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ABSTRACT 

Rapid urban expansion and the associated landscape modifications have led to 

significant changes of surface processes in built environments. These changes further 

interact with the overlying atmospheric boundary layer and strongly modulate urban 

microclimate. To capture the impacts of urban land surface processes on urban boundary 

layer dynamics, a coupled urban land-atmospheric modeling framework has been 

developed. The urban land surface is parameterized by an advanced single-layer urban 

canopy model (SLUCM) with realistic representations of urban green infrastructures such 

as lawn, tree, and green roof, etc. The urban atmospheric boundary layer is simulated by 

a single column model (SCM) with both convective and stable schemes. This coupled 

SLUCM-SCM framework can simulate the time evolution and vertical profile of different 

meteorological variables such as virtual potential temperature, specific humidity and 

carbon dioxide concentration. The coupled framework has been calibrated and validated 

in the metropolitan Phoenix area, Arizona. To quantify the model sensitivity, an 

advanced stochastic approach based on Markov-Chain Monte Carlo procedure has been 

applied. It is found that the development of urban boundary layer is highly sensitive to 

surface characteristics of built terrains, including urban land use, geometry, roughness of 

momentum, and vegetation fraction. In particular, different types of urban vegetation 

(mesic/xeric) affect the boundary layer dynamics through different mechanisms. 

Furthermore, this framework can be implanted into large-scale models such as Weather 

Research and Forecasting model to assess the impact of urbanization on regional climate. 
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CHAPTER 1  INTRODUCTION 

The world is undergoing rapid urbanization with the percentage of global 

population that live in urban areas increasing from 30% in 1950 to 47% in 2000, and 

projected to rise to 60% by 2030 (Collier, 2006; UN, 2012). Urban environment has some 

unique characteristics compared with natural environment, including large amounts of 

impervious artificial surfaces, the lack of vegetation cover, the presence of tall and dense 

building arrays, intensive human activities such as in industrial and/or transportation 

sectors. The rapid growth and the associated landscape modification of urban areas 

necessarily modify the surface energy and moisture balance by altering key physical and 

biophysical properties, with impacts on local and regional hydroclimate (Arnfield, 2003), 

leading to potential global climate responses via a cascade of land-atmosphere 

interactions (Niyogi et al., 2009). Urban land-use land-cover (LULC) changes, modified 

surface geometric and hydrothermal properties compounded by anthropogenic heat and 

moisture sources, contribute to numerous urban environmental features such as the urban 

heat island (UHI), air pollution, water pollution and urban flooding (Taha, 1997; Collier, 

2006; Song et al., 2016c). To address these urban environmental issues, a better 

understanding on the urban land surface energy and water transport processes as well as 

urban land-atmosphere interactions is needed. 

 The last few decades have seen rapidly increasing research efforts in addressing 

urban environmental issues from different scales, including building scale, 

neighbourhood scale, regional scale, and global scale (Arnfield, 2003). At the building 

scale, building energy consumption for heating, cooling, ventilation, as well as the indoor 

and outdoor heat exchanges, can be resolved by commercial software such as EnergyPlus 
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(a cutting edge building energy simulation program developed by the US Department of 

Energy) (Sailor, 2008) or building energy models (BEM) (Kikegawa et al., 2003; 

Salamanca et al., 2010). At the neighbourhood scale, the urban microclimate can be 

simulated via two-dimensional (2-D) models such as an urban canopy model (UCM) 

(Masson, 2000; Kusaka et al., 2001; Martilli et al., 2002) or three-dimensional (3-D) 

models such as a computational fluid dynamics (CFD) model (Kim and Baik, 2004; 

Blocken, 2015). In UCMs, 2-D street canyon is the finest urban surface unit, which 

consists of roofs, walls and an infinite-long street between two facing walls (Kusaka et al., 

2001). In CFD models, the urban surface is usually represented by 3-D building structure 

with resolution of 3-D air flow dynamics (Blocken, 2015).  

 A composition of microscale blocks in turn scale up to local scale 

(neighbourhoods) and ultimately mesoscale (the entire city) (Piringer et al., 2002; 

Arnfield, 2003). To assess the impacts of urban LULC changes on climate at a larger 

scale, land-atmosphere coupling has been utilized in regional climate models, such as the 

Weather Research and Forecasting (WRF) model (Skamarock et al., 2008; Trier et al., 

2011; Chen et al., 2011; Georgescu et al., 2012, 2014) and general circulation models (e.g. 

Yang, 1995; Bonan et al., 2002). As spatial scales increase, the spatial variability will be 

reduced but modelling physics will be increased since different assemblages of processes 

need to be considered (Arnfield, 2003). Fundamental to the scale issue is the difference 

between the urban canopy layer (UCL) and the urban boundary layer (UBL), i.e. 

atmospheric boundary layer (ABL) over urban area (Arnfield, 2003). In the UCL 

(roughly from ground surface to roof level), the airflow and energy exchange processes 

are dominated by microscale and site-specific characteristics (Song and Wang, 2016a&b; 
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Song et al., 2016a). In the UBL (from ground surface to ~1000 m above the ground level), 

the atmospheric dynamics are affected by the presence of urban surface below and links 

local-scale and meso-scale phenomena (Arnfield, 2003). Therefore, a better 

understanding on the interactions between UCL and UBL is the key to assess the impact 

of urbanization on climate at different scales. 

1.1 Urban land surface processes 

Numerous urban surface models have been developed to incorporate urban features 

including the variety of surface morphology, abundance of impervious building materials, 

sparseness of vegetation, as well as emission of anthropogenic heat, water and pollutants 

(Grimmond et al., 2010). A common aim of all the urban surface models is to accurately 

predict surface energy budgets at the local scale (102-104 m) based on the fundamental 

principle of urban surface energy balance (Oke, 1988). Among all the urban surface 

models, a specific urban surface model should be selected for a specific application to 

balance the complexity of model physics and its computational requirements. In this 

dissertation, a 2-D rather than a 3-D urban canyon representation is adopted for the UCM. 

According to Grimmond et al. (2010), both 2-D and 3-D urban surface models can 

provide reasonable estimates of turbulent heat and moisture fluxes. But 3-D models are 

more complex than 2-D models by explicitly resolving the detailed momentum transfer 

and urban flow fields in canopies, which is more computationally costly and difficult to 

implement (Grimmond et al., 2009). 

Broadly, there are two groups of UCMs, including the single-layer UCMs (SLUCM) 

(Masson, 2000; Kusaka et al., 2001; Wang et al., 2013) that focuses on the 

parametrization of the surface energy budget, and the more complex multilayer UCMs 
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(MLUCM) that also capture the momentum transport in urban canopies (Martilli et al., 

2002; Dupont et al., 2004; Kondo et al., 2005). Both the SLUCM and MLUCM adopt the 

street canyon representation, consider active urban facets including road, wall, and roof, 

and focus on parametrization of surface energy budgets. A main difference between the 

two types of UCMs lies in the vertical structure of the street canyon. Specifically, the 

SLUCM resolves street canyon using a single vertical layer, whereas the MLUCM uses 

multiple layers in the vertical direction to represent the flow dynamics between different 

layers (Ryu et al., 2011; Kondo et al., 2005). 

Most UCMs are capable of resolving the vertical transport of energy and predicting 

surface temperatures and sensible heat realistically, but are inadequate in representing the 

water transport due to the oversimplification of urban hydrological processes (Grimmond 

et al. 2010, 2011). To address this inadequacy, an improved SLUCM including an urban 

hydrologic model has been developed by Wang et al. (2013), which enables a more 

realistic representation of evapotranspiration, infiltration, irrigation, and soil moisture 

states in urban areas and improves the prediction of latent heat fluxes. Besides, the 

surface heterogeneity of each urban facet has also been considered in this new SLUCM. 

Specifically, each surface facet can have different material types, for example, ground 

surface can be a mixture of asphalt and grass, roof surface can be concrete pavement or 

vegetated, wall can be a combination of brick and glass. To parametrize the urban canopy 

dynamics more realistically, the representation of trees has been added in a SLUCM by 

Wang (2014) and a MLUCM by Krayenhoff et al. (2014). To resolve the new modeling 

challenges associated with the presence of trees such as the radiative shading, the Monte 
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Carlo method has been applied to trace the radiative exchanges in the street canyon with 

detailed parameterization schemes elaborated in section 4.1.2.   

1.2 Atmospheric boundary-layer processes 

1.2.1 Categories of atmospheric models 

In this dissertation, the ABL (i.e. the lowest part of the troposphere) which extends 

from land surface to several kilometres (see Figure 1.1) is selected for analysis since it is 

directly influenced by the land surface and responds to surface forcing within an hour or 

less. The bottom 10% of the ABL is called the surface layer at both daytime and 

nighttime and is usually parameterized by Monin-Obukhov Similarity Theory (MOST). 

The upper 90% of the ABL at daytime is called convective mixed layer since the ABL is 

well-mixed due to buoyancy effect and strong turbulence. Above the convective mixed 

layer is the entrainment zone with above free air downward and overshooting thermals 

upward. On the other hand, the upper ABL at nighttime is called stable boundary layer 

due to negative buoyancy and less turbulence, with a residual layer and a capping 

inversion layer above. 

There are plenty of ABL parameterization schemes, which can be categorized via 

two characteristics, including (1) the order of turbulence closure and (2) whether the 

mixing approach is local or non-local (Cohen et al., 2015).  

To parameterize the ABL, the atmospheric variables within turbulence equations 

need to be decomposed into mean and perturbation components, representing the time-

averaged conditions (background mean states) and turbulent fluctuations from the 

background mean state respectively. Equations pertaining to turbulence modeling always 

contain more unknown terms than known terms, resulting in the so-called “turbulence 
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closure” problem. To resolve this problem, the unknown term with higher-moment needs 

to be empirically related to lower-moment known terms. If the equations with only first 

moment are solved and the equations with second moment are empirically estimated, this 

method belongs to first-order closure technique such as in Medium-Range Forecast 

(MRF) model (Hong and Pan, 1996) and Yonsei University (YSU) model (Hong et al., 

2006). If the equations with both first and second moment are solved while the equations 

with third moment are empirically estimated, this method is second-order closure 

technique such as in Mellor Yamada Nakanishi Nino 3.0 (MYNN3) model (Nakanishi 

and Niino, 2006). If not all of the prognostic equations for the second moments are 

solved, this method is called one-and-a-half order closure technique such as in Mellor-

Yamada-Janjic (MYJ) model (Janjic, 1994) and Quasi Normal Scale Elimination (QNSE) 

model (Sukoriansky et al., 2005).  

Another important difference between ABL models is whether it is local or non-

local closure. Local closure assumes that turbulence is analogous to molecular diffusion, 

while non-local closure assumes that turbulence is a superposition of eddies (Stull, 1988). 

An unknown variable at any point in space is parameterized by known variables at this 

specific point in local closure models, but at numerous points of multiple vertical levels 

in non-local closure models (Cohen et al., 2015). Since vertical mixing throughout the 

ABL is primarily associated with large eddies that are rarely affected by local variations 

of static stability, local closure models cannot well represent the overall state of mixing in 

the ABL (Stensrud, 2009) although sometimes can be improved by incorporating higher 

orders of closure (Nakanishi and Niino, 2009). On the other hand, non-local closure 

models account for counter-gradient fluxes and represent deep ABL dynamics more 
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accurately than local closure models (Stull, 1991). According to Stull (1988), non-local 

methods have been used mostly with first-order closure. One of the most widely used 

non-local first order atmospheric models in numerical weather prediction is the YSU 

model based on non-local K-profile method (Troen and Mahrt, 1986; Noh et al., 2003; 

Hong et al., 2006). This model is well evaluated for different stability conditions, 

computationally inexpensive, and better in predicting convective boundary layer than 

local closure schemes (Pagowski, 2004; Dimitrova et al., 2014). Hereafter, the 

development history of first-order non-local K-profile method will be reviewed. 

1.2.2 The first-order non-local K-profile method 

The time evolution and spatial distribution of atmospheric variable in the ABL can 

be resolved by the following conservation equation (Troen and Mahrt, 1986; Stull, 1988): 

                                                   ( )X w X
t z

∂ ∂ ′ ′= −
∂ ∂

,                                              (1.1) 

where X is a generic atmospheric state variable, which can be virtual potential 

temperature θv, specific humidity q, zonal wind u, meridional wind v, or carbon dioxide 

concentration c, etc., t denotes time evolution, z is the altitude above surface, w is the 

vertical wind speed,  and w X′ ′  is the vertical kinematic eddy flux, with the over-bar 

denoting the ensemble average.  

