Due to the nonlinear distribution of temperature, cost of water decreases more 

rapidly at a lower soil temperature. The combined annual saving exhibits a nonlinear 

trend as a function of activating soil temperature. Water usage with an activating 
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temperature of 26 oC is only about 18% of that with an activating temperature of 20 oC. 

The latter consumes 17.1 kWh m-2 less energy than the former. Maximum annual saving 

is about $9.20 per square meter wall area at 23 oC, while minimum saving of $6.47 per 

square meter wall area is found with an activating temperature of 20 oC.  

 

Figure 3.8. Annual saving in cost of water consumption, energy cost and total cost by 

soil-temperature-controlled irrigation scheme with various activating soil temperatures as 

compared to the no-irrigation case. 

 

Comparing with the annual saving of $8.01 m-2 by daily constant scheme, the 

activating top-soil temperature needs to be carefully determined in order to yield the 

optimal irrigation scheme using temperature control in terms of the trade-off between 

water and energy. It is worth to mention that optimal activating soil temperature depends 

on meteorological conditions and thus can vary vastly for different seasons or different 

climatic zones. Analysis here using a yearly constant activating temperature serves as a 
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first step towards optimizing irrigation schemes for building energy efficiency. Further 

studies on a temporally varying activating soil temperature are needed. 

 

3.4. Summary 

In this Chapter, the enhanced urban canopy model developed in Chapter 2 was used 

to identify the environmental effect of urban irrigation for the Phoenix metropolitan area. 

The performance of various uncontrolled and controlled irrigation schemes on mesic 

residential landscapes was investigated, including (1) daily constant irrigation, (2) soil-

moisture-controlled irrigation, and (3) soil-temperature-controlled irrigation. In general, 

irrigating mesic landscape in urban areas cools the urban environment via enhanced 

evapotranspiration. Maximum cooling effect on canyon air temperature can be more than 

3 oC in summer. Results show that the soil-temperature-controlled irrigation can reduce 

annual building energy consumption and the combined energy-water cost of the no 

irrigation case by about 6%, which is the most efficient among investigated schemes. By 

design, the soil-temperature-controlled scheme activates irrigation during hot periods and 

helps to preserve water during cold seasons, thus optimizes the trade-off between energy 

and water use. Annual saving can be up to about $1.19 per square meter wall area 

compared to the current irrigation practice (daily constant) in Phoenix. The total saving of 

the soil-temperature-controlled scheme requires a fine balance in energy-water use. Site-

specific analysis is therefore required to determine the optimal activating soil 

temperatures.  

It is noteworthy that estimated saving in this Chapter provides a qualitative rather 

than quantitative guidance for water-energy trade-off in urban irrigation, due to (i) the 
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simplifications made in estimating the building energy consumption, and (ii) the neglect 

of the uncertainty inherent in model physics and the parameter space. In addition, 

modelling results, especially those for the daily constant irrigation scheme, are based on 

the monthly available in-situ measurement of irrigation over mesic residential landscapes. 

Timing, duration and amount of actual irrigation vary from neighbour to neighbour thus 

the results cannot be directly up-scaled to extract monetary saving for the entire city. 

Having more detailed data availability in other study areas will help to validate and 

improve the proposed irrigation schemes in this study. Nevertheless the analysis in this 

Chapter deepens our insight into the trade-off between energy and water use and 

facilitates a development of new paradigm for urban irrigation.  
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CHAPTER 4 REGIONAL EFFECT OF GREEN ROOFS ON TWO CITIES IN 

CONTRASTING CLIMATES  

4.1. Introduction 

Impact of green roofs on building energy efficiency and urban climate at the city 

scale has been accessed in Chapter 2. However, studied in an offline (i.e., not 

dynamically coupled to the overlying atmosphere) setting, simulation results in Chapter 2 

did not account for the interaction between the land and atmospheric system, and the 

potential omission of important feedback mechanisms can lead to significant uncertainty 

and potential errors (Brubaker and Entekhabi 1996). To model the exchanges between the 

land surface and the atmosphere, mesoscale atmospheric and urban canopy models need 

to be coupled, whereby mesoscale models compute meteorological forcings for the 

surface, while urban canopy models provide the lower boundary conditions for the 

overlying atmospheric system (Best 2005, Chen et al. 2011). In the literature, there have 

been only a handful of studies investigating climatic (Georgescu et al. 2014, Georgescu 

2015) and meteorological (Li et al. 2014) impacts of green roofs in a coupled 

atmosphere-urban modelling framework. Georgescu et al. (2014) explored the benefits of 

green roofs and the potential to offset urban-induced warming at seasonal and annual 

timescales across the contiguous U.S. Nevertheless, assuming green roofs were infinitely 

evaporating without water constraint, their results represented the maximum potential 

benefits of evaporating rooftop water pools rather than green roofs. Li et al. (2014) 

investigated the effectiveness of green roofs by coupling the Princeton urban canopy 

model into the WRF system. They focused on a 3-day summer heat wave event whereas 

the long-term performance of green roofs was not addressed. More importantly, urban 
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hydrological processes were not adequately represented in these studies (e.g., urban 

irrigation and urban oasis effect), leading to potential uncertainty in the findings. 

It is therefore imperative to implement green roofs into a coupled atmosphere-urban 

modelling system to investigate their impacts under a fully interacting environment. In 

addition, the effect of hydrological processes (described in Chapter 2) on urban regional 

hydroclimate needs to be addressed. In this chapter we coupled the enhanced SLUCM 

developed in Chapter 2 into the integrated WRF-Urban modelling system to: (1) evaluate 

the impact of hydrological processes on prediction of urban hydrometeorological 

variables, and (2) assess the effect of green roofs at the regional scale with seasonal 

variability. To investigate model results under different geographical and climatic 

conditions, simulations are conducted for two major cities in the United States, namely, 

Phoenix and Houston. 

 

4.2. Methodology 

4.2.1 WRF-Urban modelling system 

WRF is a fully compressible, non-hydrostatic modelling system that has been used 

for a variety of applications, ranging from local to global scale (Skamarock and Klemp 

2008). At this stage, four urban parametrization options are available in the WRF-urban 

modelling system that are coupled to the Noah land surface model, namely the bulk 

parametrization, the single layer urban canopy model (Masson 2000, Kusaka et al. 2001), 

the multi-layer urban canopy model (Building Energy Prediction, BEP) (Martilli et al. 

2002), and BEP plus indoor-outdoor exchange building energy model (Salamanca et al. 

2010). The coupled WRF-urban modelling system has been applied to major 
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metropolitan regions and its performance has been validated against ground-based 

observations, atmospheric soundings, and wind-profiler measurements (Lin et al. 2008, 

Miao and Chen 2008, Kusaka et al. 2012a). Mid- to end-of-century urban climates have 

also been studied with the modelling system (Georgescu et al. 2012, Kusaka et al. 2012b). 

Here we used WRF version 3.4.1 to conduct simulations over study metropolitan 

areas. Initial meteorological conditions for the WRF simulations were obtained from the 

National Centers for Environmental Prediction Final Operational Global Analysis data, 

which were available on a 1o × 1o resolution with a 6-hour temporal frequency (details 

can be found on http://rda.ucar.edu/datasets/ds083.2/). The Noah land surface model, 

coupled with the single layer urban canopy model, was used to simulate land surface 

processes after initiation. Note that we adopted an enhanced version of SLUCM as 

described in Chapter 2, which featured the integration of (1) anthropogenic latent heat, (2) 

urban irrigation, (3) evaporation from water-holding engineered pavements, (4) urban 

oasis effect, and (5) multilayer green roof system. Other major physical parameterization 

schemes used in this study include: (1) the new Thompson scheme for microphysics 

(Thompson et al. 2008); (2) the rapid radiative transfer model for longwave radiation 

(Mlawer et al. 1997); (3) the Dudhia scheme for shortwave radiation (Dudhia 1989); (4) 

the MM5 similarity scheme for surface layer and (5) the Yonsei University scheme for 

planetary boundary layer (Hong et al. 2006). Cumulus parametrization is turned on only 

for the outer and middle domain, using the Kain-Fritsch scheme (Kain 2004).   
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4.2.2 Experiment design 

To compare the effect of urban hydrological processes under different geographical 

and climatic conditions, we selected Phoenix and Houston as our study sites. These two 

are among the top ten most populous cities in the U.S., whose urban heat island and 

hydroclimate has been extensively studied in the literature (Salamanca et al. 2011, 

Georgescu et al. 2012, Yang et al. 2016a). Distinct conditions in two regions (e.g., inland 

semi-arid for Phoenix and coastal humid for Houston) facilitate a better understanding of 

urban hydrological processes under different geographical and climatic conditions.  

For both areas, we used a two-way nested grid configuration with all three domains 

centered on the city (see Fig. 4.1). Spatial resolution for the outer, middle, and inner 

domains was 32 km, 8 km, and 2 km, respectively. The outer domain covered a surface 

area of 1856 km × 1856 km, and the inner domain had a size of 212 km × 212 km. As the 

outer and middle domains cover portions of Mexico, MODIS global land cover data was 

used (Friedl et al. 2002). For the inner domain, we used the National Land Cover 

Database (NLCD) 2006 (Fry et al. 2011) to represent the heterogeneous urban landscape 

which is subdivided into 3 categories (see Fig. 4.1c and Fig. 4.1d). We selected year 2006 

for this study to represent a normal annual climatic condition for both cities. Simulations 

were initiated on 0000 UTC, 1 November, 2005 and concluded at 0000 UTC, 1 

December, 2006. November 2005 was the spin-up period and not included in subsequent 

analysis. Considering the time span of simulations and geographical locations, sea 

surface temperature was updated at an interval of 1 day. In this Chapter, our analysis 

focused on the inner domain and results of the other two domains are not discussed. 

Equation Chapter (Next) Section 1 
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Figure 4.1. Geographical representation of the domain extent with topography (in meters) 

overlaid for (a) Phoenix, and (b) Houston. Land use land cover information of the inner 

domain for (c) Phoenix, and (d) Houston. 

 

For each city, a total of three sets of simulation were conducted (see Table 4.1). The 

first case was a control run with the default SLUCM (hereafter ‘Old SLUCM’) in WRF. 

The second case employed the recently enhanced SLUCM ((Yang et al. 2015a), hereafter 

‘New SLUCM’) with a more realistic representation of urban hydrological processes. The 

last case assumed a 100% areal fraction of green roof deployment over the study cities 

using the new SLUCM. With this experiment design, the impact of hydrological 

(c) (d) 

(b) (a) 
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processes can be readily obtained by comparing results from the first and second cases. 