 Troen and Mahrt (1986) considers the non-local mixing atmospheric effect and 

parametrized the vertical flux in the convective boundary layer (CBL) as 

                                   
Xw X K
z

γ∂ ′− ′ = − ∂ 
,                                               (1.2) 
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where K is the eddy diffusivity coefficient and γ is a correction term to local gradient by 

considering the non-local mixing due to large convective eddies. For virtual potential 

temperature (θv) and specific humidity (q), the eddy diffusivity coefficient (K = Kh) can 

be calculated from 

                                  1
h r mK P K−= ,                                                         (1.3) 

where Pr is the Prandtl number, Km is the eddy viscosity, which can be parameterized by 

                                  
2

1m s
h

zK kw z
z

 
= − 

 
.                                             (1.4) 

Here, k is the von Karman constant (k =0.4), z is the distance from ground surface, zh is 

the ABL height, ws is the velocity scale at the top of surface layer (~10% ABL) and is 

parametrized by 

                                    1
*s mw u φ −=  ,                                                           (1.5) 

where u* is the surface friction velocity and φm is the wind profile function according to 

similarity theory (Businger et al., 1971), as 

                 
( ) 1/4

1 4.7 / (stable)
  (unstable)1 16 /m

z L

z L
φ −

+= 
−

                                           (1.6) 

with L denoting the Obukhov length.  

 Noh et al. (2003) modified Troen and Mahrt’s governing equation, viz. Eqn. (1.2) 

by incorporating the heat flux contribution from the entrainment at the top of the ABL 

(when z = zh) as 
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              ( )
3

hz
h

X zw X K w X
z z

γ
 ∂ ′ ′− ′ = − − ′   ∂   

,                                      (1.7) 

and extending the atmospheric profiles above the ABL (when as z > zh) as 

                      Xw X K
z

∂′− ′ =
∂

.                                                                 (1.8)                                                            

Hong et al. (2006) further improved the method of Noh et al. (2003) by taking the 

moisture effect into account in turbulent mixing. In addition, the parametrization of 

vertical eddy flux in the stable boundary layer (SBL) is added into the K-profile model 

with the exclusion of the non-local mixing term as in the CBL scheme (Hong, 2010). The 

main equations in the first-order non-local K-profile model are summarized in Table 1.1. 

Table 1.1: Parameterization schemes for convective and stable boundary layers 

variables CBL SBL 

kinematic 
fluxes 

( )
3

zh
x x

h

x zw x K w x
z z

γ
∂ ′ ′ ′ ′− = − −  ∂   

 

(Hong, 2010) 

( )
3

zh
x

h

x zw x K w x
z z

∂′ ′ ′ ′− = − ∂  
 

(Hong, 2010) 

eddy 
diffusivity 

2
1 1c r m

h

zK P kw z
z

−  
= − 

 
  

(Hong et al., 2006) 

2

1c m
h

zK kw z
z

 
= − 

 
  

(Hong, 2010) 

velocity 
scale 

1/33
3 *
*

8 b
m

h

kw zw u
z

 
= + 

 
 

(Hong et al., 2006) 

*mw u=  
(Hong, 2010) 

ABL 
height 

2
Bc

h
v

Ri Uz
β θ

=
∆

 (Noh et al., 2003) 

Notes: zh is the boundary-layer height, w the vertical velocity scale, u* the friction velocity, γθv the 
lapse rate in the free atmosphere, θv the virtual potential temperature, Kc the eddy diffusivity, γ the 
non-local mixing term, Pr the Prandtl number, k the von Karman constant, and subscripts ‘0’, ‘b’, 
‘s’, ‘m’, ‘h’, ‘e’ denoting at the initial stage, corrected by incorporating moisture, on the surface, 
in the mixed-layer, at the boundary-layer top, and in the entrainment respectively, RiBC is the 
critical bulk Richardson number, U is the horizontal wind speed, β  = g/T0 is the buoyancy 



10 
 

parameter with g the acceleration due to gravity and T0 the reference temperature, ∆θv is the 
virtual potential temperature difference across the ABL. 

 

 

1.3 Urban land-atmosphere interactions 

Numerous studies on land-atmosphere coupling have been conducted using regional 

and global climate modeling frameworks (Chen and Avissar, 1994; Chen and Dudhia, 

2001; Meehl and Tebaldi, 2004; Koster et al., 2004; Seneviratne et al., 2006; Fischer et 

al., 2007). It has been found that increased greenhouse gas concentrations could enhance 

the intensity and frequency of heatwaves (Meehl and Tebaldi, 2004; Seneviratne et al., 

2006). In addition, soil moisture conditions of land surface have significant impacts on 

air temperature and precipitation patterns through land – atmosphere interactions (Eltahir 

et al., 1998; Koster et al., 2004; Fischer et al., 2007). For example, Fischer et al. (2007) 

reported that most of the recent European summer heat waves are closely related to the 

preceding dry soils resulting from a pronounced spring precipitation deficit. de Vrese et 

al. (2016) found that irrigation in South Asian could lead to increased precipitation in 

Eastern Africa, which could be attributed to increased moisture flux and advection effect.   

Among these large-scale (regional or global) land-atmosphere coupling researches, 

the direct impacts of urban land surface changes on urban microclimate are 

underexplored since the spatial resolution in regional or global climate models is too big 

to incorporate detailed urban characteristics. In addition, recent urban environmental 

studies incorporating boundary-layer dynamics were mostly based on mesoscale weather 

prediction models such as the WRF model (Georgescu et al., 2014; Li et al., 2014; 

Sharma et al., 2016). While comprehensive physics of land-atmosphere interactions can 
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be captured by the fully-integrated mesoscale models, it is hard to disentangle the effect 

of individual dynamic modules (e.g. subsurface transport, plant biophysics, radiation 

parameterization, atmospheric schemes, etc.) and their relative contribution to the final 

signal in environmental changes. This is largely due to the uncertainty challenge in 

mesoscale modeling inherent in complex model structures, large parameter space, and 

coupling of multiple dynamic modules (Hargreaves, 2010). This leads to the outstanding 

challenge faced in this study that “How can the impact of urban landscape changes on the 

urban environment be singled out from that of the complexity of total environmental 

physics?”  

To address this, a stand-alone scalable urban land-atmosphere coupling framework 

(see Figure 1.1) has been developed with detailed model physics described in Chapter 2. 

In this coupling framework, the urban land surface processes will be parameterized by the 

latest SLUCM including an improved urban hydrological module (Wang et al., 2011a, 

2013; Sun et al., 2013a) while the urban boundary layer dynamics will be parameterized 

by a single column model (SCM), a modified version of the YSU boundary layer scheme 

based on a first-order non-local closure technique. The coupled SLUCM-SCM 

framework is tested to be capable of predicting the urban surface energy and water 

budgets with improved accuracy. Using the proposed model, a range of scenarios of 

urban LULC changes (such as changes of geometric and hydrothermal properties) can be 

simulated, and their impact on the boundary-layer growth and temperature/humidity 

distribution under both convective and stable conditions can be assessed. In Chapter 3, an 

advanced Monte Carlo method has been used to quantify the sensitivity of urban 

boundary layer dynamics to urban land surface characteristics based on the proposed 
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SLUCM-SCM framework. In Chapter 4, the impact of various forms of urban green 

infrastructure including trees, lawns, and green roofs on urban microclimate has been 

investigated. In addition, the implications of green infrastructure on urban air quality 

issues have been discussed. Lastly in Chapter 5, the main contributions of this 

dissertation have been summarized and some possible future works and challenges have 

been discussed.  

It is noteworthy that in this study, the coupled model framework was mainly tested 

and applied in Phoenix, Arizona, a stereotypical semiarid city. In particular, the impacts 

of different urban heat mitigation strategies, such as the implementation of white (by 

increasing roof albedo) and green roofs (by adding vegetation cover on rooftops) on arid 

urban thermal environment have been assessed. According to United Nations (2011), 

semiarid and arid regions cover approximately 40% of the global land area and are home 

to two billion people, 90% of whom live in developing countries such as in Africa and 

Asia, which are prospected to experience the most rapid urbanization during the next few 

decades. Therefore, the proposed modeling framework and its applications can be further 

extended to cities in arid or semiarid regions worldwide, which is expected to have 

significant implications  to urban planning and mitigation strategies for the sustainable 

development of cities in future generations. 
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Figure 1.1: Schematic of urban land-atmosphere interactions (Here, H and LE denote the 
surface sensible and latent heat flux, θ and q denote atmospheric virtual potential 
temperature and specific humidity respectively, zh denotes the ABL height.) 
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CHAPTER 2  MODEL DEVELOPMENT OF URBAN LAND-ATMOSPHERE 

COUPLING SYSTEM 

In this chapter, a scalable coupled urban land-atmosphere modelling framework is 

proposed. The urban surface processes are parameterized via the latest SLUCM including 

an improved urban hydrological module (Wang et al., 2011a, 2013; Sun et al., 2013a). 

The urban atmospheric processes are parameterized by the SCM based on a first-order 

non-local closure technique. The model performances of the SLUCM, the SCM, and the 

coupled SLUCM-SCM are evaluated against field measurements (surface and ABL states) 

over multiple experimental fields. The coupled SLUCM-SCM framework is then applied 

to study the transport of heat and moisture in the integrated urban land-atmosphere 

system with different landscape characteristics, e.g. by changing urban geometry, surface 

albedo, vegetation fraction and aerodynamic roughness. The corresponding variation in 

ABL responses (primarily the evolution of ABL height as well as atmospheric 

temperature and humidity profiles in the ABL) helps to demonstrate the effectiveness of 

different urban planning strategies, particularly for UHI mitigation such as cool and green 

roofs.  

2.1 Single-layer urban canopy model (SLUCM) 

 To capture the coupled transport and co-evolution of water and energy budgets in 

a built environment, here the latest SLUCM with a realistic urban hydrological model 

developed by Wang et al. (2011a, 2013) was adopted. The SLUCM employs the common 

single-layer street canyon representation for urban areas (Nunez and Oke, 1977; Masson, 

2000; Kusaka, 2001) and takes into account the effect of urban green infrastructure (see 

Figure 2.1). Different urban facets experience time-varying exposures to sunlight and are 



15 
 

composed of different materials with different thermal and aerodynamic properties, thus 

resulting in different net shortwave and longwave radiative exchange within the urban 

canyon. The model explicitly resolves radiative trapping and shading effects inside the 

street canyon, taking into account the canyon orientation and the diurnal variation of solar 

azimuth angle. Besides, surface heterogeneity for each urban facet (i.e. roof, wall, and 

ground) is also included: e.g. the ground can consist of, but is not limited to, engineered 

(asphalt or concrete) pavements, vegetation or bare soil; similarly, wall materials can be 

brick or glass; roofs can be paved or vegetated. Furthermore, the urban hydrological 

module in the SLUCM is capable of predicting water transport over both natural and 

engineered surfaces, especially evapotranspiration from urban lawns and water retention 

on porous pavements. Forced by air temperature, humidity, pressure, wind speed and 

shortwave and longwave radiation fluxes, the SLUCM not only predicts the surface 

energy balance (i.e. net radiation, surface temperature and sensible and ground heat 

fluxes), but also hydrological processes (infiltration, evapotranspiration and irrigation) 

and sub-surface soil moisture states in urban areas.  

 
Figure 2.1: Schematic of surface energy partitioning in the advanced SLUCM.  
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Based on the assumption that the thermal energy involved in advection, radiative 

flux divergence, and canyon air temperature change is small in comparison with the 

energy stored in urban surfaces (Nunez and Oke, 1977), the energy balance in the 

SLUCM for the whole urban canopy layer is given by, 

   (2.1) 

where Rn is the net radiation, AF is the anthropogenic heat and moisture fluxes, H and LE 

are the turbulent sensible and latent heat fluxes arising from the entire urban canopy layer 

with the subscript u denoting the urban canopy, and G is the conductive heat flux 

aggregated over all urban facets, taking into account the actual thickness and thermal 

mass of roofs, walls and ground.  

The net radiation Rn for a generic urban facet (such as a roof) is calculated as 

 nR S L S L↓ ↓ ↑ ↑= + − −   (2.2) 

where S↓ and L↓ are the downwelling shortwave and longwave radiative fluxes 

respectively, S↑ = aS↓ is the upwelling shortwave radiative flux with a the surface albedo, 

and L↑ = εσTs4 is the upwelling longwave radiative flux, ε  is the emissivity, σ  is the 

Stefan-Boltzmann constant, and Ts is the surface temperature. The computation of net 

radiation inside a street canyon involves shading and radiative trapping effects, as 

detailed in Sect. 4.1. 