And the difference in results between the second and last cases renders the regional 

impact of green roofs. 

 

Table 4.1. Summary of numerical experiments performed. 

Case number Model Hydrological process 

1 Old SLUCM Same as default WRF 3.4.1 

2 New SLUCM Case 1 + anthropogenic latent heat + urban 

irrigation + evaporation from water-

holding engineered pavements + urban 

oasis effect 

3 New SLUCM Case 2 + multilayer green roof system  

 

4.3. Impact of Urban Hydrological Processes 

Performance of the WRF simulations was evaluated against hourly meteorological 

observations from ground-based weather stations. Simulated 2-m air temperature (T2) and 

2-m dewpoint temperature (Td2) at one hour frequency were available for direct 

comparison to observed data. These two variables were selected because of their 

importance in fire weather prediction (Cheng and Steenburgh 2005). Besides, they are 

essential inputs to a variety of hydrological and ecological models for resolving 

evapotranspiration process and plant productivity (Dodson and Marks 1997). For Phoenix, 

we utilized data from Arizona Meteorological Network (AZMET) and NOAA’s National 

Centers for Environmental Information (NCEI).  
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Table 4.2. Summary of name, location, and land use type of meteorological stations used 

in this study. 

City Station name Source Lat Lon Land use 

Phoenix 

Encanto AZMET 33.479 -112.096 Urban 

Mesa AZMET 33.387 -111.867 Urban 

Skyharbor airport NCEI 33.428 -112.004 Urban 

Buckeye AZMET 33.400 -112.683 Rural 

Waddell AZMET 33.618 -112.460 Rural 

Greenway AZMET 33.621 -112.108 Rural 

Desert ridge AZMET 33.733 -111.967 Rural 

Houston 

Pearland NCEI 29.519 -95.242 Urban 

D.W. Hooks NCEI 30.068 -95.556 Urban 

William NCEI 29.638 -95.282 Urban 

Intercontin NCEI 29.980 -95.360 Rural 

Suger NCEI 29.622 -95.657 Rural 

 

Details of the meteorological stations are summarized in Table 4.2. Based on NLCD 

2006 land use classification, 4 stations were identified as urban and the rest as rural. With 

respect to Houston, only data from NCEI were used, among which 3 stations were urban 

and 2 were rural. Arithmetic average of ground-based measurements is compared against 

that of simulation results at corresponding model grids for evaluation.  
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Figure 4.2. Comparison of annual average diurnal profiles of simulated and observed (a) 

urban T2, (b) urban Td2, (c) rural T2, and (d) rural Td2 for Phoenix. 

 

Figure 4.2 compares the simulated annual average diurnal profiles of T2 and Td2 with 

the old and new SLUCM against the observations for Phoenix. Hydrological processes 

are expected to reduce air temperature and increase dewpoint temperature at the 2 m level 

of urban areas, nevertheless Fig. 4.2 shows that the effect on 2-m air temperature is 

negligible. One important reason for this phenomenon is the limited effective area and 

time of hydrological processes. Among the implemented urban hydrological processes, 

Local time

2-
m

ai
r

te
m

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

18

22

26

30

34

Observation
old SLUCM
new SLUCM

00
Local time

2-
m

de
w

po
in

tt
em

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

1

2

3

4

5

00

Local time

2-
m

ai
r

te
m

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

16

20

24

28

32

00
Local time

2-
m

de
w

po
in

tt
em

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

1

2

3

4

00

(d) 

(b) 

(c) 

(a) 



74 

urban irrigation and oasis effect are effective over vegetated area, which is only 20% of 

the urban land surface in Phoenix. Evaporation from water-holding engineered 

pavements functions during and shortly after rainfall, therefore its long-term average 

impact is trivial. Another critical reason is the parameterization schemes in the WRF 

model. The WRF model adopts a “tile” approach, where fluxes over built and vegetated 

surfaces are weighted by their respective areal fractions to calculate the total flux arise 

from the urban land surface. In this case, surface temperature and air temperature are 

largely determined by the built surface, whose areal fraction and temperature are 

significantly larger than those over the vegetated surface. Anthropogenic latent heat is 

directly added to the latent heat flux term that it does not modify partitioning of solar 

radiation into different fluxes over the urban area. On the other hand, moisture and 

humidity over the urban land surface are primarily controlled by the vegetated part, as 

there is no evaporation over the built surface most of the time.  

In terms of Td2, it is clear from Fig. 4.2 that modelled Td2 is significantly 

underestimated in WRF simulations with the old SLUCM. Diurnal minimum Td2 is found 

at 1600 local time, which corresponds to maximum T2. After accounting for urban 

hydrological processes, model prediction agrees better with observations. Increase of Td2 

can be up to about 1.5 oC for the urban area across the diurnal cycle. Via urban-rural 

circulations, urban hydrological processes also have detectable effects on rural Td2, 

though with a smaller magnitude. Results for Houston are plotted in Fig. 4.3. Located in a 

coastal area, Houston has a lower air temperature and a higher dewpoint temperature than 

Phoenix. Daytime onshore flow provides moisture for the urban area, therefore weakens 
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the influence of urban hydrological processes. Increase in Td2 by hydrological processes 

is about 0.3 oC for Houston. 

 

 

Figure 4.3. Comparison of annual average diurnal profiles of simulated and observed (a) 

urban T2, (b) urban Td2, (c) rural T2, and (d) rural Td2 for Houston. 

 

Figures 4.2 and 4.3 illustrate that urban hydrological processes have limited effects 

on T2. Therefore we used the daily maximum, mean and minimum 2-m dewpoint 

temperatures for statistical analysis in this Chapter. Evaluating these temperatures is very 
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useful as they are indices for climate extremes (Alexander et al. 2006; Perkins et al. 

2007). Seasonally-averaged results for Phoenix and Houston are summarized in Table 4.3, 

which shows that with the old SLUCM, WRF simulations considerably underestimate 

daily maximum and mean Td2. The new SLUCM with enhanced urban hydrological 

modelling enables improved predictions for the entire simulation period. 

 

Table 4.3. Summary of average daily maximum, mean, and minimum Td2 (
oC) for 

different seasons. Obs is short for observation, Old and New denote simulation results 

with the old and new SLUCM, respectively. 

City Td2 
Daily maximum Daily mean Daily minimum 

Obs Old New Obs Old New Obs Old New 

Phoenix 

DJF -1.91 -3.15 -1.61 -5.71 -6.63 -5.50 -9.12 -10.22 -9.28 

MAM 4.69 3.67 4.10 0.62 -0.07 0.36 -3.66 -3.75 -3.37 

JJA 15.54 13.02 13.33 11.81 10.36 10.64 7.83 7.68 7.93 

SON 8.86 7.87 8.49 4.92 4.52 5.18 0.94 1.15 1.79 

Houston 

DJF 10.94 11.51 11.92 6.25 6.27 6.8 1.58 1.15 1.74 

MAM 18.25 19.65 19.75 15.64 15.9 16.02 12.47 11.79 11.93

JJA 23.54 22.41 22.45 22.01 19.76 19.83 20.1 15.84 15.94

SON 18.57 18.22 18.47 15.59 14.17 14.44 12.25 9.89 10.27

 

For Phoenix, increase in daily maximum and mean Td2 is about 1.2, 0.4, 0.3, and 0.6 

oC for winter (DJF), spring (MAM), summer (JJA), and fall (SON), respectively. With 

respect to daily minimum Td2, the improvement is less clear. Improvement is observed in 

winter while degradation is reported for fall. In Houston, the impact of urban 
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hydrological processes is weak due to the presence of sea-land breezes. During spring 

and summer when temperature difference is distinct between the land and sea surface, 

strong onshore flow makes the effect of urban hydrological processes negligible. For fall 

and winter, average daily maximum, mean and minimum Td2 is increased by about 0.6 

and 0.3 oC, respectively. 

  

4.4. Regional Hydroclimatic Effect of Green Roofs 

On the basis of the demonstrated skill of the modelling system in capturing the 

urban meteorological field, we conducted simulations to investigate the regional effect of 

green roofs for both Phoenix and Houston. Our hypothetical scenario assumes that all 

rooftops of the two cities are replaced by green roofs, with results indicating the 

maximum possible effect. Here we select short grasses for green roof vegetation type 

with a 0.3-m deep loam soil layer. Sensitivity of green roof performance to parameters 

related to soil and vegetation type is referred to the previous study (Yang and Wang 

2014a). 

Figure 4.4 shows the seasonal variability of impacts of green roofs on land surface 

temperature Ts at 1400 LT for Phoenix. We present the result at 1400 LT as subsequent 

analysis find the time corresponds to diurnal maximum effect (see Fig. 4.13). From Fig. 

4.4 it is clear that green roofs can reduce Ts of the urban area by more than 4 oC 

throughout the year (please refer to Fig. 4.1c for the urban area in Phoenix). Compared to 

other seasons, fall (SON) has the smallest reduction in Ts, primarily due to the extensive 

amount of precipitation simulated in this season. Simulated accumulated precipitation 

depth for spring, summer, fall, and winter is about 47.9, 59.4, 100.5, and 4.8 mm, 
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respectively. Seasonal variation of precipitation in green roof case is similar to that of 

control case (see Table 4.4). Compared to in-situ measurements, model prediction 

underestimates precipitation in summer and overestimates it in fall for Phoenix. The 

deviation in precipitation pattern can be caused by various physical parametrizations, 

such as microphysics, planetary boundary layer, and cumulus schemes. Closing the gap 

between simulated and observed precipitation requires a thorough sensitivity analysis in 

the future and is beyond the scope of this study. 

 

 

Figure 4.4. Simulated impact of green roofs on land surface temperature at 1400 LT for 

Phoenix during (a) winter, (b) spring, (c) summer, and (d) fall. 

 

(b) 

(d) (c) 

(a) 
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Table 4.4. Summary of observed and simulated precipitation (mm) for different seasons. 

Obs is short for observation, New and GR denote simulation results using the new 

SLUCM with and without green roofs, respectively. 

City Precipitation  Obs New GR  Precipitation Obs New GR 

Phoenix 

DJF 1.6 4.8 4.8 

Houston

DJF 185.7 134.5 132.8

MAM 39.7 47.9 46.5 MAM 141.2 172.7 165.3

JJA 82.3 59.4 55.6 JJA 307.6 205.3 202.7

SON 79.4 100.5 99.0 SON 365.5 301.6 268.7

 

Chapter 2 suggested a green roof cooling of Phoenix metropolitan area by about 8 oC 

at 1400 LT in summer. This significant difference between offline and online simulation 

results indicates that feedback between the atmospheric system and land surface has 

notable influences on the performance of green roofs. Results in this Chapter, derived 

from the fully coupled WRF-urban modelling system, are more representative of actual 

effects. To demonstrate impacts during nighttime hours, results at 0200 LT are shown in 

Fig. 4.5. 
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Figure 4.5. Simulated impact of green roofs on land surface temperature at 0200 LT for 

Phoenix during (a) winter, (b) spring, (c) summer, and (d) fall. 

  

With additional soil layers on top of buildings, green roofs are able to store extra 

solar energy during daytime as compared to conventional roofs. The energy is released 

and causes a considerable warming effect at night. Figure 4.5 demonstrates that increase 

in Ts is about 1 - 2 oC from spring to fall and is less than 1 oC in winter. The magnitude of 

nighttime warming is much smaller than that of daytime cooling by green roofs for 

Phoenix. These results are consistent with recent high-resolution simulations for 

urbanizing regions in California, which similarly indicated an increased nighttime 

(b) 

(d) (c) 

(a) 
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warming tendency for green roofs deployment that was considerably smaller in 

magnitude relative to daytime cooling (Georgescu 2015). 

 

Figure 4.6. Simulated impact of green roofs on land surface temperature at 1400 LT for 

Houston during (a) winter, (b) spring, (c) summer, and (d) fall. 

 

Cooling effect of green roofs on Ts at 1400 LT for Houston is shown in Fig. 4.6 

(please refer to Fig. 4.1d). Compared to Phoenix, temperature reduction in fall and winter 

for Houston is much lower. Evaporative cooling of green roofs is mainly controlled by 

two factors: available energy and availability of water at the surface. As precipitation for 

Houston is abundant throughout the year, evapotranspiration arising from green roofs is 

largely determined by the available solar radiation. Houston is known to have a much 

(b) 

(d) (c) 

(a) 
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cloudier weather and thus less total available solar radiation than the desert city Phoenix. 

In winter, when the sun angle is lower, solar radiation intensity decreases significantly 

and green roofs become relatively less effective. Precipitation also plays a role in 

determining the cooling effect. During the simulation period, Houston receives nearly 

double the amount of rainfall in fall as compared to spring (see Table 4.4), which 

indicates less clear days on average, leading to ineffectiveness of green roofs. 

 

 

Figure 4.7. Simulated impact of green roofs on 2-m air temperature at 1400 LT for 

Phoenix during (a) winter, (b) spring, (c) summer, and (d) fall. 

Difference in simulated 2-m air temperature between 0% and 100% green roof 

fraction cases at 1400 LT for Phoenix is shown in Fig. 4.7. Opposite to the trend of 

(b) 

(d) (c) 

(a) 
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surface temperature, it is found that the strongest cooling effect on T2 of more than 1.2 oC 

occurs in winter, while the smallest reduction is less than 0.8 oC in summer. A reason for 

this phenomenon is that non-linear relation exists between surface temperature and 2-m 

air temperature. When green roofs reduce Ts, buoyancy effect is also reduced such that 

the reduction of T2 is smaller than the reduction of Ts. 

 

 

Figure 4.8. Simulated impact of green roofs on 2-m air temperature at 0200 LT for 

Phoenix during (a) winter, (b) spring, (c) summer, and (d) fall. 

 

Another critical factor contributing to the phenomenon is the warming effect caused 

by green roofs at night, as demonstrated in Fig. 4.8. Compared to winter, the urban land 

(b) 

(d) (c) 

(a) 
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surface in summer receives a considerably enhanced solar radiative flux, which is stored 

via large thermal mass of manmade structures, and is subsequently released at night. In 

the absence of incoming solar radiation, vertical mixing over urban terrain in nighttime is 

weak that evolution of air temperature is steady (Poulos et al. 2002). As a consequence, 

increase in T2 by heat released from green roofs dissipates slowly until sunrise when 

surface heating modifies the stability condition of the boundary layer. Figure 4.8 clearly 

illustrates that increase in T2 in summer is more significant than that in winter, in terms of 

both the influence area and the magnitude. This nighttime warming impedes cooling of 

air temperature in daytime, and results in the stronger cooling of T2 in winter as compared 

to summer. 

Figure 4.9 demonstrates the regional effect of green roofs on T2 at 1400 LT for 

Houston. It is noteworthy that unlike in Phoenix, the order of reduction in T2 among 

different seasons generally follows that of Ts for Houston. This is primarily due to the 

negligible nighttime warming of air temperature in Houston throughout the year (results 

not shown here). In a coastal area, different surface cooling over land and sea results in a 

temperature gap in overlying air layers and consequently leads to nighttime advection of 

marine air. Simulated 10-m wind speed at 2100 LT (sunset around 2000 LT) for Houston 

during summer is presented in Fig. 4.10. 
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Figure 4.9. Simulated impact of green roofs on 2-m air temperature at 1400 LT for 

Houston during (a) winter, (b) spring, (c) summer, and (d) fall. 

 

Figure 4.10. Simulated 10-m wind speed at 2100 LT for Houston during summer: (a) 

control case without green roofs, and (b) green roof case.  

(b) 

(d) (c) 

(a) 

(b) (a) 
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Advection of marine air towards the land tends to reduce T2 over sea and increase T2 

over land. As illustrated in Fig. 4.8, green roofs tend to increase T2 over urban areas at 

night. The increase in T2 narrows the gap in air temperatures over land and sea. As a 

consequence, nighttime advection of marine air is slowed down, which in turn offsets the 

warming effect on T2 over urban areas. Figure 4.10 shows that green roofs decrease 10-m 

wind speed by about 1 m s-1 in the bay area. The combined effect of green roofs on 

nocturnal T2 is therefore insignificant. With an insignificant nighttime warming, daytime 

cooling of T2 follows the trend of reduction in Ts. Reduction in T2 at 1400 LT for 

Houston is less than 0.8 oC in winter, and can be up to more than 1.2 oC in summer. It is 

worth mentioning that cooling effect on T2 has a larger spatial coverage in Houston due 

to the existence of land-sea circulation, especially in spring and summer when there is a 

considerable gap between land and sea surface temperature. 

Impact of green roofs on 2-m dewpoint temperature for Phoenix at 1400 LT is 

shown in Fig. 4.11. Through evaporative cooling, green roofs are able to increase 

moisture and decrease temperature of near-surface air layer, thus leading to a substantial 

rise in Td2 for the entire simulation period. Sunwoo et al. (2006a, b) suggested that to 

avoid dryness of the eyes and skin, relative humidity should be maintained at greater than 

30%. Therefore increased air humidity can enhance the thermal comfort of pedestrians in 

a dry environment, such as the pre-monsoon season in Phoenix (relative humidity ≈ 12%). 

However, extra moisture in the monsoon season can aggravate the thermal discomfort of 

residents, as illustrated in the analysis on urban irrigation in Chapter 3. This two-sided 

effect of green roofs needs special attentions, especially in humid regions like Houston. 
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Figure 4.11. Simulated impact of green roofs on 2-m dewpoint temperature at 1400 LT 

for Phoenix during (a) winter, (b) spring, (c) summer, and (d) fall. 

 

Figure 4.11 demonstrates that increase of Td2 can be up to more than 1.2 oC across 

the year. It is easy to recognize that seasonal variation of increase in Td2 is similar to that 

of decrease in T2 for Phoenix, due to the non-linear relationship between saturated vapour 

pressure with air temperature. According to the Clausius-Clapeyron equation, a same 

amount of increase in absolute humidity of air will cause a larger increase of dewpoint 

temperature at a lower air temperature. At night, evapotranspiration rate becomes much 

slower as the driving force (solar radiation) disappears, influence of green roofs on Td2 

thus become insignificant (results not shown here). Figure 4.12 presents the results at 

(b) 

(d) (c) 

(a) 
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1400 LT for Houston. The relation between green roofs’ effects on Td2 and T2 is 

consistent in both cities.  

 

 

Figure 4.12. Simulated impact of green roofs on 2-m dewpoint temperature at 1400 LT 

for Houston during (a) winter, (b) spring, (c) summer, and (d) fall. 

 

Besides spatial variation, temporal variation of the impact of green roofs is 

investigated. Realizing the maximum and minimum effects of green roofs in a temporal 

cycle has important implications for urban planning. In fact, the time at which spatial 

effect of green roofs was presented (e.g., 1400 and 0200 LT in above context) is selected 

based on diurnal results in Fig. 4.13. 

(b) 

(d) (c) 

(a) 



89 

 

Figure 4.13. Diurnal variation of average impact of green roofs on (a) LE, (b) Ts, (c) T2, 

and (d) Td2 over the entire Phoenix metropolitan area. 

 

Figure 4.13 demonstrates the diurnal impact of green roofs averaged over the entire 

Phoenix urban area. As expected, latent heat flux (LE) from green roofs increases with 

intensity of solar radiation at the surface that the largest increment of more than 70 W m-2 

is found in summer. Additionally, daytime sunshine duration controls the effective period 

of green roofs. It is indicated from Fig. 4.13a that green roofs function about 4 hours 

more in summer than in winter.  

Local time

L
at

en
th

ea
tf

lu
x

(W
m

-2
)

0000 400 800 1200 1600 2000 2400

0

10

20

30

40

50

60

70

80

MAM
JJA
SON
DJF

00
Local time

S
ur

fa
ce

te
m

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

-6

-5

-4

-3

-2

-1

0

1

2

00

Local time

2-
m

ai
r

te
m

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

-1.5

-1

-0.5

0

0.5

1

1.5

00
Local time

2-
m

de
w

po
in

tt
em

pe
ra

tu
re

(o C
)

0000 400 800 1200 1600 2000 2400

0

0.5

1

1.5

2

2.5

3

00

(d) 

(b) 

(c) 

(a) 



90 

While increase in LE is the largest in summer, it does not necessarily lead to the 

greatest reduction in Ts. As shown in Fig. 4.13b, the strongest cooling of the urban land 

surface by green roofs occurs in spring instead of summer, owing to the monsoon period 

from July to September in Arizona. The extensive amount of precipitation in fall also 

results in a smaller reduction of Ts than that in winter. With respect to the nighttime 

warming, increase of Ts by green roofs from the largest to the smallest is summer, fall, 

spring, and winter. The order is the same for increase in nighttime T2. Average increment 

of nighttime T2 is about 1.1 oC in summer and about 0.3 oC in winter. As aforementioned, 

the difference in nighttime warming has implications for daytime cooling process. 