The total turbulent fluxes Hu and LEu from the urban area can be obtained as the 

areal averages of the fluxes from roof and canyon, viz. 

 , ,
1

RN

u R k R k can
k

H r f H wH
=

= +∑ ,  (2.3) 
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 , ,
1

RN

u R k R k can
k

LE r f LE wLE
=

= +∑ ,  (2.4) 

while the canyon turbulent fluxes are aggregated from all canyon sub-facets, i.e. walls 

and ground, viz. 

 , , , ,
1 1

2 W GN N

can W k W k G k G k
k k

hH f H f H
w = =

= +∑ ∑   (2.5) 

 , , , ,
1 1

2 W GN N

can W k W k G k G k
k k

hLE f LE f LE
w = =

= +∑ ∑   (2.6) 

where subscripts can, R, W, G denote street canyon, roof, wall, and ground respectively, r 

= R / (R  + W), h = B  / (R  + W) and w = W  / (R  + W) are the normalized (dimensionless) 

roof width, building height and road width respectively, with R, B and W the 

corresponding physical dimensions, NR, NW and NG are the number of sub-facet types of 

roof, wall and ground, and fR,k, fW,k, and fG,k are the areal fractions of each sub-facet.  

Sensible heat fluxes in the SLUCM are parametrized as (Masson, 2000; Wang et al., 

2013), 

 
( )p a s a

a

c T T
H

r
ρ −

=   (2.7) 

for all urban facets, and latent heat fluxes are calculated from 

 ( )*

0, if 0

, if 0 

w

eng a v eng a
w

a

LE L q q
r

δ

ρ
δ

=


= −
>



  (2.8) 

for engineered surfaces, and  
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( )

( )

*

*

, for vegetation

, for bare soil 

v a veg a

a s
nat

v a soil a
e

a

L q q
r r

LE
L q q

r

ρ

ρ
β

 −


+= 
−




  (2.9) 

for natural surfaces, where ρa is the density of the air, cp is the specific heat capacity of 

the air, Ta is air temperature, δw is the actual depth of water retention on the engineered 

surface, Lv is the latent heat of water vaporization, qa is the specific humidity of the air, q* 

is the saturated specific humidity, ra is the aerodynamic resistance, rs is the stomatal 

resistance, and βe is a potential evaporation reduction factor.  

 The aerodynamic resistance between canyon facets (i.e. ground and wall) and air 

was formulated by Rowley et al. (1930) and Rowley and Eckley (1932) and parametrized 

as 

 ( ) 1
2 211.8 4.2     for ground and walla can canr U W

−

= + + ,  (2.10) 

where Ucan and Wcan are the wind speed that along and perpendicular to canyon street. On 

the other hand, the aerodynamic resistance above the roof or canyon is computed using 

Monin-Obukhov similarity theory according to Mascart et al. (1995): 

 
( ) ( )

( ) ( ) ( )

2

2

above roof

above canyon

a R h R
a

a can R T h R T

C
U a z F z

r
C

U U a z z F z z



= 

 − − −

,  (2.11) 

where a2 is the drag coefficient under neutral conditions, Fh is empirical functions of bulk 

Richardson number (Rib), altitude (z), roughness length of momentum (z0m) and heat (z0h). 
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The stomatal resistance is parametrized based on a physiological approach (Noilhan and 

Planton, 1989; Niyogi and Raman, 1997): 

 ,min / LAIs s SR W e Tr r F F F F= ,  (2.12) 

where rs,min is the minimum stomatal resistance depending on the vegetation type (rs,min = 

40 s m-1 for urban lawn); LAI is the leaf area index; and F is the adjusting factor with the 

subscripts SR, W, e, T relating to solar radiation, soil-water content, vapour pressure 

deficit and temperature respectively.  

 The factor βe reflects the constraint on actual evaporation by soil water 

availability and can be parametrized as (Brutsaert 2005) 

 r
e

s r

W W
W W

β −
=

−
,  (2.13) 

where W is the volumetric soil water content, and Ws and Wr are the saturated and 

residual soil water content respectively. The actual soil water content can be computed by 

solving the Richards equation: 

 W
W WD K F
t z z

∂ ∂ ∂ = + + ∂ ∂ ∂ 
,  (2.14) 

where D and K are the hydraulic diffusivity and hydraulic conductivity for unsaturated 

soils respectively, estimated using van Genuchten (1980), and FW = P + QF − Ro − ET is 

the water availability term with precipitation P, anthropogenic water QF, surface run-off 

Ro, and evapotranspiration ET. Detailed parameterization of urban vegetation (mesic and 

xeric) is presented in Section 4.1. 

In addition, the thermal fields in solid media, i.e. temperatures and soil heat fluxes, 

are computed by solving the heat conduction equation based on the Green’s function 
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approach (Wang et al. 2011a), where thermal conductivity k and heat capacity C are 

needed. The anthropogenic heat and water budgets are ignored due to the lack of 

experimental data, but are recommended to be included whenever data are available. 

2.2 Single column model (SCM) 

The evolution of the boundary-layer height and spatial distributions of temperature 

and humidity in the UBL for both convective and stable conditions are parametrized in 

the SCM (a first-order non-local closure technique) (Hong et al., 2006) (see Figure 1.1). 

The SCM has a relatively simple representation of the UBL, but can capture the growth 

of the boundary layer with reasonable accuracy. Here the thermal field in the atmosphere 

is described using the virtual potential temperature θv, accounting for the effect of water 

vapour and pressure on boundary-layer stability (Ouwersloot and Vilà-Guerau de 

Arellano 2013). The virtual potential temperature (θv) for unsaturated air with mixing 

ratio f is defined as 

 ( )1 0.61v fθ θ= + ,  (2.15) 

where θ is the potential temperature and is defined as 

 
0.286

0pT
p

θ
 

=  
 

 , (2.16) 

with T denoting absolute air temperature, p0 denoting the reference pressure (usually 

measured at the sea surface level), and p denoting air pressure at a certain altitude. 

For the surface layer, mean profiles of the virtual potential temperature θv and the 

specific humidity q follow approximately logarithmic law distributions, based on Monin-

Obukhov similarity theory (Businger et al. 1971; Stull 1988). In the UBL, mean profiles 

of θv and q are governed by the following diffusion equation (Troen and Mahrt 1986): 
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 ( )X w X
t z

∂ ∂ ′ ′= −
∂ ∂

,  (2.17) 

where X = θv or  q is a generic atmospheric state variable, t denotes time, z denotes 

altitude, w is the vertical wind speed,  and w X′ ′  is the vertical kinematic eddy flux with 

the over-bar denoting the ensemble average, subscripts “s” and “zh” will be used to 

represent for the surface condition and boundary-layer top condition respectively in the 

subsequent context. 

The heat and moisture fluxes in the convective (CBL) and stable (SBL) boundary 

layer can be parametrized as (Noh et al. 2003) 

 
( )

( )

3

3

for CBL

           for SBL

zh

zh

c c
h

c
h

X zK w X
z z

w X
X zK w X
z z

γ
  ∂  ′ ′− − +   ∂   ′ ′ = 

  ∂ ′ ′− +   ∂  

.  (2.18) 

Here, Kc is the eddy diffusivity coefficient, which is given by 
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r s
h

c

s
h

zP kw z
z

K
zkw z
z

−
  
 − 
  = 

 
− 

 

 , (2.19) 

where Pr is the Prandtl number, k is the von-Karman constant (=0.4), ws is the velocity scale 

determined by 

 

1/33
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*

*

8 for CBL
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b

s h

kw zuw z
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 + =  



,  (2.20) 
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γc is a non-local mixing term by incorporating the contribution of the large-scale eddies to the 

total flux and can be parametrized by (Troen and Mahrt 1986; Noh et al. 2003) 

 
( )

s
c

s h

w X
C

w z
γ

′ ′
= .  (2.21) 

The kinematic heat and moisture fluxes at the lower boundary of the mixed layer 

(or equivalently, at the top of the surface layer) can be derived from Hu and LEu, as 

predicted by the SLUCM: 

 ( ) u

s
a p

Hw
c

θ
ρ

′ ′ = ,  (2.22) 

 ( ) u

s
a v

LEw q
Lρ

′ ′ = ,  (2.23) 

where the subscript s denotes the atmospheric surface layer. According to the definition 

of virtual potential temperature,  

 ( ) ( ) ( )( )0.61 1 0.61v s s s
w w q q wθ θ θ′ ′ = ′ ′ + + ′ ′ .  (2.24) 

The turbulent fluxes at the top of the ABL for scalars θv and q are parametrized by  

 ( ) 3' 0.15 /
h

v
v m hz

w w z
g
θθ

 ′ = −  
 

, (2.25) 

 ( ) 0
hz

w q′ ′ ≈ . (2.26) 

A conventional method used to determine zh involves a bulk Richardson number 

formulation based on the assumption that continuous turbulence vanishes beyond zh 

(Troen and Mahrt 1986; Zilitinkevich and Baklanov 2002),  

 
2

Bc
h

v

Ri Uz
β θ

=
∆

,  (2.27) 
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where RiBc is the critical bulk Richardson number, β  = g/T0 is the buoyancy parameter 

with g the acceleration due to gravity and T0 the reference temperature, U is the 

horizontal wind speed at zh, and ∆θv = θv(zh) − θs with θs calculated from 

 1( )s v Tzθ θ θ= + .  (2.28) 

Here θT is the scaled potential temperature excess in the surface layer, given by 

 
( )

s
T

s

w
C

w

θ
θ

′ ′
= ,  (2.29) 

where C is a coefficient of proportionality (often set as 6.5 according to Troen and Mahrt 

1986). The variable ws is the velocity scale for the entire UBL, defined as 

 3 3 1/3
* *( 7 )sw u wεκ= + ,  (2.30) 

where *u  is the surface friction velocity, ε = z1/zh ≈ 0.1 is the ratio of the surface-layer 

height to that of the UBL, κ is the von Karman constant, and *w  is the convective 

velocity scale given by  

 ( )
1/3

*
0

hs

gw w z
T

θ
 

′= ′ 
 

.  (2.31) 

Although the bulk Richardson number method outlined above is a widely used 

approach to estimate the boundary-layer height adopted by many numerical weather 

prediction models, the method is limited by the uncertainty associated with the selection 

of the RiBc value that varies with surface roughness and flow history and has high spatial 

variability (Zilitinkevich and Baklanov 2002; Jeričević and Grisogono 2006), leading to 

numerical instability. In this chapter, a recently developed analytical solution to 

determine daytime zh (Ouwersloot and Vilà-Guerau de Arellano 2013) and a classic 
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prognostic growth rate equation to determine nighttime zh (Deardorff, 1971; Yu, 1977) 

were adopted. The daytime zh is given by 

( )
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∫
,  (2.32) 

where zh0 is the initial CBL height, we is the entrainment rate at the inversion, γθv is the 

lapse rate in the free atmosphere, ∆θs is the potential temperature difference across the 

inversion, and  ˆhz  is a correction term given by 

 ( )
0

1/2

2
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2 4ˆ
t

e
h h v s

v t
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  +
= + ′ ′  

   
∫ .  (2.33) 

The nighttime zh is calculated by 

 ( ) ( 1) h
h h

zz t z t t
t

∂
= − + ∆

∂
,  (2.34) 

where the boundary layer height growth rate is given by 

 [ ]* *0.025 1 / (0.35 /h
h

z u z u f
t

∂
= −

∂
.  (2.35) 

Using the SCM schemes outlined above, the profiles of θv and q in the CBL or SBL 

can be estimated. Note that the residual layer above SBL keep similar pattern as CBL, 

therefore the profiles of θv and q are constant in the residual layer. However, it is more 

complex to parametrize the profiles of temperature and humidity above CBL. The 

following assumptions are used to obtain the spatial distributions of θv and q in the 

entrainment zone of CBL, 
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a) According to Deardorff et al. (1980), the thickness of the entrainment zone δ  is 

estimated by 

 2
1

*h

dd
z Ri
δ

= + ,  (2.36) 

where d1 = 0.02 and d2 = 0.05 are empirical constants (Noh et al., 2003), and 

 is the convective Richardson number. 

b) The heat or moisture flux in the entrainment zone is proportional to the jump in θv or q 

at the inversion (Hong et al. 2006). Specifically 

 ( )| /
h h

v z v ez
w wθ θ∆ = ′ ′ ,  (2.37) 

 ( )| ' ' /
h h

z ez
q w q w∆ = .  (2.38) 

The entrainment rate we is typically in the range 0.01 to 0.20 m s-1 (Stull, 1988).  

c) The lapse rates γθv and γq are considered to be constant in the free troposphere above 

the CBL (Kim et al., 2006; Ouwersloot and Vilà-Guerau de Arellano, 2013). 