Consequently, the largest reduction of daytime T2 and the largest increase of Td2 by green 

roofs occur in winter. From December 2015 to February 2016, Phoenix was in an 

abnormally dry condition. Evapotranspiration from green roofs is low under the 

circumstance that a few rainfall events in this period cause large variations in latent heat 

flux, which lead to the spike in Fig. 4.13d. 

Average impact of green roofs on studied variables for Houston is qualitatively 

similar to that for Phoenix; however, seasonal variation of the impact differs considerably. 

With sufficient supply of water from precipitation, effectiveness of green roofs in 

Houston largely depends on duration and strength of incoming solar radiation. Figure 

4.14a shows that increased LE by green roofs can be up to more than 130 W m-2 in spring 

and summer, which is remarkably larger than the increase of about 80 W m-2 in fall. With 

respect to Ts, Fig. 4.14b demonstrates that daytime cooling effect is the strongest in 

summer and the weakest in winter, while nighttime warming is almost negligible. Diurnal 

impact of green roofs on T2 across various seasons is similar to that on Ts. Peak cooling 
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effect is found to be about 1 oC in spring and summer. As land-sea circulation mixes the 

air layer of coastal area, increased Td2 by green roofs has a relatively limited seasonal 

variation. 

  

 

Figure 4.14. Diurnal variation of average impact of green roofs on (a) LE, (b) Ts, (c) T2, 

and (d) Td2 over the entire Houston metropolitan area. 

 

4.5. Summary 

In this Chapter, we applied the WRF modelling framework with the enhanced single 

layer urban canopy model developed in Chapter 2 to assess the effect of hydrological 
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processes on urban meteorology. Evaluation against field measurements illustrates that 

including hydrological processes can improve prediction of the 2-m dewpoint 

temperature. Based on the tested simulations, regional impact of green roofs is 

investigated at the annual scale for Phoenix and Houston. Model results demonstrate that 

green roofs are effective in reducing daytime air temperature and increasing dewpoint 

temperature over urban areas. The effect of green roofs shows strong diurnal and seasonal 

variations, and varies with geographical and climatic conditions. It is noteworthy that 

urban vegetation is largely represented by short grasses in the WRF-urban modelling 

system, whereas physical resolution of more diverse urban vegetation types, e.g. shade 

trees, and their hydrometeorological effect, such as on radiative energy exchange, 

remains an open challenge (Wang 2014b).      

Comparing results from this Chapter and Chapter 2, it is indicated that land-

atmosphere interactions cannot be ignored in quantifying the influence of surface 

hydrological process. In coastal area, land-sea circulation mixes the near-surface air layer 

that effect of hydrological processes on meteorological field is weaker compared to that 

of inland area. To accurately evaluate sustainable adaptation/mitigation strategies for 

urban area, numerical experiments should be carried out with a fully interacting land-

atmosphere modelling system. Modification of urban landscape has implications for 

hydrometeorology of surrounding rural areas, which requires serious consideration and 

planning before implementation.  
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CHAPTER 5 POTENTIAL WATER BUFFERING CAPACITY OF URBAN GREEN 

INFRASTRUCTURE  

5.1. Introduction 

Previous Chapters demonstrate that urban green infrastructure provides valuable 

benefits for the built environment via evaporative cooling and reducing the urban heat 

island. Yet, the watering demand of green infrastructure raises practical concerns of the 

water resource management, especially for cities located in the semiarid or arid 

environment. Under the potential, to certain extent actualizing, challenges of the global 

climate changes, water scarcity is becoming a widespread reality for global cities with 

rapid population growths (Vörösmarty et al. 2000). Chapter 3 investigates the intricate 

balance of water-energy nexus when using outdoor irrigation to cool the desert city 

Phoenix. Nevertheless, the trade-off between water and energy resources is only one of 

many aspects in the convoluted activities of an urban system that water pervades (see Fig. 

5.1). Efficient management of water is an integral component as well as a critical 

challenge of multisector sustainability for cities (Brown et al. 2009). While increasing 

studies demonstrate the effectiveness of green infrastructure in cooling urban 

environments (Shashua-Bar and Hoffman 2000, Oberndorfer et al. 2007), only a handful 

of them have looked into its impact on urban water resources in detail (Gober et al. 2012, 

Yang and Wang 2015). 

The populous desert metropolitan area of Phoenix, Arizona is studied in this Chapter 

mainly due to: (1) land use conversion in the past decades has created a significant UHI 

in this region (Wang et al. 2016), and (2) typical landscape management practices in the 

study area, ranging from oasis to desert landscaping, impose vastly different requirement 
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for outdoor irrigation of green infrastructure (Brazel et al. 2000). In the 21st century, high 

temperature, low precipitation, and decreased runoff result in increased aridity of the 

southwest United States (MacDonald 2010). On the other hand, Arizona’s Sun Corridor 

is the fastest growing megapolitan area, anchored by the Phoenix and Tucson 

metropolitan areas at its geographical termini (Grimm et al. 2008). Even without 

reductions in river flows caused by climate change, political decisions and actions are 

imperative for water sustainability of Phoenix in 2030 (Gober and Kirkwood 2010). 

 

 

Figure 5.1. A schematic for water consuming activities in the complex urban network. 
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Recognizing that a more native desert landscaping facilitates amelioration of water 

shortage, the city of Mesa offers financial incentives for xeriscaping homeowners (City 

of Mesa, 2013). On the other hand, though the widespread adoption of water-intensive 

mesic landscape has adverse impacts on the long-term water sustainability, it enhances 

the thermal comfort in the built environment over all spatial and temporal scales (Chow 

and Brazel 2012). The city of Phoenix has initialized a Tree and Shade master plan to 

achieve a tree canopy cover of 25% by 2030 (City of Phoenix, 2010). In the context of 

water-energy-climate repercussions, the tradeoff between water conservation and UHI 

mitigation inevitably exerts profound impacts on multisector components in the urban 

network. Assessment of the water usage associated with urban green infrastructure is thus 

of crucial importance for the water resource management as well as the sustainable 

development of the Phoenix metropolitan area. 

Towards this end, in this Chapter we used the integrated WRF-UCM modelling 

system, with a realistic representation of urban hydrological processes, to access the 

water usage of urban green infrastructure in the Phoenix metropolitan area. Our objective 

here is to quantify the potential water buffering capacity, i.e. the possible range of 

variability in the water resource demand, of urban green infrastructure in arid 

environments and its implication to sustainable urban development. 

 

5.2. Numerical Experiment Design 

The same experimental setup used in Chapter 4 (see Fig. 4.1a) was adopted here. 

With the WRF-UCM modelling system, three scenarios are simulated in this Chapter: (1) 

the control case: mixed ground infrastructure (cropland/natural vegetation mosaic) 
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representing the current urban practice of landscape management with daily irrigation in 

the Phoenix metropolitan area; (2) the hypothetic water-saving scenario, i.e. all 

xeriscaping (open shrubland) with no irrigation; and (3) the fully-greening scenario with 

100% coverage of green roofs (short-grass) and mesic landscaping (grassland), both 

irrigated daily. Following the setup in Chapter 4, irrigation is scheduled at night and the 

daily amount is equal to an increase in moisture of a 0.4 m thick soil layer to a threshold 

value where transpiration will not be limited by the water availability. Areal fraction of 

green infrastructure varies with urban land use categories, whose parameters are 

summarized in Table 5.1. 

 

Table 5.1. Summary of canopy parameters in different urban land use categories. 

Canopy parameters Unit 
High-

density 

Medium-

density 
Low-density 

h (building height) m 17.0 7.5 5.0 

lroof (roof width) m 10.0 9.4 8.3 

lroad (road width) m 10.0 9.4 8.3 

furb (urban fraction) - 0.95 0.85 0.70 

α (albedo of building 

materials) 
- 0.16 0.18 0.18 

k (thermal conductivity of 

building materials) 

W m-1 

K-1 
1.8 1.3 1.3 

C (heat capacity of 

building materials) 

MJ m-3 

K-1 
2.8 2.1 2.1 

ε (emissivity of building 

materials) 
- 0.90 0.90 0.90 

Anthropogenic heat W m-2 35 30 20 

 



97 

  

Simulated water consumption for outdoor irrigation and corresponding 

hydroclimatic condition related to individual green infrastructure scenarios are expected 

to be highly informative for analysts in urban planning by answering fundamental 

questions, such as ‘What is the potential (maximum possible) degree of cooling by fully-

greening Phoenix and at what price (of water usage)?’. 

 

5.3. Regional Climate Modelling 

Capacity of the WRF-UCM model in reproducing the hydroclimate of the study area 

is evaluated against field measurements obtained by ground-based stations in Chapter 4. 

Thus we are confident to apply the model to investigate hydroclimatic consequences of 

hypothesized urban green infrastructure scenarios. Simulations were conducted for 

summertime (June, July and August) when frequent irrigation is conducted to compensate 

heat-induced rapid moisture loss. A summer of normal climatic condition, year 2012, is 

studied to obtain general findings applicable for other years. 

 

5.3.1 Hydroclimatic impacts 

With different irrigation schedules and green infrastructure types, the two simulated 

hypothetic scenarios exhibit distinct hydroclimatic responses in the study area. Compared 

to the control case, the fully-greening scenario with ample irrigation promotes 

evaporative cooling during daytime (Fig. 5.2a), leading to significant alleviation of urban 

thermal stress. The mean daily maximum cooling of the 2-m air temperature (T2) and 

increase of the 2-m dewpoint temperature (Td2) is about 1.4 and 2.9 oC respectively. The 
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reduction in air temperature, as demonstrated in Chapter 3, has promising implications 

for building energy consumption, and a meticulous life cycle analysis of the water-energy 

nexus is capable of determining an optimal urban irrigation scheme. The nocturnal 

cooling of air temperature, in comparison, is considerably lower than the daytime 

counterpart, as the energy source for evapotranspiration diminishes.  

On the other hand, Figure 5.2b shows that the self-supportive xeriscaping 

infrastructure with no irrigation leads to consistently higher T2 and lower Td2 in a water-

saving city. It is noteworthy that simulated mean daytime maximum temperature of 2012 

summer is about 39.6 oC, where the additional warming of about 1 oC by xeriscaping is 

critical for heat-related morbidity and mortality (Golden et al. 2008), especially for low-

income citizens without access to air conditioning systems. Throughout the mean diurnal 

cycle, the potential warming induced by the hypothetic xeriscaping scenario is close to 

the potential cooling by irrigated mesic green infrastructure. This indicates that the 

existing urban green infrastructure and irrigation schemes play a crucial role in regulating 

the current hydroclimate of the Phoenix metropolitan area. To further improve the 

thermal environment, if the coverage of green infrastructure at the ground level is not 

increased, deployment of green roofs will require extensive engineering and maintenance 

efforts. 
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Figure 5.2. Simulated difference in (a) T2, and (b) Td2 between study cases and the 

control case averaged over the Phoenix metropolitan area during the 2012 summer. 