Based on the above assumptions, the profiles of θv and q in the entrainment zone 

and the free atmosphere can be estimated as 
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where θm and qm are the virtual potential temperature and specific humidity at the top of 

the mixed layer (Kim et al., 2006).  
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 To better clarify the parameterization of atmospheric profiles of θv and q, a sketch 

of typical atmospheric profiles under both convective and stable conditions is presented 

in Figure 2.2. Note that in general q profile is similar under both convective and stable 

conditions, therefore only one profile under convective condition is presented in Figure 

2.2 (a). 

 

 
Figure 2.2: Sketch of typical atmospheric profiles of θv and q within (a) convective and 
(b) stable boundary layer.  
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humidity), the SCM can simulate the time evolution of ABL height as well as 

temperature and humidity values at different vertical levels in the ABL (the ABL depth at 

each time step is discretized to six levels). Note that this integrated SLUCM-SCM 

framework only permits one-way (i.e. bottom-up) coupling in the vertical direction at its 

present setting.  

2.3 Model evaluation 

2.3.1 Evaluation of the SLUCM 

 Model predictions by the SLUCM are compared against field measurements from 

two eddy-covariance (EC) towers located at Phoenix, Arizona and Princeton, New Jersey, 

USA. Site information of the two EC towers is described in Table 2.1 (see Chow et al., 

2014; Sun et al., 2013b; Ramamurthy et al., 2014 for more details). Meteorological 

forcing data used to test the SLUCM were collected from June 12-17, 2012 (all clear days) 

during a pre-monsoon season at Phoenix, and from May 4-9, 2010 for Princeton covering 

a variety of weather conditions. Results of the comparison between model predictions 

and field measurements are shown in Figure 2.3, which includes net radiation, sensible 

heat and latent heat fluxes. Note that the first day in each dataset is selected for model 

calibration and the remaining days are for model validation. The calibrated model input 

parameters for Phoenix site are presented in Table 2.2, the calibrated model input 

parameters for Princeton site can be found in Wang et al. (2013). The root-mean-square 

errors (RMSE) for Rn, Hu, LEu are 20, 34, 20 W m−2 respectively for the Phoenix site, and 

16, 37, 18 W m−2 respectively for the Princeton site. It is clear that the SLUCM is capable 

of predicting the surface energy budget with reasonable accuracy. The realistic 

representation of land-surface processes by the SLUCM, especially turbulent sensible and 
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latent heat fluxes arising from urban canopies, then provide reliable boundary conditions 

to the overlying CBL. 

Table 2.1: Geographic information of the two sites at Phoenix, Arizona and Princeton, 
New Jersey, USA 

Experiment site Phoenix Princeton 

Location 33.48 oN 40.35 oN 
112.14 oW 74.65 oW 

Measurement height (m) 22.1 23.2 
Building height (m) 3.5 18.9 
Land-use types Residential Suburban 

 
(a) 

 
(b) 

 

Figure 2.3: Comparison of predicted sensible heat, latent heat and net radiative fluxes by 
the SLUCM and field measurements at (a) Phoenix, Arizona from June 12 to June 17, 
2012, and (b) Princeton, New Jersey from May 4 to May 9, 2010. 
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2.3.2 Evaluation of the SCM 

To assess the SCM performance, two sets of atmospheric profiling data are used, 

including, (1) measurements for March 26 2005, at the Point Reyes site (38° 5' 27.6" N, 

122° 57' 25.80" W) in California, USA based on a balloon-borne sounding system 

(SONDE) (Atmospheric Radiation Measurement Program, 2011), and (2) Day 33 data 

(August 17 1967) from the Wangara experiment at Hay, New South Wales (34° 30' S, 

144° 56' E) (Clarke et al., 1971). Weather conditions during the measurements at both 

sites were highly convective, cloudless and free of synoptic frontal influences.  

For the Point Reyes site, the surface sensible and latent heat fluxes and atmospheric 

temperature and humidity profiles were measured at 0930 PST (local time) on March 26 

2005. The SCM is initialized with neutral virtual potential temperature and humidity 

profiles at the time when the CBL starts to develop (early morning). The initial values of 

temperature and humidity in the CBL are set to be the same as values at the top of the 

surface layer. Driven by the surface sensible and latent heat fluxes, the SCM determines 

corresponding atmospheric temperature and humidity profiles. Comparisons between 

predicted and measured vertical distributions of temperature and humidity in the mixed 

layer are in Figure 2.4a&b. The RMSE values are 0.15 K for mean θv and 1.07×10−4 kg 

kg−1 for mean q in the mixed layer.  

 At the Wangara site, there were no direct measurements of surface sensible and 

latent heat fluxes. To drive the SCM, a simple “slab” model, reduced from the SLUCM 

without the presence of street canyons, was used to calculate these heat fluxes with the 

measured surface meteorological forcing, including net radiation, ground heat flux, near-

surface air temperature/humidity, atmospheric pressure and wind speed. Figure 2.4c&d 
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shows comparisons of the SCM predictions and measurements of θv and q at 1200 and 

1500 AEST (local time). The RMSE values are 0.55 K and 0.48 K of mean θv in the 

mixed layer, and 1.02×10−4 kg kg−1 and 9.23×10−5 kg kg−1 at 1200 and 1500 AEST 

respectively. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 2.4: Comparison of the SCM predictions and field measurements of (a) virtual 
potential temperature and (b) specific humidity at 0930 PST on March 26, 2005 in Point 
Reyes site, California, USA, and (c) virtual potential temperature and (d) specific 
humidity at 1200 and 1500 AEST on Day 33 of the Wangara experiment in New South 
Wales, AUS. 
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2.3.3 Evaluation of the coupled SLUCM-SCM 

 To evaluate the coupled SLUCM-SCM framework outlined in Section 2.1, 

experiment data of temperature and humidity profiles were obtained from NOAA/ESRL 

radiosonde database (http://esrl.noaa.gov/raobs/) for two typical convective days, i.e. July 

2nd, 2013 and July 9th, 2013 at Phoenix site (33.45 N, 111.95 W), Arizona. All 

atmospheric data in the ESRL Radiosonde database were subjected to gross error and 

hydrostatic consistency checks according to Schwartz and Govett (1992). The coupled 

modeling framework was driven by surface meteorological variables measured by a 

network of wireless meteorological stations (33.44 N, 111.92 W) (see Song and Wang, 

2015b for details). The comparison of the simulated and observed profiles of virtual 

potential temperature and specific humidity is shown in Figure 2.5 for the two days at 

16:44 pm and 16:37 pm (local time), respectively. Major difference between the observed 

and modeled profiles occurs in the surface layer. This is mainly due to that the SCM in 

the modelling framework uses Monin-Obukhov similarity theory (MOST) for 

parameterizing the surface layer profiles. MOST assumes homogeneity of turbulence and 

surface conditions, which is rarely satisfied for the ABL over a built terrain.  

 

 

 

 

 

http://esrl.noaa.gov/raobs/
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(a)  

 

 

 
(b) 

 

 

 
Figure 2.5: Comparison of simulated and measured atmospheric profiles of virtual 
potential temperature θv and specific humidity q for two time points, i.e. (a) 16:44 (local 
time) on July 2nd, 2013, and (b) 16:37 (local time) on July 9th, 2013 at NOAA-ESRL 
Phoenix site. 
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roof characteristics than that of the street canyon. The coupled model is driven by 

meteorological forcing (air temperature, pressure, humidity, wind speed, and 

downwelling radiation) for a sunny day (June 13, 2012) in Phoenix, Arizona, with sunrise 

at 0518 MST (local time) and sunset at 1939 MST. The list of input parameters required 

by the coupled SLUCM-SCM for a baseline scenario which reproduces the real condition 

at study site is presented Table 2.2. Surface temperatures for different urban canyon 

facets (roof, wall, and ground) were initialized based on the availability of field 

measurements from weather stations. In the subsequent context of case studies, all the 

input parameters are kept as constant as in the baseline scenario (Table 2.2),  unless 

otherwise specified.  
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Table 2.2: List of input parameters for the coupled SLUCM-SCM framework 

Variable Symbol Value 
Surface dimensional parameters 
Roof level (building height) (m)  zR  3.5 
Reference height of atmospheric measurements (m) za 21.95 
Normalized building height  h 0.10 
Normalized roof width  r 0.45 
Normalized road width  w 0.55 
Roughness length for momentum above roof (m) zm,R  0.01 
Roughness length for heat above roof (m) zh,R  0.002 
Roughness length for momentum above canyon (m) zm,can 0.01 
Roughness length for heat above canyon (m) zh,can  0.002 
Surface thermal parameters 
Albedo of conventional (paved) roof  aR,c 0.10 
Albedo of vegetated roof (green-roof)  aR,v 0.15 
Albedo of wall  aW 0.25 
Albedo of ground  aG 0.15 
Emissivity of conventional roof  εR,c 0.95 
Emissivity of vegetated roof  εR,v 0.93 
Emissivity of wall  εW 0.95 
Emissivity of ground  εG 0.95 
Thermal conductivity of conventional roof (W m−1 K−1) kR,c 0.6 
Thermal conductivity of vegetated roof (W m−1 K−1) kR,v 1.0 
Thermal conductivity of wall (W m−1 K−1) kW 1.3 
Thermal conductivity of ground (W m−1 K−1) kG 1.2 
Heat capacity of conventional roof (J m−3 K−1) CR,c 1.9×106 
Heat capacity of vegetated roof (J m−3 K−1) CR,v 2.1×106 
Heat capacity of wall (J m−3 K−1) CW 1.5×106 
Heat capacity of ground (J m−3 K−1) CG 1.1×106 
Surface hydrological parameters 
Saturated soil water content (soil porosity)  Ws 0.48 
Residual soil water content  Wr 0.15 
Saturated hydraulic conductivity (m s−1) Ks 3.38×10−6 
Atmospheric parameters 
Entrainment rate at the inversion (m s−1) we 0.2 
Lapse rate of virtual potential temperature in free atmosphere (K 
m−1) γθv 0.006 
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2.4.1 Effects of canyon-aspect ratio 

The canyon-aspect ratio, defined as h/w, is a primary indicator of urban morphology 

in the SLUCM, and has a significant impact on the partitioning of radiative heat inside a 

street canyon (Theeuwes et al., 2014). Detailed formulation of the shortwave and 

longwave radiation in a street canyon, as functions of the canyon dimension, is presented 

in Appendix A. Increasing h/w values implies that the morphology of a built environment 

changes from sparse to dense building arrays or from shallow to deep street canyons. The 

variation of CBL height corresponding to h/w = 0.25, 2, and 8 is shown in Figure 2.6(a), 

where transition occurs at about 10.5 h after the formation of the CBL. According to Eq. 

23, the evolution of CBL height is strongly related to the surface sensible heat flux as 

shown in Figure 2.7, where a non-linear relation is found between Hs and h/w, i.e. larger 

h/w values lead to larger Hs in early morning and late afternoon but smaller Hs in the 

middle of the day. The main contributor to this non-linear effect could be the evolution of 

surface temperatures and heat fluxes inside the street canyon, governed by two 

counteracting processes, viz. the shading effect of the direct shortwave radiation and the 

trapping effect of diffuse shortwave radiation and longwave radiation. Schematics of the 

shading and trapping effects for urban canyons with different building aspect ratios are 

presented in Figure 2.8.  

To elaborate on the governing mechanisms, Figure 2.9 conceptually illustrates the 

relationship between the change in canyon surface temperature ∆Tcan, averaged over 

walls and ground, and building-aspect ratios and zenith angles. First, with the same 

magnitude of incoming solar radiation, canyon-aspect ratio is a significant factor in 

dictating ∆Tcan. Canyons with larger h/w, i.e. taller buildings or narrower streets, tend to 
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be warmer since more heat is trapped due to more reflections between canyon facets 

(trapping effect). In contrast, canyons with larger h/w are cooler because of a larger 

shaded area (shading effect). The combined effect due to h/w leads to a maximum ∆Tcan 

in the moderate h/w range, as shown in Figure 2.9(a) (Theeuwes et al., 2014). Secondly, 

the zenith angle of incoming solar radiation is also important for radiative trapping and 

shading effects. The zenith angle is directly related to (i) the number of reflections 

experienced by a radiative ray inside the street canyon, and (ii) the magnitude of the 

incoming solar radiation depending on the time of the day. If zenith angle is close to 90 

degrees, i.e. early morning or late afternoon, the trapping effect is significant due to 

multiple radiative reflections between canyon facets, while the shading effect is small due 

to low incoming solar radiation. In contrast, the street canyon exhibits a smaller trapping 

effect and a larger shading effect around noon when the zenith angle is close to zero. The 

resultant effect on ∆Tcan as a function of the zenith angle (or time of the day) for a certain 

h/w is shown in Figure 2.9(b). Overall, interactions between radiative trapping and 

shading effects lead to the non-linear effect of h/w on the sensible heat flux arising from 

the urban canopy during daytime (Figure 2.7), which is then manifested in the diurnal 

evolution of the CBL height (Figure 2.6a).  