Equation Chapter (Next) Section 1 

5.3.2 Potential water buffering capacity 

The potential water buffering capacity of urban green infrastructure is estimated as 

the difference of water usage between the water-saving (xeriscaping) and the fully-

greening scenarios. Despite the variation of urban morphology, the potential water 

buffering capacity per unit area is relatively constant over the study area, mainly due to 

the substantial water consumption related to the green infrastructure on the roof level. To 

completely replace the xeric landscapes by the mesic/oasis ones, together with the 

deployment of green roofs, it consumes about 240 mm depth of outdoor irrigation per 

unit area in the summer (Fig. 5.3a). Summing over the entire Phoenix metropolitan area, 

this demand of outdoor irrigation amounts to 4.24 × 108 m3 of water (Table 5.2). Most of 

the irrigated water is converted to air humidity via evapotranspiration (Fig. 5.3b) and 

creates cooling benefits for the built environment. The variability between the xeric and 

mesic green infrastructure leads to markedly different hydroclimatic patterns in the desert 
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city (Table 5.2). The simulated maximum difference is observed at the metropolitan 

center, covering Tempe, Mesa, Glendale, and a large portion of the city of Phoenix. 

  

 

Figure 5.3. Spatial variation of simulated difference in (a) total irrigation depth, (b) 

cumulative evapotranspiration, (c) daytime mean T2, and (d) daytime mean Td2 between 

fully-greening and water-saving cases during the 2012 summer. 

 

The maximum cooling of daytime mean T2 and the warming of Td2 are about 3.1 

(Fig. 5.3c) and 6.5 oC (Fig. 5.3d), respectively. This effect generally diminishes with the 

distance away from the metropolitan center. Via the urban-rural air circulation, the 
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change of urban green infrastructure also alters the hydroclimate of surrounding rural 

areas. The prevailing wind generates a more evident difference in the northern and 

western outskirts of the Phoenix metropolitan. The spatial patterns provide a good 

demonstration of the potential variability of regional hydroclimatic responses to the 

landscape planning. 

  

Table 5.2. Water usage and corresponding hydroclimatic condition of the Phoenix 

metropolitan area in different simulated scenarios. 

Case name 
Irrigation amount 

(m3) 

Cumulative ET 

(mm) 

Daytime mean 

T2 (
oC) 

Daytime mean 

Td2 (
oC) 

Control 1.61 × 108 84.2 34.45 9.51 

Water-saving 0 12.6 35.42 8.90 

Fully-greening 4.24 × 108 218.4 33.34 11.43 

 

5.4. Implications to Water Resource Management 

The water resource management in urban networks necessitates complex tradeoffs 

among social, economic, and environmental components (Fig. 5.1). Previous studies of 

urban green infrastructure have largely focused on unraveling the environmental-

economic tradeoff (e.g., water vs. electricity consumption), leaving the implications to 

the environmental-social and socio-economic nexuses comparatively less explored. To 

illustrate the environmental-social tradeoff, here we quantify the water usage required by 

urban green infrastructure as equivalent to the population to be supported by the same 

amount of water. Estimated water required to support residential densities in the Phoenix 

is given by (Gober and Kirkwood 2010): 
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 y  155.2 ln(x)842.38,  (3.1) 

where y is annual water use per person in m3, and x is the density of persons per hectare. 

An urban density of 37-74 housing per ha in Phoenix amounts to a mean annual 

consumption of about 75 m3 of water per person (Gober and Kirkwood 2010). The high 

per capita water use is unexceptional as compared to many other low-density 

Southwestern urban areas; and is representative for future urban development in the study 

area. Under this circumstance, conserved water resource from xeriscaping infrastructure 

is able to support the demand of 2.15 million new residents, which is about 82% of 

projected population growth (2.62 million) by 2050 in the medium series (ADOA, 2015). 

This number agrees well with previous findings (Gober and Kirkwood 2010) from a 

water supply and demand model (WaterSim) that changes in lifestyle would allow the 

region to avoid water shortage. In contrast, the excessive amount of irrigation water 

required by fully-greening the city during summer is equal to the annual water 

consumption of 3.51 million residents, which can fulfill the demand of emerging 

population even in the projected high growth series (ADOA, 2015). Water users in the 

Phoenix metropolitan area have relied heavily on groundwater, which supplies about 31% 

of the water demand (0.85 billion m3) in 2006 (ADWR, 2014). Future modification on 

green infrastructure will also have substantial influence on the continuous overdraft 

groundwater resource projected through 2025 (ADWR, 2014).  

 

5.5. Summary 

Despite the inherent uncertainties associated with the modelling approach, the 

analysis in this Chapter quantifies the potential water buffering capacity of urban green 
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infrastructure in the Phoenix metropolitan area and its hydroclimatic and social 

implications. Such information is crucial for the long-term water sustainability under the 

challenge of future climate change and population growth. The adoption of complete 

xeriscaping land use significantly reduces the vulnerability of water shortage induced by 

the projected population growth in the region; notwithstanding the intensive summertime 

urban thermal environment in the semiarid region will be further exacerbated. With the 

potential water buffering capacity of urban green infrastructure in mind, the dilemma is 

still left to be solved by decision makers by pondering how much the cost of water 

resource need to be paid in order to sustain a cooler environment, or vice versa.  
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CHAPTER 6 CONCLUSIONS AND PERSPECTIVES  

6.1. Conclusions and Recommendations 

We presented in this dissertation a comprehensive effort focused on the 

implementation, evaluation, and application of hydrological processes and green 

infrastructure in the urban environment. The Weather Research and Forecasting (WRF) 

system coupled with the single layer urban canopy model, a numerical framework widely 

applied to major metropolitan regions worldwide, was used as the underlying numerical 

tool in this study. Recognizing the importance of the realistic representation of urban 

hydrological processes in accurately simulating urban hydroclimate, we incorporated the 

following processes into the WRF-Urban modelling system: (1) evaporation over 

engineered pavements, (2) urban irrigation, (3) anthropogenic heat, and (4) urban oasis 

effect. Comparisons against field measurements from multiple metropolitan areas showed 

that the enhanced model is more accurate in predicting urban hydroclimatic variables, 

especially those related to the water budget, in both offline and online experimental setup. 

Nevertheless, the presence of model-measurement deviation in specific cities, e.g. 

Vancouver in Chapter 2, calls for further development of hydrological processes such as 

snow/ice in the numerical tool. 

The environmental performance of green roofs exhibits strong diurnal and seasonal 

variations, and is subject to change in geographical and climatic conditions. Through the 

combined evaporative cooling and insulation effect, installation of green roofs decreases 

daytime temperature and increases nighttime temperature in the urban areas. This leads to 

the effective reduction of both summer cooling demand and winter heating demand for 

buildings. Considerable differences found between offline results in Chapter 2 and online 
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simulations in Chapter 4 demonstrates the ineligible impact of the land-atmosphere 

interactions on quantifying the benefits of urban green infrastructure. Based on that, we 

therefore recommend future numerical studies on urban green infrastructure to be 

conducted in a fully interacting land-atmosphere system.  

In Chapter 3, the environmental sustainability of a variety of uncontrolled and 

controlled urban irrigation schemes is investigated in terms of the combined monetary 

saving for the desert city of Phoenix. Among investigated irrigation schemes, the soil-

temperature-controlled irrigation is the most efficient in reducing annual building energy 

consumption. It is found that the saving of cooling energy in this scheme outweighs the 

cost of water resources, but a careful analysis is required in order to yield the optimal net 

saving in terms of the trade-off between water and energy. It is noteworthy that water is a 

precious resource for semiarid environments that the water-energy nexus is only one 

aspect of the intricate relationship among various components in the urban network. 

Future development of cities is inevitably constrained by the limited availability of water 

resources, concomitant with emergent climate changes and continuous population and 

urban growths. Water conservation through xeriscaping allows the Phoenix metropolitan 

region to accommodate the water shortage caused by population growth, at a cost of 

exacerbated urban living environment. 

Simulated water consumption and corresponding hydroclimatic condition related to 

individual green infrastructure scenario in this dissertation is highly informative for 

analysts in urban planning. We expected the results to provide useful guidance for green 

infrastructure over metropolitan areas with similar geographical and climatic conditions. 

Compared to another popular strategy of using reflective materials to mitigate UHI (Yang 
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et al. 2016b), it is found that green infrastructure has a smaller cooling impact in summer. 

Nevertheless, reflective materials tend to make winters colder and thus lead to potential 

heating penalties in terms of building energy consumption. Both strategies have 

unintended consequences, green infrastructure emits volatile organic compounds, while 

reflected radiation from reflective materials can impair outdoor thermal comfort in urban 

environments. It is therefore debatable that what the best UHI mitigation strategy is, and 

potential benefits of various solutions should be compared to come up with the optimum 

strategy for mitigating UHI for a specific city.  

It is also noteworthy that the effect of all mitigation strategies, including green 

infrastructure and reflective materials, can change with the scale of its deployment (Yang 

et al. 2015b). Strategies applied on a single building will not exhibit same hydrothermal 

behavior as those on the entire city, and vice versa. For example, the placement of a 

single white roof could enhance local vertical mixing, increased surface temperature on 

building walls by bringing warm air from other roofs to the street level (Botham-Myint et 

al. 2015). When white roofs were deployed on all buildings, this phenomenon 

disappeared that temperatures on all urban facets were decreased. In terms of 

hydroclimate, large-scale deployment of green roofs reduces vertical mixing 

significantly, leading to reduction in boundary layer height. When green roofs are applied 

over a single building, this impact will not happen as the reduction of mixing is not 

strong enough to affect overall turbulent fluxes arising from the city. This apparent size 

effect necessitates the use of different experimental and numerical tools for 

characterizing and simulating mitigation strategies at different scales. Following findings 

in this study and applying a “one-size-fits-all” approach will likely result in undesired 
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consequences and lower-than-expected benefits for other urban regions and at other 

scales.  Further experimentation should be prompted at a case-by-case basis to test the 

overall value of urban green infrastructure in sustaining development of study regions. 

 

6.2. Future Work 

This dissertation hitherto focused on short vegetation (e.g. grasses) at the ground and 

roof levels in the built environment. Shade trees and green walls constitute a considerable 

fraction of existing urban green infrastructure that physical resolution of their 

hydrometeorological effect in an integrated modelling framework is necessary in the 

future. Recent years have seen only a handful of urban canopy models that takes into 

account the presence of trees in urban canopies (Krayenhoff et al. 2014, Wang 2014a). 

The Monte Carlo method used in these studies works reasonably well in capturing the 

effect of trees on sky view factors between different surfaces in street canyons. 

Nevertheless, the evapotranspirative cooling and trees’ ability to tap into deeper soil 

layers for water are largely ignored in existing models. Faithful implementation of urban 

tress into urban canopy models will allow applications to investigate the benefit of trees 

as an urban heat-island mitigation strategy. On the other hand, representation of green 

infrastructure in the current modeling framework can be further improved. For example, 

as plant grows and withers, dynamic of evapotranspiration varies vastly with the change 

in leaf areas and root water uptake (Peñuelas and Filella 2009). Such seasonal variation 

should be accounted for in the simulation of green infrastructure.  

Thanks to the rapid development in computational capacity, online simulation 

applying coupled atmosphere-urban models over large domains at the annual scale 
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becomes feasible. However, uncertainty of simulation results in this dissertation is not 

adequately addressed after fulfilling the fine spatial resolution and long simulation period 

in experimental setup. The regional simulation using WRF-Urban system in this 

dissertation is constrained by accuracy of the initial and boundary conditions; errors in 

the input reanalysis data are propagated into the simulation results. Another concern is 

that the simulation in this dissertation relies on a single set of parameterizations. This 

raises questions regarding the reliability of drawing conclusions based on a single 

integration as different parameterizations vary vastly in model configuration and and no 

single scheme outperforms others under all conditions (Yang and Arritt 2002). Sensitivity 

of environmental performance of urban green infrastructure to initial and boundary 

conditions, and to physical parameterizations in the numerical model thus requires further 

examination. An ensemble approach can help reduce the uncertainty and provide a better 

quantitative estimation in future work.   

Last but not least, urban green infrastructure features multi-scale ecological, 

economic and social benefits as compared to other mitigation strategies (e.g. reflective 

engineering materials) for UHI. For example, green infrastructure maintains the integrity 

of habitat systems and contributes to conservation of urban biological diversity (Tzoulas 

et al. 2007). Previous studies provided evidence of a positive relationship between 

citizens’ longevity and green space (de Vries et al. 2003). Economic valuation has also 

identified that investment of green infrastructure benefits the region as a whole 

(Vandermeulen et al. 2011). Convoluted relations between social, economic, and 

environmental activities in the urban environment require urban planners and decision 

makers to balance issues of city development, environmental protection, and quality of 
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life. Existing studies usually focus on one of these issues that the dilemma on overall 

sustainability of cities is still left. The intricate nexus in urban network necessitates the 

development of a comprehensive tool to advance sustainable water management and 

urban planning under the challenge of global climate change. 

  



110 

REFERENCES 

Akbari H (2009) Cooling our communities. A guidebook on tree planting and light-
colored surfacing. Lawrence Berkeley National Laboratory, pp. 245 

 
Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AM, Haylock M, 

Collins D, Trewin B, Rahimzadeh F, Tagipour A (2006) Global observed changes in 
daily climate extremes of temperature and precipitation. J Geophys Res: Atmos 
111:D05109 

 
Arizona Department of Adminstration (2015) Empolyment and population statistics. 

Available at http://population.az.gov/population-projections. Accessed April 11, 
2016. 

 
Arizona Department of Water Resources (2014) Fourth management plan. Available at 

http://www.azwater.gov/AzDWR/WaterManagement/AMAs/FourthManagementPla
n.htm. Accessed April 11, 2016. 

 
Arnfield AJ (2003) Two decades of urban climate research: A review of turbulence, 

exchanges of energy and water, and the urban heat island. Int J Climatol 23:1-26 
 
Bateni SM, Entekhabi D (2012) Relative efficiency of land surface energy balance 

components. Water Resour Res 48:W04510 
 
Bergeron O, Strachan IB (2012) Wintertime radiation and energy budget along an 

urbanization gradient in Montreal, Canada. Int J Climatol 32:137-152 
 
Best MJ (2005) Representing urban areas within operational numerical weather 

prediction models. Boundary-Layer Meteorol 114:91-109 
 
Bonfils C, Lobell DB (2007) Empirical evidence for a recent slowdown in irrigation-

induced cooling. Proc Natl Acad Sci USA 104:13582-13587 
 
Botham-Myint D, Recktenwald GW, Sailor DJ (2015) Thermal footprint effect of rooftop 

urban cooling strategies. Urban Clim 14:268-277 
 
Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns 

and cities: A systematic review of the empirical evidence. Landscape Urban Plan 
97:147-155 

 
Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates - Baltimore and 

Phoenix urban LTER sites. Clim Res 15:123-135 
 
Brown R, Keath N, Wong T (2009) Urban water management in cities: historical, current 

and future regimes. Water Sci Tech 59:847-855 



111 

 
Brubaker KL, Entekhabi D (1996) Analysis of feedback mechanisms in land-atmosphere 

interaction. Water Resour Res 32:1343-1357 
 
Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the 

Penn State-NCAR MM5 modeling system. Part I: Model implementation and 
sensitivity. Mon Weather Rev 129:569-585 

 
Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan 

T, Manning KW, Martilli A, Miao SG, Sailor D, Salamanca FP, Taha H, Tewari M, 
Wang XM, Wyszogrodzki AA, Zhang CL (2011) The integrated WRF/urban 
modelling system: development, evaluation, and applications to urban environmental 
problems. Int J Climatol 31:273-288 

 
Cheng WY, Steenburgh WJ (2005) Evaluation of surface sensible weather forecasts by 

the WRF and the Eta models over the western United States. Wea Forecasting 
20:812-821 

 
Chow WT, Brazel AJ (2012) Assessing xeriscaping as a sustainable heat island 

mitigation approach for a desert city. Build Environ 47:170-181 
 
Chow WT, Volo TJ, Vivoni ER, Jenerette GD, Ruddell BL (2014) Seasonal dynamics of 

a suburban energy balance in Phoenix, Arizona. Int J Climatol 34: 3863-3880 
 
City of Mesa (2013) Residential grass to xericscape rebate. Available at 

http://www.mesaaz.gov/residents/ water-conservation/residential-grass-to-xeriscape-
rebate. Accessed April 11, 2016. 

 
City of Phoenix (2010) Tree and shade master plan, pp. 53. 
 
de Vries S, Verheij RA, Groenewegen P, Spreeuwenberg P (2003) Natural 

environments–healthy environments? An exploratory analysis of the relationship 
between greenspace and health. Environ Plan 35:1717-1731 

 
Diem JE, Brown DP (2003) Anthropogenic impacts on summer precipitation in central 

Arizona, USA. Prof Geogr 55:343-355 
 
Dodson R, Marks D (1997) Daily air temperature interpolated at high spatial resolution 

over a large mountainous region. Clim Res 8:1-20 
 
Dudhia J (1989) Numerical study of convection observed during the winter monsoon 

experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077-3107 
 
Dvorak B, Volder A (2010) Green roof vegetation for North American ecoregions: A 

literature review. Landscape Urban Plan 96:197-213 



112 

 
Eigenbrod F, Bell VA, Davies HN, Heinemeyer A, Armsworth PR, Gaston KJ (2011) 

The impact of projected increases in urbanization on ecosystem services. Proc R Soc 
Lond B: Biol Sci :rspb20102754 

 
European Commission (2012) Energy, transport and environment indicators, Eurostat, 

Italy, pp. 234 
 
Field CB, Barros VR, Mach K, Mastrandrea M (2014) Climate change 2014: impacts, 

adaptation, and vulnerability. Working Group II Contribution to the IPCC 5th 
Assessment Report – Technical Summary, pp 76 

 
Friedl MA, McIver DK, Hodges JC, Zhang XY, Muchoney D, Strahler AH, Woodcock 

CE, Gopal S, Schneider A, Cooper A, Baccini A (2002) Global land cover mapping 
from MODIS: algorithms and early results. Remote Sens Environ 83:287-302 

 
Fry JA, Xian G, Jin S, Dewitz JA, Homer CG, Limin Y, Barnes CA, Herold ND, 

Wickham JD (2011) Completion of the 2006 national land cover database for the 
conterminous United States. Photogramm Eng Remote Sens 77:858-864 

 
Fung WY, Lam KS, Hung WT, Pang SW, Lee YL (2006) Impact of urban temperature 

on energy consumption of Hong Kong. Energy 31:2623-2637 
 
Georgescu M, Mahalov A, Moustaoui M (2012) Seasonal hydroclimatic impacts of Sun 

Corridor expansion. Environ Res Lett 7:034026 
 
Georgescu M, Morefield PE, Bierwagen BG, Weaver CP (2014) Urban adaptation can 

roll back warming of emerging megapolitan regions. P Natl Acad Sci 111:2909-2914 
 
Georgescu M (2015) Challenges associated with adaptation to future urban expansion. J 

Climate 28:2544-2563 
 
Geros V, Santamouris M, Karatasou S, Tsangrassoulis A, Papanikolaou N (2005) On the 

cooling potential of night ventilation techniques in the urban environment. Energy 
Build 37:243-257 

 
Givoni B (1963) Estimation of the effect of climate on man: Development of a new 

thermal index. PhD Thesis, Israel Institute of Technology 
 
Gober P, Brazel A, Quay R, Myint S, Grossman-Clarke S, Miller A, Rossi S (2010) 

Using watered landscapes to manipulate urban heat island effects: How much water 
will it take to cool Phoenix?. J Am Plan Assoc 76:109-121 

 
Gober P, Kirkwood CW (2010) Vulnerability assessment of climate-induced water 

shortage in Phoenix. Proc Natl Acad Sci USA 107:21295-21299 



113 

 
Gober P, Middel A, Brazel A, Myint S, Chang H, Duh JD, House-Peters L (2012) 

Tradeoffs between water conservation and temperature amelioration in Phoenix and 
Portland: implications for urban sustainability. Urban Geogr 33:1030-1054 

 
Golden JS, Hartz D, Brazel A, Luber G, Phelan P (2008) A biometeorology study of 

climate and heat-related morbidity in Phoenix from 2001 to 2006. Int J Biometeorol 
52:471-480 