The effect of h/w on the spatial distribution of θv in the mixed layer is presented in 

Figure 2.10. To illustrate the temporal variation of the θv profiles, six time points were 

selected for comparison, viz. early morning (0700 MST), late morning (1000 MST), noon 

(1200 MST), early afternoon (1400 MST), late afternoon (1600 MST) and dusk (1900 

MST). In the morning, when the trapping effect is dominant, the canyon with h/w = 8 

exhibits largest θv, while the differences among h/w cases decrease with time. This can be 
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interpreted as the trapping effect diminishes and the shading effect becomes dominant 

due to the change of zenith angle. This trend continues in the afternoon till the excess 

temperature arising from dense urban areas (large h/w) is completely offset by the 

shading effect. Eventually, close to dusk, the trapping effect overtakes the shading effect 

again when the solar angle of incidence decreases. But the combined effect of complex 

radiative interactions results in the street canyon with moderate h/w = 2 has the highest θv 

in the mixed layer at 1900 MST, consistent with the speculation illustrated in Figure 

2.9(a).  

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 2.6: Time evolution of the ABL height zh with different land-surface 
characteristics: (a) aspect ratio h/w = 0.25, 2 and 8; (b) roof albedo aR,c = 0.05, 0.2 and 
0.6; (c) roof vegetation fraction fveg = 0, 0.5 and 0.9; and (d) roof aerodynamic roughness 
zm,R = 0.1, 1 and 10 mm.  
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Figure 2.7: Time evolution of sensible heat in the surface layer Hs for canyon aspect 
ratio h/w = 0.25, 2 and 8, respectively. The corresponding kinematic heat flux ( )

s
wθ′ ′  

values are also indicated on the right (the bracket notation is used instead of overhead bar 
for ensemble mean on the axis). 

 

 

Figure 2.8: Illustration of radiative trapping and shading effects in street canyons with 
different aspect ratios, at different time of the day: (a) early morning, (b) noon and (c) 
late afternoon, with various angles of incidence of solar radiation. Note that the sketched 
canyon dimensions are not to scale and do not present the actual street canyons. 
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(a) 

 
(b) 

 
Figure 2.9: Conceptual sketches of the effects of radiative trapping and shading on 
changes of averaged canyon surface temperatures (∆Tcan) as a function of (a) aspect ratio 
and (b) time of day.  
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Figure 2.10: Model predictions of virtual potential temperature profiles in the ABL at 
0700, 1000, 1200, 1400, 1600 and 1900 MST for canyon aspect ratios h/w = 0.25, 2 and 
8. 
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conditions for a clear day in a desert city without clouds and aerosols in the ABL. In the 

presence of clouds and aerosols, the transport of shortwave and longwave radiation in the 

ABL, atmospheric stability and the land-surface energy partitioning are all modified 

(Stull 1988). Such complexities are not incorporated in the current numerical framework.   

 

Figure 2.11: Model predictions of virtual potential temperature profiles in the ABL at 
0700, 1000, 1200, 1400, 1600 and 1900 MST for roof albedo aR,c = 0.05, 0.2 and 0.6. 
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SLUCM-SCM framework, three vegetated roof fractions fveg = 0, 0.5, 0.9 were chosen to 

investigate the effect of green roofs on the CBL. The growth of ABL height is presented 

in Figure 2.6(c), while the distributions of θv and q in the mixed layer are shown in 

Figure 2.12 and Figure 2.13, for different fveg. In general, larger fveg values lead to greater 

latent heat and smaller sensible heat fluxes. Consequently, an increase in green roof 

fraction in urban canopies results in a significant cooling effect, which can effectively 

“penetrate” throughout the entire CBL. 

 

Figure 2.12: Model predictions of virtual potential temperature profiles in the ABL at 
0700, 1000, 1200, 1400, 1600 and 1900 MST for roof vegetation fraction fveg = 0, 0.5 and 
0.9. 
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Figure 2.13: Model predictions of specific humidity profiles in the ABL at 0700, 1000, 
1200, 1400, 1600 and 1900 MST for roof vegetation fraction fveg = 0, 0.5 and 0.9. 
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higher θv and q in the mixed layer, as shown in Figure 2.6(d), Figure 2.14, and Figure 

2.15 respectively. In the context of urban planning, particularly for UHI mitigation, 

results of this case study also demonstrate that altering roof roughness lengths is effective 

in regulating the transport of heat and moisture from built terrains to the overlying CBL, 

without fundamental changes to the urban morphology. 

 

Figure 2.14: Model predictions of virtual potential temperature profiles in the ABL at 
0700, 1000, 1200, 1400, 1600 and 1900 MST for roof aerodynamic roughness length zm,R 
= 0.1, 1 and 10 mm. 
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Figure 2.15: Model predictions of specific humidity profiles in the ABL at 0700, 1000, 
1200, 1400, 1600 and 1900 MST for roof aerodynamic roughness length zm,R = 0.1, 1 and 
10 mm. 

2.5 Summary 

In this chapter, a new SLUCM-SCM framework is developed for modelling the 

urban land-atmosphere interactions, with the SLUCM enabling the realistic 

representation of urban surface hydrologic processes including evapotranspiration, 

infiltration, irrigation, and sub-surface soil moisture. The model was validated against 

field measurements of net radiation and sensible and latent heat fluxes in urban canopy 

layers, as well as vertical distributions of temperature and humidity and the growth of 

ABL height. The coupled model is found to be robust and captures the vertical transport 

of heat and moisture from the surface layer to the overlying CBL via land-atmosphere 

interactions.  
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The numerical framework was then applied to study the impact of urban landscape 

characteristics, including morphology, albedo, vegetation fraction and aerodynamic 

roughness on the growth of the ABL and the distributions of temperature and humidity in 

the mixed layer under convective conditions. Results of case studies show that changes in 

land-surface properties (hydrothermal or geometric) have a significant impact on the 

evolution of the overlying boundary layer. In particular, the urban morphology, 

represented by the canyon-aspect ratio h/w, imposes non-linear effects on the ABL 

responses (zh growth and θv distribution in the mixed layer), through rather complex 

interactions of the opposing radiative trapping and shading effects co-evolving 

throughout the daytime. It is also found that widely-used urban planning strategies 

especially for surface UHI mitigation, such as cool and green roofs and modification of 

the vertical turbulent transfer through enhanced aerodynamic conductance, are effective 

in affecting the transport of momentum, heat and moisture in the urban boundary layers. 

Preliminary results from applications of the new SLUCM-SCM framework in the 

current study necessitate a few important questions for future research on urban land-

atmosphere interactions. First, model uncertainties inherent in the parameter space, as 

well as parametrization schemes, need to be carefully quantified. With a relatively large 

number of input parameters, model uncertainty and sensitivity analysis necessarily 

requires computationally efficient numerical procedures, e.g. using advanced stochastic 

methods.   
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CHAPTER 3  SENSITIVITY ANALYSIS OF THE COUPLED URBAN LAND-

ATMOSPHERE MODEL 

The coupled urban land-atmosphere model, i.e. SLUCM-SCM introduced in 

Chapter 2 is capable to predict the evolution of ABL dynamics. This modeling 

framework enables us to look into changes of atmospheric dynamics due to landscape 

modification using physical ABL parameterization, but not limited to the physics in the 

urban canopy layer (e.g. 2-m air temperature) prevailed in most previous study. However, 

the model predictability is significantly dependent on the accuracy of model input 

parameters. Therefore, sensitivity analysis is critical to quantify model uncertainties and 

improve model predictability. In this chapter, an advanced Monte Carlo method, viz. a 

Subset Simulation approach is adopted to test the model sensitivity (particularly ABL 

height, temperature and humidity) to urban land surface changes. The sensitivity analysis 

in this chapter will allow us to investigate some fundamental questions such as: How 

effective is a certain urban mitigation approach (such as the implementation of white roof 

or the installation of green roof) in modifying the CBL structure and to what elevation? 

What alternative strategies do we have in urban landscape planning in addition to the 

popular options such as green/white roofs? 

3.1 Subset simulation 

 In urban climate modeling, the capability of assessing critical responses of 

atmospheric processes to urban land use land cover change is of paramount significance 

for assessment of climatic extremes. The SLUCM-SCM framework coupling urban land 

surface processes and CBL dynamics involves a large number of input parameters, which 

leads to high dimensionality of input space for the following statistical analysis. Hence an 
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advanced Monte Carlo method, i.e. Subset Simulation (Au and Beck, 2001; Au and 

Wang, 2014) is adopted for subsequent sensitivity study, which is efficient in simulating 

rare (very small probability) events and robust for high dimensionality. Instead of 

simulating rare events as in direct MCS method with expensive computational cost, 

Subset Simulation breaks down extreme events with small exceedance probability into a 

sequence of more frequent events by introducing intermediate exceedance events. The 

targeted small exceedance probability is then expressed as a product of larger conditional 

probabilities of each intermediate event. In addition, MCMC technique is adopted based 

on effective accept/reject rules in Subset Simulations to improve computational 

efficiency.  

 As illustrated in Figure 3.1, the sampling technique employed in the Subset 

Simulation proceeds as follows: In level 0 (initial state), the unconditional samples of 

uncertain parameters follow a prescribed probability distribution function (PDF) (Figure 

3.1a). Conditional samples in level 1 are defined using a given intermediate conditional 

probability p0 (e.g. p0 = 0.1 stands for 10% of the level 0 samples will be selected as 

conditional samples) (Figure 3.1b). These samples are then generated by MCMC 

procedure using importance sampling at the exceedance probability P(Y > y1) = p0 (Y is a 

targeted response of model and y1 is a threshold value) (Figure 3.1c). Subsequent 

conditional sampling are conducted by MCMC with the intermediate exceedance 

probability target, i.e. P(Y > yi) = p0i (i = 1, 2, 3, … denoting conditional levels) until 

simulations reach the final target with pf  =  p0N, where pf  is the target probability of a rare 

event and N the total number of conditional levels (Figure 3.1d).  Using this method, a 

rare event, e.g. with target exceedance probability of pf = 10-4 (i.e. the probability of 
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occurrence is less than 1 in 10,000), can be effectively broken down into 4 different 

sampling (1 unconditional MCS and 3 subsequent conditional MCMC) levels, each 

samples a moderate conditional probability of p0 = 0.1. 

(a) 

 

(b)

 

(c) 

 

(d)

 

Figure 3.1: Schematic of Subset Simulation procedure: (a) level 0 (initial phase) 
sampling by direct MCS, (b) determination of level 1 samples F1 given conditional 
exceedance probability p0, (c) populating conditional samples in level 1 by MCMC 
procedure, and (d) forwarding algorithm to subsequent conditional levels till the target 
exceedance probability pf  =  p0N is reached. 

 To evaluate the statistical quality of Subset Simulation, the coefficient of variation 

(c.o.v., defined as the ratio of the standard deviation to the mean) was computed using a 

typical statistical average of 30 independent runs. The resulted c.o.v. of Subset 
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direct MCS is also shown for comparison. Estimate of c.o.v. of direct MCS can be 

analytically formulated as [(1−pi)/( pi NT)]1/2 (Au and Beck, 2001), where pi is the 

exceedance probability and NT the number of samples at corresponding MCMC level i. It 

is clear that the c.o.v. of Subset Simulation is significantly smaller than that of direct 

MCS, especially at the higher MCMC level (smaller probability), indicating less 

statistical error for exceedance probability estimates using Subset Simulation. 

 

Figure 3.2: Comparison of the coefficient of variation (c.o.v.) of exceedance probability 
in Subset Simulation and direct MCS.  
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3.2 Results of sensitivity analysis 

 In this section, Subset Simulation was applied to analyze the sensitivity of the 

coupled SLUCM-SCM to different input parameters. The meteorological forcing in the 

surface layer was prescribed using field measurements of an eddy covariance tower on a 

clear day (14 June 2012) provided by the Central Arizona-Phoenix Long Term Ecological 

Research (CAP LTER) project (Chow et al., 2014). The inputs of diurnal air temperature, 

relative humidity, and downwelling shortwave and longwave radiation are plotted in 

Figure 3.3, with the daytime from 6:00 am to 7:30 pm (local time) for the development of 

CBL. With the prescribed meteorological forcing, the surface sensible and latent heat 

fluxes are predicted by the SLUCM, which then in turn drive the SCM to estimate 

temperature and humidity profiles in the mixed layer. The input parameters of SLUCM-

SCM (including surface dimensional and hydrothermal parameters for the SLUCM and 

atmospheric parameters for the SCM) in the control case are presented in Table 2.2. Note 

that the initial soil water content for green roofs in the SLUCM is set as 90% saturated 

for the subsequent 13.5-hour of simulation after the beginning of CBL development such 

that the evaporative power of green roofs is not constrained by soil water availability. 

Among the model inputs as described in Table 2.2, 15 parameters are selected for 

subsequent sensitivity analysis, including 6 surface thermal parameters (i.e. aRv, CRv, kRv, 

aRc, CRc, kRc), 3 surface hydrological parameters (i.e. Ws, Wr, Ks), 4 surface dimensional 

parameters (i.e. r, h/w, Zm,Rc, Zm,Rv), and 2 atmospheric parameters (i.e. we, γθv) as listed in 

Table 3.1 (Note that the subscripts Rc and Rv denote conventional and green roof 

respectively). In addition, PDFs of these parameters are determined based on previous 

studies (Ouwersloot and Vilà-Guerau de Arellano, 2013; Wang et al., 2011a; Yang and 
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Wang, 2014b) and local conditions in our study area. Care must be taken here that this 

particular selection of uncertain parameter space is by no means exhaustive or unique, 

and is subject to the limitation of parameterization used in the numerical framework and 

the subsequent analysis can, at best, represents only the model physics. Since the initial 

parameter distribution by direct MCS are pivotal to the statistical sampling efficiency of 

Subset Simulations, PDFs for uncertain parameters are carefully selected to constitute a 

physically realistic parameter space. In addition, it was found that normal (Gaussian) 

distribution is more realistic for thermal and hydrological parameters with the expected 

value in a physical range having higher probability, while the distributions of 

dimensional (geometric) parameters are subject to engineering design and is therefore 

more uniform (Wang et al., 2011a). The two atmospheric parameters at the top of CBL 

(i.e. entrainment rate and lapse rate) are also set as uniform distribution to achieve same 

probability for different top boundary conditions according to Ouwersloot and Vilà-

Guerau de Arellano (2013).  

  



53 
 

Table 3.1: Summary of statistics of uncertain parameters used in the sensitivity study 

Type Parameter Unit PDF Min Max Mean Std dev 

Surface 
thermal 
parameters 

aRv - Normal 0.05 0.6 0.18 0.045 
CRv MJ m-3 K-1 Normal 0.1 2 0.72 0.18 
kRv W m-1 K-1 Normal 0.15 4 0.85 0.213 
aRc - Normal 0 1 0.15 0.0375 
CRc MJ m-3 K-1 Normal 0.1 4 1.52 0.38 
kRc W m-1 K-1 Normal 0.2 3 1.2 0.3 

Surface 
hydrological 
parameters 

Ws - Normal 0.3 0.6 0.44 0.074 
Wr - Normal 0.04 0.2 0.074 0.025 
Ks m s-1 Normal 0.1 100 1.7 0.43 

Surface 
dimensional 
parameters 

r - Uniform 0.3 0.8 - - 
h/w - Uniform 0.25 8 - - 
Zm,Rc mm Uniform 0.1 5 - - 
Zm,Rv mm Uniform 10 200 - - 

Atmospheric 
parameters 

we m s-1 Uniform 0.1 0.3 - - 
γθv K km-1 Uniform 3 7 - - 

 

  



54 
 

 (a) 

 

(b) 

 

Figure 3.3: The diurnal surface atmospheric forcing of June 14, 2012 (a clear day) in 
Phoenix, AZ: (a) downwelling shortwave and longwave radiation and (b) air temperature 
and relative humidity. The daytime data between starting point (6:00 am local time) and 
ending point (7:30 pm local time) are used to drive the SLUCM-SCM under convective 
condition. 
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3.2.1 Critical model responses 

 Three atmospheric variables, i.e. the critical CBL height (zh), the mean virtual 

potential temperature (θv), and the mean specific humidity (q) in the mixed layer are 

selected as model responses to assess the impact of urban land surface characteristics on 

the overlying atmosphere. The surface meteorological conditions as prescribed in Figure 

3.3 are kept as invariant, while only the surface landscape properties (i.e. thermal, 

hydrological, dimensional parameters) will be changed. For each monitored output, three 

different cases with the fraction of green roof vegetation of 0, 0.5, and 1.0, respectively 

were simulated. Note that vegetation on ground (though the model is capable of) is 

excluded in the current model setting, so roof vegetation is the only moisture source. This 

model set-up allows us to analyze exclusively the effectiveness of green roofs, one of the 

urban environmental mitigation strategies of particular interest to researchers and city 

planners. For all three cases, three conditional levels are used with a conditional 

probability of p0 = 0.1, which is equivalent to a sequence of exceedance probabilities of 

101, 10-2, and 10-3 for MCMC levels 1, 2 and 3, respectively. In total, 270 simulations 

were run (30 independent simulations per case for 9 cases) with 1450 realizations of the 

set of 15 uncertain parameters in each run to ensure the simulation results are statistically 

significant.  

Plots of exceedance probabilities versus various model responses averaged over 

30 simulations are presented in Figure 3.4. The variations of critical model outputs with 

three different green roof fractions indicate the sensitivity of roof greening degrees on 

CBL dynamics. In Figure 3.4 (a)&(b), the CBL height and virtual potential temperature 

of mixed layer under three conditions of green roof fractions (i.e. fveg = 0, 0.5, and 1) 
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were monitored. In general, larger green roof fractions lead to lower zh and smaller θv. 

This is expected since urban landscapes with larger fraction of vegetation distribute solar 

energy into more latent heat and less sensible heat, due to evaporative cooling. Less 

sensible heat and reduced surface temperature both lead to reduced CBL height and 

virtual potential temperature.  

 It is also noteworthy that there exist log concavities for the exceedance 

probabilities of both critical zh and θv with fveg = 1 (100% roof greening). The occurrence 

of log concavities is related to energy balance in the street canyon where nonlinear effect 

of canyon aspect ratio h/w was observed (Song and Wang, 2015a). Detailed explanations 

of aspect ratio effects will be described in Section 4.1. In Figure 3.4 (c), the specific 

humidity of mixed layer under three conditions of green roof fractions (i.e. fveg = 0.1, 0.5, 

and 1) was monitored. As roof is set as the only moisture source, urban land surface is 

completely dry with fveg = 0 and resulted in no moisture in the atmosphere in the absence 

of horizontal advection. Larger green roof fraction tends to produce higher q in the 

overlying CBL. In contrast to zh and θv, exceedance probability distribution of critical 

response of q does not exhibit log concavity because the moisture source is purely from 

roofs and canyon aspect ratio and building density have no contribution.   
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(a) 

 
(b) 

 
(c) 

 
Figure 3.4: Estimates of exceedance probabilities for model outputs of critical (a) CBL 
height, (b) virtual potential temperature, and (c) specific humidity with different green 
roof fractions. 

 

Critical CBL height (m)

Ex
ce

ed
an

ce
pr

ob
ab

ili
ty

500 1000 1500 2000 250010-4

10-3

10-2

10-1

100

fveg = 0
fveg = 0.5
fveg = 1

Critical virtual potential temperature in the mixed layer (K)

Ex
ce

ed
an

ce
pr

ob
ab

ili
ty

286 288 290 292 29410-4

10-3

10-2

10-1

100

fveg = 0
fveg = 0.5
fveg = 1

Critical specific humidity in the mixed layer (kg kg−1)

Ex
ce

ed
an

ce
pr

ob
ab

ili
ty

0.005 0.0052 0.0054 0.0056 0.005810-4

10-3

10-2

10-1

100

fveg = 0.1
fveg = 0.5
fveg = 1



58 
 

3.2.2 Statistical quantification of model sensitivity 

 In general, for an uncertain parameter, the deviation between the distribution of 

MCMC-generated conditional samples (in levels 1, 2, and 3) and the initial prescribed 

distribution sampled using direct MCS (level 0) indicates the significance of parameter 

sensitivity with respect to the corresponding model output. Figure 3.5 shows the 

comparison between conditional distribution (histograms) and initial distribution (dashed 

line) for two sample parameters, i.e. heat capacity of green roof CRv and canyon aspect 

ratio h/w respectively, for a typical simulation with fveg = 1.0 and critical q as model 

output. It is clear that the critical response of q is more sensitive to CRv with noticeable 

deviation of sample distribution at each conditional level (Figure 3.5a), while h/w is 

relatively insignificant in influencing q with small deviation of sample distribution 

(Figure 3.5b). The result is physical as variation of CRv affects roof surface energy 

balance, which in turn influences the humidity profile in the CBL through surface 

moisture flux. On the contrary, since green roofs are the only moisture source in our 

setting, altering h/w has negligible effect on the atmospheric moisture for the street 

canyon with no vegetation on ground or wall. 
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Figure 3.5: Histogram of conditional samples at different conditional levels for (a) a 
sensitive parameter, and (b) an insensitive parameter for a typical simulation with fveg = 
1.0 and critical q as model output. 
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where i is the conditional (MCMC) level index, N = 3 the total conditional levels, E[X] 

the statistical mean (expected value) of the original unconditional distribution in level 0 

(as in Table 3.1), E[X |Y > yi] the mean value of X at conditional level i, Y the value of 

monitored model response, and yi the threshold values at exceedance probability of each 

intermediate level i. The magnitude of PSI quantifies the significance of sensitivity, while 

the sign of PSI indicates the correlation between monitored output Y and input parameter 

X, i.e. positive PSI means increasing X will lead to an increase of output Y and negative 

PSI means increasing X will lead to a decreased Y. 

 PSI values of all uncertain parameters for three different monitored outputs, i.e. zh, 

θv, and q, with different green roof fractions are presented in Table 3.2. For better 

visualization, bar plots of PSI values are also shown in Figure 3.6. As shown in Figure 

3.6 (a) and (b), both zh and θv are highly sensitive to surface dimensional parameters, 

including normalized roof width r, canyon aspect ratio h/w, and roughness length of 

momentum for conventional roofs Zm,Rc. Note that r is positively correlated with critical 

zh and θv for conventional roofs while the correlation is negative for green roofs. Both 

critical zh and θv are negatively correlated with h/w and positively correlated with Zm,Rc. 

Moderate sensitivity of critical zh and θv is found with respect to thermal parameters of 

conventional roofs including albedo aRc, heat capacity CRc, and thermal conductivity kRc. 

Also note that there are opposite correlations for atmospheric parameters we and γθv: zh is 

positively correlated with we and negatively correlated with γθv; but the correlations are 

opposite for model output of critical θv. From Figure 3.6 (c), mixed layer q is highly 

sensitive to r and thermal properties of green roofs and moderately sensitive to Zm,Rv. 
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Physical mechanisms governing the model sensitivity and its implications to urban 

planning are discussed below. 

Table 3.2: Estimates of PSI values for critical CBL height zh, virtual potential 
temperature θv, and specific humidity q in the mixed layer, each averaged over 30 runs.  