 
Goodwin NR, Coops NC, Tooke TR, Christen A, Voogt JA (2009) Characterizing urban 

surface cover and structure with airborne LIDAR technology. Can J Remote Sens 
35:297-309 

 
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) 

Global change and the ecology of cities. Science 319:756-760 
 
Grimmond CSB, Oke TR (1986) Urban water balance: 2. Results from a suburb of 

Vancouver, British Columbia. Water Resour Res 22:1404-1412 
 
Grimmond CSB (1992) The suburban energy balance: Methodological considerations 

and results for a mid-latitude west coast city under winter and spring conditions. Int J 
Climatol 12:481-497 

 
Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik JJ, Belcher SE, Bohnenstengel SI, 

Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai 
T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, Martilli A, Masson 
V, Miao S, Oleson K, Pigeon G, Porson A, Ryu YH, Salamanca F, Shashua-Bar L, 
Steeneveld GJ, Tombrou M, Voogt J, Young D, Zhang N (2010) The international 
urban energy balance models comparison project: First results from Phase 1. J Appl 
Meteorol Clim 49:1268-1292 

 
Grimmond CSB, Blackett M, Best MJ, Baik JJ, Belcher SE, Beringer J, Bohnenstengel SI, 

Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry 
M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, 
Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu YH, 
Salamanca F, Steeneveld GJ, Tombrou M, Voogt JA, Young DT, Zhang N (2011) 
Initial results from Phase 2 of the international urban energy balance model 
comparison. Int J Climatol 31:244-272 

 
Hagishima A, Narita KI, Tanimoto J (2007) Field experiment on transpiration from 

isolated urban plants. Hydrol Process 21:1217-1222 
 
Harriman III LG, Plager D, Kosar D (1997) Dehumidification and cooling loads from 

ventilation air. ASHRAE J 39:37-45 
 



114 

Hirano Y, Fujita T (2012) Evaluation of the impact of the urban heat island on residential 
and commercial energy consumption in Tokyo. Energy 37:371-383 

 
Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit 

treatment of entrainment processes. Mon Weather Rev 134:2318-2341 
 
Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat 

island effect across biomes in the continental USA. Remote Sens Environ 114:504-
513 

 
Jim CY, He H (2010) Coupling heat flux dynamics with meteorological conditions in the 

green roof ecosystem. Ecol Engineer 36:1052-1063 
 
Johnson TD, Belitz K (2012) A remote sensing approach for estimating the location and 

rate of urban irrigation in semi-arid climates. J Hydrol 414:86-98 
 
Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl 

Meteorol 43:170-181 
 
Karlessi T, Santamouris M, Apostolakis K, Synnefa A, Livada I (2009) Development and 

testing of thermochromic coatings for buildings and urban structures. Sol Energy 
83:538-551 

 
Krayenhoff ES, Christen A, Martilli A, Oke TR (2014) A multi-layer radiation model for 

urban neighbourhoods with trees. Boundary-Layer Meteorol 151:139-178 
 
Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy 

model for atmospheric models: Comparison with multi-layer and slab models. 
Boundary-Layer Meteorol 101:329-358 

 
Kusaka H, Chen F, Tewari M, Dudhia J, Gill DO, Duda MG, Wang W, Miya Y (2012a) 

Numerical simulation of Urban Heat Island effect by the WRF Model with 4-km grid 
increment: an inter-comparison study between the urban canopy model and slab 
model. J Meteorol Soc Japan 90B:33-45 

 
Kusaka H, Hara M, Takane Y (2012b) Urban climate projection by the WRF model at 3-

km horizontal grid increment: Dynamical downscaling and predicting heat stress in 
the 2070's August for Tokyo, Osaka, and Nagoya metropolises. J Meteorol Soc 
Japan 90B:47-63 

 
LADWP (City of Los Angeles Department of Water and Power) (2001) Urban water 

management plan: fiscal year 2000-2001 annual update. City of Los Angeles, 
California 

 



115 

Lantz N, Wang J (2010) Land cover information extraction using high resolution satellite 
data in Montreal. EPiCC Technical Report No. 5, pp 28. Available from 
http://www.epicc.ca/media‐centre/presentations#TechDocs 

 
Lee SH, Park SU (2008) A vegetated urban canopy model for meteorological and 

environmental modelling. Boundary-Layer Meteorol 126:73-102 
 
Lemonsu A, Belair S, Mailhot J, Leroyer S (2010) Evaluation of the town energy balance 

model in cold and snowy conditions during the Montreal urban snow experiment 
2005. J Appl Meteorol Clim 49:346-362 

 
Li D, Bou-Zeid E (2013) Synergistic interactions between urban heat islands and heat 

waves: The impact in cities is larger than the sum of its parts. J Appl Meteorol 
Climatol 52:2051-2064 

 
Li D, Bou-Zeid E, Oppenheimer M (2014) The effectiveness of cool and green roofs as 

urban heat island mitigation strategies. Environ Res Lett 9:055002 
 
Lin CY, Chen F, Huang JC, Chen WC, Liou YA, Chen WN, Liu SC (2008) Urban heat 

island effect and its impact on boundary layer development and land–sea circulation 
over northern Taiwan. Atmos Environ 42:5635-5649 

 
Lin TP, Matzarakis A, Hwang RL (2010) Shading effect on long-term outdoor thermal 

comfort. Build Environ 45:213-221 
 
Lobell DB, Bonfils C (2008) The effect of irrigation on regional temperatures: A spatial 

and temporal analysis of trends in California 1934-2002. J Clim 21:2063-2071 
 
Loridan T, Grimmond CSB, Grossman-Clarke S, Chen F, Tewari M, Manning K, Martilli 

A, Kusaka H, Best M (2010) Trade-offs and responsiveness of the single-layer urban 
canopy parametrization in WRF: An offline evaluation using the MOSCEM 
optimization algorithm and field observations. Q J R Meteorol Soc 136:997-1019 

 
Ma Y, Zhang X, Zhu B, Wu K (2002) Research on reversible effects and mechanism 

between the energy-absorbing and energy-reflecting states of chameleon-type 
building coatings. Sol Energy 72:511-520 

 
MacDonald GM (2010) Water, climate change, and sustainability in the southwest. Proc 

Natl Acad Sci USA 107:21256-21262 
 
Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterisation 

for mesoscale models. Boundary-Layer Meteorol 104:261-304 
 
Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric 

models. Boundary-Layer Meteorol 94:357-397 



116 

 
Mayer PW, Deoreo WBE (1999) Residential end uses of water. American Water Works 

Association, Denver, pp 310 
 
Mell IC (2010) Green infrastructure: concepts, perceptions and its use in spatial planning. 

Ph.D. Thesis, Newcastle University, Newcastle, 291 pp. 
 
Mentens J, Raes D, Hermy M (2006) Green roofs as a tool for solving the rainwater 

runoff problem in the urbanized 21st century?. Landscape Urban Plan 77:217-226 
 
Miao S, Chen F (2008) Formation of horizontal convective rolls in urban areas. Atmos 

Res 89:298-304 
 
Miao S, Dou J, Chen F, Fan S (2012) Analysis of observations on the urban surface 

energy balance in Beijing. Sci China Earth Sci 55:1881-1890 
 
Miao S, Chen F (2014) Enhanced modeling of latent heat flux from urban surfaces in the 

Noah/single-layer urban canopy coupled model. Sci China Earth Sci 57: 2408-2416 
 
Middel A, Häb K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban form 

and design on mid-afternoon microclimate in Phoenix Local Climate Zones. 
Landscape Urban Plan 122:16-28 

 
Mishra AK, Ramgopal M (2013) Field studies on human thermal comfort—An overview. 

Build Environ 64:94-106 
 
Mitchell V, Mein RG, McMahon TA (2001) Modelling the urban water cycle. Environ 

Modell Softw 16: 615-629 
 
Mitchell V, Cleugh H, Grimmond C, Xu J (2008) Linking urban water balance and 

energy balance models to analyse urban design options. Hydrol Process 22:2891-
2900 

 
Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer 

for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the 
longwave. J Geophys Res: Atmos 102:16663-16682 

 
Moriwaki R, Kanda M, Senoo H, Hagishima A, Kinouchi T (2008) Anthropogenic water 

vapor emissions in Tokyo. Water Resour Res 44:W11424 
 
Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng QH (2011) Per-pixel vs. 

object-based classification of urban land cover extraction using high spatial 
resolution imagery. Remote Sens Environ 115:1145-1161 

 



117 

Nazaroff WW (2013) Exploring the consequences of climate change for indoor air 
quality. Environ Res Lett 8:015022 

 
Niachou A, Papakonstantinou K, Santamouris M, Tsangrassoulis A, Mihalakakou G 

(2001) Analysis of the green roof thermal properties and investigation of its energy 
performance. Energy Build 33:719-729 

 
Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Köhler 

M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, 
functions, and services. BioScience 57:823-833 

 
Oke TR (1979) Advectively-assisted evapotranspiration from irrigated urban vegetation. 

Boundary-Layer Meteorol 17:167-173 
 
Oke TR (1988) The urban energy balance. Prog Phys Geog 12:471-508 
 
Park M, Hagishima A, Tanimoto J, Narita KI (2012) Effect of urban vegetation on 

outdoor thermal environment: field measurement at a scale model site. Build Environ 
56:38-46 

 
Pearlmutter D, Berliner P, Shaviv E (2007) Integrated modeling of pedestrian energy 

exchange and thermal comfort in urban street canyons. Build Environ 42:2396-2409 
 
Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate 

models' simulated daily maximum temperature, minimum temperature, and 
precipitation over Australia using probability density functions. J Clim 20:4356-4376 

 
Peñuelas J, Filella I (2009) Phenology feedbacks on climate change. Science 324:887-

888. 
 
Poulos GS, Blumen W, Fritts DC, Lundquist JK (2002) CASES-99: A comprehensive 

investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555-
581 

 
Ramamurthy P, Bou-Zeid E (2014) Contribution of impervious surfaces to urban 

evaporation. Water Resour Res 50:2889-2902 
 
Ramamurthy P, Bou-Zeid E, Smith JA, Wang Z, Baeck ML, Saliendra NZ, Hom JL, 

Welty C (2014) Influence of subfacet heterogeneity and material properties on the 
urban surface energy budget. J Appl Meteorol Climatol 53:2114-2129 

 
Retzlaff R (2008) Green building assessment systems: A framework and comparison for 

planners. J Am Plan Assoc 74:505-519 
 



118 

Rizwan AM, Dennis LY, Chunho LIU (2008) A review on the generation, determination 
and mitigation of Urban Heat Island. J Environ Sci 20:120-128 

 
Roy S, Byrne J, Pickering C (2012) A systematic quantitative review of urban tree 

benefits, costs, and assessment methods across cities in different climatic zones. 
Urban For Urban Gree 11:351-363 

 
Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global 

irrigation on the near-surface climate. Clim Dyn 33:159-175 
 
Sailor DJ, Lu L (2004) A top-down methodology for developing diurnal and seasonal 

anthropogenic heating profiles for urban areas. Atmos Environ 38:2737-2748 
 
Sailor DJ, Hart M (2006) An anthropogenic heating database for major US cities. 