Uncertain 
parameters 

zh  θv  q 

fveg = 0 0.5 0  fveg = 0 0.5 1  fveg = 0.1 0.5 1 

aRv -1.44 -0.86 2.67  -0.19 0.03 1.65  2.95 7.64 6.81 

CRv -0.46 3.12 0.21  -0.59 0.27 0.03  22.23 37.78 39.76 

kRv 0.54 -1.60 -0.17  1.13 -0.40 0.06  24.35 36.02 35.48 

aRc -15.67 -8.30 -1.60  -18.69 -11.79 -0.37  3.73 6.09 -0.98 

CRc -12.10 -6.41 -0.39  -14.49 -9.50 -0.29  5.93 2.26 -2.02 

kRc -17.60 -11.29 0.67  -23.33 -11.35 0.65  2.89 3.93 -0.91 

Ws 0.35 -1.36 0.24  -0.04 0.34 -0.17  -0.49 1.39 1.84 

Wr 1.63 1.41 2.70  0.44 0.22 2.26  3.59 1.11 1.00 

Ks -0.17 -2.48 0.64  0.24 -1.59 -1.89  -0.90 0.53 -1.94 
r 29.73 5.59 -25.08  34.60 2.65 -26.72  27.95 33.55 37.17 
h/w -33.23 -69.41 -87.32  -40.08 -79.89 -89.15  3.95 7.55 5.86 
Zm,Rc 38.53 34.42 1.00  42.58 24.38 -1.13  -9.76 -7.75 7.72 

Zm,Rv 0.26 -0.31 -5.36  0.53 -1.00 -0.26  -15.41 -16.77 -1.28 

we 20.16 19.78 10.91  -14.61 -14.93 -6.65  -1.45 -4.03 -1.55 

γqv -33.46 -32.33 -19.91  27.22 22.62 12.84  6.20 5.20 6.12 
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Figure 3.6: PSI values for model outputs of critical (a) zh, (b) mixed layer θv, and (c) 
mixed layer q, with different green roof fractions. 
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3.3 Implications of sensitivity results 

 The UHI effect has attracted significant effort, even heated debate from urban 

climate researchers and city planners. UHI is characterized by elevated temperature in 

built environments compared to surrounding rural areas (Oke, 1982). Major contributors 

of UHI include: (a) excess storage of thermal energy due to radiative trapping by street 

canyon and thermal properties of pavement materials, (b) reduced vegetation cover and 

evaporative cooling and (c) the release of anthropogenic heat, moisture, and greenhouse 

gases (Santamouris, 2014; Sun et al., 2013). Correspondingly, there are several popular 

UHI mitigation strategies, including (1) changing canyon geometry (characterized by 

aspect ratio and roughness lengths) to alter the energy distribution through radiative 

shading and trapping; (2) changing thermal properties, such as installing cool roofs or 

cool pavements to reflect more solar radiation by increasing surface albedo; (3) adding 

green spaces, such as green roofs to increase evapotranspiration in urban area. In the 

subsequent contexts, the effects of these UHI mitigation strategies on the overlying 

atmosphere are discussed based on the sensitivity study, and its implication to urban 

planning. 

3.3.1 Impact of urban morphology 

 Building geometry and density in an urban area have a significant impact on the 

partitioning and redistribution of solar energy in the surface layer, which in turn modulate 

the energy transport processes in the overlying atmosphere. The canyon aspect ratio h/w 

is a typical indicator of building geometry and density in urban planning (Ali-Toudert 

and Mayer, 2006; Krüger et al., 2011; Theeuwes et al., 2013). Low h/w signals low 

building (small h) or sparse building density (large w), while high h/w indicates high 
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building (large h) or intensive building density (small w). With variable aspect ratio 

ranging from 0.25 to 8, log concavity is found in the exceedance probability estimates for 

critical zh and θv in the case of fveg = 1.0 as shown in Figure 3.7 (a) and (b). This log 

concavity is correlated with the nonlinear effect of the canyon aspect ratio on CBL height 

and virtual potential temperature, due to two counteracting processes, viz. shading effect 

and radiative trapping effect in the street canyon, as investigated by (Song and Wang, 

2015a). To further test the nonlinear effect of h/w on CBL dynamics, the canyon aspect 

ratio is set as constant, and as a result the log concavity disappears as shown in Figure 

3.7. The log concavity of variable h/w demarks the switching from small h/w case to high 

h/w case with a nonlinear interaction between radiative shading and trapping effects. In 

addition, at mesoscale atmospheric modeling, the canyon aspect ratio is closely related to 

the surface roughness of a built terrain, which in turn modulates the surface aerodynamic 

resistance under convective condition and further complicate the nonlinear effect.  
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(a) 

 

(b) 

 

Figure 3.7: Illustration of the nonlinear effect of apect ratio h/w on critical model 
responses of (a) zh and (b) θv of the CBL. 

3.3.2 Impact of thermal properties 

 As shown in Figure 3.6, CBL states (zh, θv, and q) are moderately sensitive to 

surface thermal properties. Specifically, aRc, CRc, and kRc of conventional roofs are 

important parameters in modulating zh and θv, whereas q is sensitive to CRv and kRv of 

green roofs. Higher albedo causes more solar energy being reflected and less sensible 
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heat arising from roofs, leading to smaller zh and θv. Moderate model sensitivity to aRc 

demonstrates that implementation of white/cool roofs with higher reflectivity is an 

effective way in reducing not only environmental temperature in the urban surface layer, 

but also the one in the overlying mixed layer.  

 It is also noteworthy in Figure 3.6 that thermal properties of conventional roofs 

and those of green roofs have opposite correlation to different CBL dynamics, which can 

be explained by plausible mechanisms governing surface energy balance. In Figure 3.6 

(a)&(b), both boundary layer height (zh) and temperature (θv) are negatively correlated 

with albedo, heat capacity and thermal diffusivity of conventional roof.  In Figure 3.6 (c), 

boundary layer humidity (q) is positively correlated with heat capacity and thermal 

diffusivity of green roof. For a conventional roof, larger heat capacity implies that more 

thermal energy is needed to heat the roof, while higher thermal conductivity implies that 

less time is needed for heat dissipation, both leading to lower roof surface temperature 

(Wang et al., 2011b). Lower roof surface temperature will then reduce the surface 

sensible heat (given other conditions invariant), which will further lead to lower 

temperature in the mixed layer and lower CBL height according to Eqn. (2.15) and Eqn. 

(2.30) respectively. On the other hand, to increase boundary layer humidity (q), more 

latent heat from green roofs needs to be supplied so that sensible heat will decrease. This 

potentially causes green roof surfaces to be cooler than the atmosphere, giving rise to the 

“oasis” effect commonly observed over surfaces with significant evaporative cooling 

(Stull, 1988). As a result, sensible heat flux can be negative and flowing towards the 

surface. Under this condition, larger heat capacity and thermal conductivity of green 

roofs increase the ground heat flux, and are positively correlated to q via evaporative 
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cooling. Nevertheless, it is noteworthy that what PSI values can reveal is limited by the 

physics of the SLUCM-SCM framework, e.g. the impact of horizontal advection on the 

sensitivity is not accounted. The actual physics of urban land-atmosphere interactions 

involves more complicated land surface and atmospheric processes of heat and water 

transport in the integrated soil-atmosphere system due to complexity of surface energy 

partitioning (Yang and Wang, 2014a). For example, the existence of phase lags among 

land surface temperatures and energy budgets, due to subsurface heat transport with pore 

water advection, can lead to complex hysteresis loops (Sun et al., 2013; Wang, 2014) that 

are not adequately captured by the current numerical framework. 

3.3.3 Impact of green roofs 

 Due to their ability to modify energy and water budgets in the urban surface layer, 

city planners are increasingly using green roofs as an effective strategy to mitigate UHI 

effect (Sailor et al., 2012; Susca et al., 2011; Wang et al., 2016). In our study, four sets of 

green roof parameters are studied: (1) thermal parameters, i.e. aRv, CRv, and kRv; (2) 

hydrological parameters, i.e. saturated soil water content Ws, residual soil water content 

Wr, and saturated hydraulic conductivity Ks; (3) roof width r; and (4) green roof fraction 

fveg. Humidity in the CBL is moderately sensitive to green roof thermal properties with a 

positive correlation, as discussed above. In addition, all hydrological parameters are 

relatively insensitive as shown in Figure 3.6. This is plausibly due to the initial soil 

moisture condition (90% saturated), which is realistic provided green roofs are carefully 

maintained with constant irrigation. The assumption is also relevant in this study for more 

“manageable” urban surface characteristics for urban planning purpose. Sensitivity 

analysis of boundary layer dynamics related to soil water and hydrological properties of 
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other urban vegetation (such as urban lawns, urban agriculture, etc.), on the other hand, 

require further investigation (Cuenca et al., 1996; Song and Wang, 2015b).  

 In contrast, CBL dynamics are very sensitive to green roof width and areal 

fractions, as they determine the area of green roof in a built environment, which in turn 

strongly influence the soil water availability for evaporation. It is shown that larger green 

roof width r and fraction fveg lead to lower zh, smaller θv, and higher q in the mixed layer 

as a result of evaporative cooling by green roofs. This result is expected and clearly 

indicates the effectiveness of green roofs in regulating atmospheric dynamics above an 

urban area. To further test the effectiveness of green roofs, the same set of model outputs, 

viz. zh, θv and q was monitored with fveg ranging from 0% to 100% with an increment of 

10%. Threshold values at three conditional sampling levels are plotted in Figure 3.8, i.e. 

yi for i = 1, 2, and 3, with corresponding exceedance probability of 101, 102, and 103, 

respectively. For all output variables at different conditional levels, the results can be 

well fitted using linear relations with high R2 values: zh and θv decrease linearly with the 

green roof fraction, while q increases linearly with fveg. As far as UHI mitigation is 

concerned, the mean mixed layer temperature can be reduced by 3-4 K in either a more 

statistically probable (level 1) or a more statistically extreme (level 3) case with an 

increase of green roof fraction from 0 to 100%. It is noteworthy that in this study, the 

supply of soil water content to green roof systems is assumed to be ample (e.g. via urban 

irrigation). In an arid environment such as Phoenix, especially during drought, the trade-

off between water (for irrigation) and energy (cooling load) needs to be carefully 

measured by city planners. 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.8: Threshold values at different conditional levels as functions of green roof 
fractions for critical (a) zh, (b) mixed layer θv, and (c) mixed layer q. MCMC levels 1, 2 
and 3 correspond to exceedance probabilities of 101, 102, and 103, respectively.  
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3.3.4 Impact of roughness lengths 

 Roughness lengths of momentum and heat transfer are important land surface 

characteristics that regulate the aerodynamic resistance related to turbulent transport of 

mass, momentum and energy in the surface layer (Grimmond and Oke, 1999). 

Specifically, aerodynamic resistance is a function of roughness length based on MOST 

(Mascart et al., 1995; Wang et al., 2013). In this section, the roughness lengths of 

momentum at the roof level are set as uncertain parameters for both conventional and 

green roofs. The roughness lengths of heat transfer follow a simple parameterization that 

Zh = Zm/10 (Mascart et al. 1995). From Figure 3.6, both zh and θv in the mixed layer are 

highly sensitive to Zm,Rc, while Zm,Rv of green roofs plays an important role in regulating 

q. As indicated in Table 3.3, when critical zh is monitored, PSI value of Zm,Rc is 38.53% 

for fveg = 0 and 34.42% for fveg = 0.5; for critical θv, PSI of Zm,Rc is 42.58% for fveg = 0 and 

24.38% for fveg = 0.5. These high PSI values indicate a strong correlation between 

aerodynamic resistance of turbulent transfer and the CBL dynamics. This implies that 

altering roughness lengths of roofs (i.e. changing different vegetation types with different 

height over green roof and changing different materials over conventional roof) is an 

effective way to influence energy transport from surface to the overlying CBL without 

fundamental changes to the urban morphology or geometry in the street canyon.  

 In addition to urban landscape characteristics, the coupled SLUCM-SCM 

numerical framework also involves physical parameterizations at the top of CBL, i.e. in 

the inversion layer. The uncertainties of two atmospheric parameters, namely the 

entrainment rate we and the lapse rate of virtual potential temperature γθv are tested. From 

Figure 3.6 (a), zh increases with we and decreases with γθv, as expected according to Eq. 
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(2.23). From Figure 3.6 (b), impacts of we and γθv on critical mixed layer θv are opposite. 

This is because larger we or smaller γθv result in larger zh according, which further cause 

smaller non-local mixing effects, leading to decrease of θv in the mixed layer. 

3.4 Summary 

 In this chapter, an advanced Monte Carlo method is used to quantify the 

sensitivity of atmospheric boundary layer dynamics to urban land surface characteristics 

based on a coupled urban land–atmosphere model. Results show that in general the CBL 

dynamics over a built terrain are largely dictated by the urban geometry, roughness 

lengths, and hydrothermal properties of landscape materials. In particular, the urban 

geometry, represented by canyon aspect ratio, introduces a nonlinear impact on the CBL 

height and temperature. This is inherited from the nonlinear impact on bottom conditions 

of the CBL, viz. surface energy processes with two counteracting mechanisms of 

radiative trapping and shading in the street canyon. In addition, rooftop planning 

strategies strongly dictates CBL dynamics. Specifically, thermal properties of 

conventional and green roofs exhibit different impacts on CBL height, mixed layer 

temperature, and humidity, due to different surface energy partitioning. Besides, 

changing roughness lengths or thermal properties on rooftops (e.g. by planting different 

species of vegetation for green roofs, or using porous pavement materials for 

conventional roofs) can also be effective means in reducing urban environmental 

temperatures in both the surface layer and the CBL).  
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CHAPTER 4  IMPACT OF URBAN GREEN INFRASTRUCTURE ON URBAN 

MICROCLIMATE 

4.1 Urban greening 

Urban vegetation is effective in mitigating thermal stress (such as the heat island 

effect and extreme heatwaves), buffering stormwater, and fostering a healthy and friendly 

living environment, especially for arid cities by creating an “oasis” (Oke, 1973; Harlan et 

al., 2006; Yu and Hien, 2006; Bowler et al., 2010; Susca et al., 2011; Wilhelmi and 

Hayden, 2010; Schatz and Kucharik, 2015). Urban greening has been applied at different 

spatial scales by constructing public parks, residential yards, and rooftop gardens, etc. (Li 

et al., 2005; Gill et al., 2007; Bowler et al., 2010). For example, city parks with sizable 

vegetation covers usually cool the park area and the surrounding built environment (Yu 

and Hien, 2006; Oliveira et al., 2011). On the other hand, it is the concentrated built areas 

where people spend most of their time in working and living (Alexandri and Jones, 2008). 