In: Sixth Symposium on the Urban Environment, Atlanta, Georgia, 28 January - 3 
February 2006 

 
Sailor DJ, Brooks A, Hart M, Heiple S (2007) A bottom-up approach for estimating 

latent and sensible heat emissions from anthropogenic sources. In: Seventh 
Symposium on the Urban Environment, San Diego, California, 10-13 September 
2007 

 
Salamanca F, Krpo A, Martilli A, Clappier A (2010) A new building energy model 

coupled with an urban canopy parameterization for urban climate simulations-part I. 
formulation, verification, and sensitivity analysis of the model. Theor Appl Climatol 
99:331-344 

 
Salamanca F, Martilli A, Tewari M, Chen F (2011) A study of the urban boundary layer 

using different urban parameterizations and high-resolution urban canopy parameters 
with WRF. J Appl Meteorol Clim 50:1107-1128 

 
Santamouris M, Pavlou C, Doukas P, Mihalakakou G, Synnefa A, Hatzibiros A, Patargias 

P (2007) Investigating and analysing the energy and environmental performance of 
an experimental green roof system installed in a nursery school building in Athens, 
Greece. Energy 32:1781-1788 

 
Santamouris M (2014) Cooling the cities-a review of reflective and green roof mitigation 

technologies to fight heat island and improve comfort in urban environment. Sol 
Energy 103:682-703 

 
Sarrat C, Lemonsu A, Masson V, Guedalia D (2006) Impact of urban heat island on 

regional atmospheric pollution. Atmos Environ 40:1743-1758 
 



119 

Senay GB, Budde M, Verdin JP, Melesse AM (2007) A coupled remote sensing and 
simplified surface energy balance approach to estimate actual evapotranspiration 
from irrigated fields. Sensors 7:979-1000 

 
Seto KC, Fragkias M, Guneralp B, Reilly MK (2011) A meta-analysis of global urban 

land expansion. PLoS One 6:e23777 
 
Seto K, Dhakal S (2014) Chapter 12: Human Settlements, Infrastructure, and Spatial 

Planning, in:  Climate Change 2014: Mitigation of Climate Change. Contribution of 
Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change, pp. 67-76 

 
Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of 

an urban street: An empirical model for predicting the cooling effect of urban green 
areas with trees. Energy Build 31:221-235 

 
Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor 

thermal comfort in a hot-arid environment. Int J Climatol 31:1498-1506 
 
Sivak M (2008) Where to live in the United States: Combined energy demand for heating 

and cooling in the 50 largest metropolitan areas. Cities 25:396-398 
 
Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for 

weather research and forecasting applications. J Comput Phys 227:3465-3485 
 
Song J, Wang ZH (2015) Interfacing the urban land–atmosphere system through coupled 

urban canopy and atmospheric models. Boundary-Layer Meteorol 154:427-448  
 
Sun T, Bou-Zeid E, Wang ZH, Zerba E, Ni GH (2013) Hydrological determinants of 

green roof performance via a vertically-resolved model for heat and water transport. 
Build Environ 60:211-224 

 
Sunwoo Y, Chou C, Takeshita J, Murakami M, Tochihara Y (2006a) Physiological and 

subjective responses to low relative humidity in young and elderly men. J Physiol 
Anthropol 25:229-238 

 
Sunwoo Y, Chou C, Takeshita J, Murakami M, Tochihara Y (2006b) Physiological and 

subjective responses to low relative humidity. J Physiol Anthropol 25:7-14 
 
Synnefa A, Santamouris M, Livada I (2006) A study of the thermal performance of 

reflective coatings for the urban environment. Sol Energy 80:968-981 
 
Synnefa A, Dandou A, Santamouris M, Tombrou M, Soulakellis N (2008) On the use of 

cool materials as a heat island mitigation strategy. J Appl Meteorol Climatol 
47:2846-2856 



120 

 
Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ, Li F, 

Chen H (2010) The urban heat island and its impact on heat waves and human health 
in Shanghai. Int J Biometeorol 54:75-84 

 
Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter 

precipitation using an improved bulk microphysics scheme. Part II: Implementation 
of a new snow parameterization. Mon Weather Rev 136:5095-5115 

 
Tooke TR, Coops NC, Goodwin NR, Voogt JA (2009) Extracting urban vegetation 

characteristics using spectral mixture analysis and decision tree classifications. 
Remote Sens Environ 113:398-407 

 
Topak R, Suheri S, Acar B (2010) Comparison of energy of irrigation regimes in sugar 

beet production in a semi-arid region. Energy 35:5464-5471 
 
Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the 

urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8:34-48 
 
Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P 

(2007) Promoting ecosystem and human health in urban areas using Green 
Infrastructure: A literature review. Landscape Urban Plan 81:167-178 

 
United Nations (2012) World urbanization prospects: The 2011 revision. The United 

Nations' Department of Economic and Social Affairs - Population Division, New 
York, pp 50 

 
United States Census Bureau, Phoenix quick facts, in:  

http://quickfacts.census.gov/qfd/states/04/0455000.html, Retrieved October 5, 2016 
 
Vahmani P, Hogue TS (2014) Incorporating an urban irrigation module into the Noah 

land surface model coupled with an urban canopy model. J Hydrometeorol 15:1440-
1456 

 
Vairavamoorthy K, Gorantiwar SD, Pathirana A (2008) Managing urban water supplies 

in developing countries – Climate change and water scarcity scenarios. Phys Chem 
Earth 33:330-339 

 
van der Laan M, Tooke TR, Christen A, Coops N, Heyman E, Olchovski I (2011), 

Statistics on the built infrastructure at the Vancouver EPiCC experimental sites. 
EPiCC Technical Report No. 4, pp 30. Available from http://www.epicc.ca/media‐
centre/presentations/#TechDocs 

 



121 

Vandermeulen V, Verspecht A, Vermeire B, Van Huylenbroeck G, Gellynck X (2011) 
The use of economic valuation to create public support for green infrastructure 
investments in urban areas. Landscape Urban Plan 103:198-206 

 

Volo TJ, Vivoni ER, Martin CA, Earl S, Ruddell BL (2014) Modeling soil moisture, 
water partitioning and plant water stress under irrigated conditions in desert urban 
areas. Ecohydrol 7:1297-1313 

 
Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: 

vulnerability from climate change and population growth. Science 289:284-288 
 
Wang ZH, Bou-Zeid E, Smith JA (2011a) A spatially-analytical scheme for surface 

temperatures and conductive heat fluxes in urban canopy models. Boundary-Layer 
Meteorol 138:171-193 

 
Wang ZH, Bou-Zeid E, Au SK, Smith JA (2011b) Analyzing the sensitivity of WRF's 

single-layer urban canopy model to parameter uncertainty using advanced Monte 
Carlo simulation. J Appl Meteorol Clim 50:1795-1814 

 
Wang ZH, Bou-Zeid E, Smith JA (2013) A coupled energy transport and hydrological 

model for urban canopies evaluated using a wireless sensor network. Q J R Meteorol 
Soc 139:1643-1657 

 
Wang ZH (2014a) Monte Carlo simulations of radiative heat exchange in a street canyon 

with trees. Sol Energy 110:704-713 
 
Wang ZH (2014b) A new perspective of urban–rural differences: The impact of soil 

water advection. Urban Clim 10:19-34 
 
Wang ZH, Zhao X, Yang, J, Song J (2016) Cooling and energy saving potentials of shade 

trees and urban lawns in a desert city. Appl Energy 161:437-444 
 
Wang ZX, Jiang YH, Li J, Liu WD, Wang Q (2009) On the measurement of urban 

boundary layer radiation of the meteorological tower in Beijing (in Chinese). Plateau 
Meteorol 28:20-27 

 
Wang C, Myint SW, Wang Z-H, Song J (2016) Spatio-temporal modeling of the urban 

heat island in the Phoenix metropolitan area: Land use change implications. Remote 
Sens 8:185. 

 
Wilmers F (1988) Green for melioration of urban climate. Energy Build 11:289-299 
 
Wong NH, Cheong DW, Yan H, Soh J, Ong CL, Sia A (2003) The effects of rooftop 

garden on energy consumption of a commercial building in Singapore. Energy Build 
35:353-364 



122 

 
Yang Z, Arritt RW (2002) Tests of a perturbed physics ensemble approach for regional 

climate modeling. J Clim 15:2881-2896 
 
Yang J, Wang ZH, Lee TW (2013) Relative efficiency of surface energy partitioning over 

different land covers. Brit J Environ Clim Change 3:86-102 
 
Yang J, Wang ZH (2014a) Parameterization and sensitivity of urban hydrological models: 

Application to green roof systems. Build Environ 75:250-263 
 
Yang J, Wang ZH (2014b) Land surface energy partitioning revisited: A novel approach 

based on single depth soil measurement. Geophys Res Lett 41:8348-8358 
 
Yang J, Wang ZH (2015) Optimizing urban irrigation schemes for the trade-off between 

energy and water consumption. Energy Build 107:335-344 
 
Yang J, Wang ZH, Chen F, Miao S, Tewari M, Voogt J, Myint S (2015a) Enhancing 

hydrologic modeling in the coupled Weather Research and Forecasting - urban 
modeling system. Boundary-Layer Meteorol 155:87-109 

 
Yang J, Wang ZH, Kaloush KE (2015b) Environmental impacts of reflective materials: Is 

high albedo a ‘silver’ bullet for mitigating urban heat island?. Renew Sustain Energy 
Rev 47:830-843 

 
Yang J, Wang ZH, Georgescu M, Chen F, Tewari M (2016a) Assessing the impact of 

enhanced hydrological processes on urban hydrometeorology with application to two 
cities in contrasting climates. J Hydrometeorol 17:1031-1047 

 
Yang J, Wang ZH, Kaloush KE, Dylla H (2016b) Effect of pavement thermal properties 

on mitigating urban heat islands: A multi-scale modelling case study in Phoenix. 
Build Environ 108:110-121 

 
Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in 

Chicago. Atmos Environ 42:7266-7273 
 