The most popular way of urban greening at microscale is to vegetate envelopes of 

buildings, such as implementation of green roofs and walls (Alexandri and Jones, 2008; 

Pérez et al., 2011; Yang and Wang, 2014a), or to increase the abundance of vegetation in 

the built environment with parks, lawns and sidewalk trees (Spronken-Smith and Oke, 

1998; Yu and Hien, 2006).   

Vegetation and manmade materials differ significantly in hydrological, thermal, 

and aerodynamic properties, and therefore interact with the overlying ABL through 

different mechanisms (Bowler et al., 2010; Song and Wang, 2015a&b). The heat stress 

can be relieved by urban vegetation in different ways: (i) mesic vegetation (e.g. urban 

lawns and green roofs) is effective to reduce surface and near-surface air temperatures 
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compared with surrounding non-vegetated areas due to increased evapotranspiration, 

small heat capacity, and radiation attenuation of leaves (Park et al., 2012; Hedquist and 

Brazel, 2014), and (ii) xeric vegetation (e.g. xeric shade trees) can directly shade a 

pedestrian and limit reflected radiation in the street canyon (Martin and Stabler, 2002; 

Shashua-Bar et al., 2011; Martinelli et al., 2015). In the meanwhile, different vegetation 

types require different amounts of water for irrigation. Mesic urban landscape usually 

requires irrigation by sprinklers with high water demand, which is a sustainability 

challenge especially for arid and semi-arid cities (Gober et al., 2009; Guhathakurta and 

Gober, 2007). On the other hand, xeric trees are often irrigated by individual drip emitters 

with low water demand, which offers an attractive alternative to ameliorate urban heat 

problems (Martin and Stabler, 2002; Volo et al., 2014). Therefore, the vegetation type 

needs to be carefully selected in urban planning to achieve the balance between thermal 

comfort and water consumption. In addition, since urban vegetation modifies the surface 

energy and water budgets, these modifications may be further reflected in the dynamics 

of the overlying atmospheric boundary layer (ABL) due to land-atmospheric interactions.  

More specifically, two types of urban heat island (UHI) need to be differentiated 

when urban green infrastructure is used for mitigating the UHI effect, viz. the urban 

canopy heat island and urban boundary-layer heat island (Oke, 1976). The thermal 

environment in the urban canopy layer (roughly from ground to roof level) is directly 

related to the thermal comfort of urban residents, while the thermal environment in the 

urban boundary layer (above rooftop level to ~1000m) links the local microclimate and 

the regional climate (Arnfield, 2003). Urban land surface modification modulates the 

overlying boundary layer dynamics leading to environmental changes at larger scales, 
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which in turn affects the hydrological and ecological processes on land surface through 

urban land-atmospheric interactions (Song and Wang, 2016; Seneviratne and Stöckli, 

2008). Most recent urban environmental studies are focused on urban canopy layer 

(Georgescu et al., 2014; Li et al., 2014), while urban boundary-layer dynamics are rarely 

studied and in-depth analysis is hitherto lacking (Sharma et al., 2016). The objective of 

this study is to assess the impact of different urban greening strategies on UBL dynamics, 

particularly boundary-layer temperature and height. This study adds to the existing 

studies by bridging the gap by extending the locality in urban canopy layer studies to 

boundary layer environment, hence linking urban hotspots to global change at large. 

4.1.1 Mesic vegetation 

 Here two types of mesic vegetation, i.e. lawn and green roof are selected for 

investigation in this chapter. The main difference between lawn and green roof lie in that 

the soil layer has infinite depth and heat storage underground for lawn, whereas the soil 

layer depth above green roof is limited (Foster et al., 2011). Different depths of soil layer 

above roof relate to different types of green roofs, specifically, shallow soil for extensive 

roof and deep soil for intensive roof (Foster et al., 2011; Li et al., 2014). Both lawn and 

green roof mitigate urban heat stress by reducing sensible heat flux and increasing latent 

heat flux. The latent heat fluxes (LEveg) above lawn and green roof are calculated via 
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where Lv is the latent heat of water vaporization, ρa is the density of the air, q*veg is the 

saturated specific humidity over vegetated surface, qa is the specific humidity of the air, 

ra is the aerodynamic resistance, which is obtained from a closed-form relation proposed 
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by Mascart et al. (1995) as functions of surface roughness and atmospheric stability (see 

Appendix B for more details), rs is the stomatal resistance of vegetation, which can be 

calculated by relating to vegetation type and meteorological condition. The 

parameterization of rs is given in Eq. (2.12) (Noilhan and Planton, 1989; Niyogi and 

Raman, 1997), and reproduced here: 

 ,min / LAIs s SR w e Tr r f f f f= ,  (4.2) 

where rs,min is the minimum stomatal resistance related to the vegetation type, LAI is the 

leaf area index, f is the adjusting factor for meteorological variables with the subscripts 

SR, w, e, T denoting solar radiation, soil-water content, vapour pressure deficit and 

temperature respectively. 

4.1.2 Xeric tree 

Due to the compound shading effects of trees and walls, the radiative exchange 

inside the street canyon will be difficult to solve using analytical solution (Wang, 2014; 

Krayenhoff et al., 2014). Here, a stochastic “ray-tracing” method based on Monte Carlo 

algorithm is adopted to capture the radiative exchange processes inside the street canyon 

with xeric shade trees (Wang, 2014). For simplicity and without much loss of generality, 

the following assumptions are made: (1) the total incoming radiation is composed of 

bundles of rays with random directions and the trajectory of each ray is separately 

generated and traced, with its emitting directions generated by random numbers; (2) The 

presentation of tree crowns is simplified using cylindrical geometry with a radius of Rt, in 

the 2D big canyon, as shown in Figure 4.1; and (3) The dimensions of tree trunks are 

much smaller as compared to tree crowns, and their ray-blocking effect is negligible. 

Other dimensions for the geometric presentation of trees in the street canyon include the 
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vertical perpendicular distance from tree crown center to the ground ht, and the horizontal 

perpendicular distance from tree crown center to the nearest wall dt (see Figure 4.1).  

 

Figure 4.1: Schematic of urban land configuration and processes represented by a two-
dimensional big canyon: xeric and mesic landscapes are represented by irrigated lawns 
and shade trees respectively.  

 

 To trace a radiative ray emitted from each canyon facet, the direction of an 

emitted ray from a surface (surface i) is determined by the polar angle θi and the azimuth 

angle ηi, which are given by 

 2i Rθθ π= ,  (4.3) 

 ( )arcsini Rηη = ,  (4.4) 

where Rθ and Rη are independent random numbers. This emitted ray will be traced along 

a randomly generated direction using Monte Carlo algorithm. If absorbed by a generic 

surface j, it is counted into the view factor Fij.  Since all reflections between six canyon 

and tree facets (i.e. sky, ground, two facing walls, and two symmetric tree crowns) are 

considered, both i and j range from 1 to 6 (i ≠ j). Another assumption is made that all 

participating facets in the radiative heat exchange are Lambertian and gray, and all 

radiative reflections (shortwave or longwave) are diffuse in nature. Once the view factors 

between urban facets are determined, the radiative heat exchange for both shortwave and 
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longwave radiation can be readily obtained (Masson, 2000; Kusaka et al., 2001; Wang et 

al., 2013).  

Physically, with shade trees in the street canyon, the rays emitted from a generic 

canyon facet (road, walls or the sky) are possibly intercepted by tree crowns, which 

effectively reduces the view factors between all canyon surfaces (the shading effect) 

(Song and Wang, 2015b). Besides, the location and size of the tree will also influence the 

view factors. To illustrate, typical view factors from wall to ground (FWG) and wall to 

wall (FWW) were presented and compared for different horizontal tree locations dt, tree 

trunk heights ht, and tree crown sizes Rt, one in a turn. The canyon dimensions are: wall 

height xW = 4.5 m, roof width xR = 15 m, and road width xG = 20 m. The results of 

comparison are shown in Figure 4.2.  In Figure 4.2 (a), by keeping tree size as constant 

(ht = 2 m, Rt = 2 m) and moving the tree horizontally from the wall, i.e. dt ranging from 1 

m to 3 m, FWG increases while FWW remains nearly constant. The reason is when the 

tree is farther from a wall, fewer rays emitted from the wall are intercepted by trees and 

more rays will be received by the ground, thus resulting in larger FWG. On the other 

hand, FWW represents the average view factor seen by the two opposite-faced walls. As 

the size of the tree does not change (ht and Rt are kept as constant), roughly the same 

number of rays is exchanged between the two walls, leading to roughly constant FWW.  

By keeping tree location and tree crown size as constant (dt = 2 m, Rt = 2 m) and 

changing the tree trunk height ht from 1 m to 3 m, it is found that both FWG and FWW 

will decrease first and then increase with the turning point at 2.5 m (Figure 4.2 b). This 

non-monotonic pattern is physical, because when ht is small, the top of the tree crown is 

lower than the top of the wall (tree crown is completely within the canyon), a taller tree is 
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more effective in shading the canyon. As ht increases beyond the limit where tree crown 

top levels off with the rooftop (in this case ht = 2.5 m), part of the tree crown is outside 

the canyon and becomes less effective in shading the canyon facet (part of the shade is 

casted on roof instead of walls or ground), leading to a slight increase in FWG.  Lastly, if 

the tree location and the tree trunk height are kept as constant (ht = 2 m, dt = 2 m), both 

the FWG and FWW will decrease by increasing the tree crown radius, because more rays 

can be intercepted by the tree with larger tree crown radius (Figure 4.2 c). With the 

presence of trees in the street canyon, the view factors between all canyon facets are 

reduced and the emitted radiative heat received by the canyon facets are decreased, which 

contributes to the cooling of both walls and ground surfaces.  
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(a) 

 
(b) 

 
 
(c) 

 
Figure 4.2: Variations of view factors (FWG and FWW) for different (a) tree location dt, 
(b) tree trunk height ht, and (c) tree crown radius Rt.  
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4.2 Impact of various forms of green infrastructure 

In this section, the Phoenix Metropolitan in Arizona State, USA is selected as our 

testbed. Located in the northeast of the Sonoran Desert, Phoenix is known for its mild 

winters with mean temperature of 10 °C and hot summers with mean temperature of 

32 °C (Baker et al., 2002). This area consists of a wide variety of heterogeneous 

landscapes, including not only remnant desert and “gray” (buildings, roads, parking lots, 

etc.) landscapes, but also large green landscapes (mesic lawns, xeric trees, golf courses, 

urban lakes, etc.) for the sake of amenity, recreation, ecosystem service, stormwater 

harvesting, and urban heat mitigation (Baker et al., 2002; Foster et al., 2011; EPA, 2013). 

In particular, there are four common types of residential landscape in Phoenix (see Figure 

4.3), including desert (with little or no vegetation, and no irrigation system), xeric 

vegetation (plants that require drip irrigation systems with low water use, e.g. native 

desert trees), mesic (non-native plants such as lawns that require sprinkler irrigation 

systems with high water use), and oasis (a combination of xeric tree and mesic lawn) 

landscapes (Yabiku et al., 2008). 
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(a) 

 

(b) 

 
(c)  

 

(d)  

 
 

Figure 4.3: Four typical landscapes in Phoenix, Arizona: (a) desert, (b) mesic, (c) xeric, 
and (d) oasis landscapes. 

In the subsequent context, the coupled SLUCM-SCM framework will be applied to 

simulate different scenarios of green infrastructure in the Phoenix residential area. 

Summer meteorological conditions with cloud-free sunny days from June 13 to June 30, 

2012 were collected from EC Tower site (Table 2.1) to drive the model. The street 

canyon representation for a typical Phoenix residential area was set with the following 

dimensions: xW = 4.5 m, xR = 15 m, xG = 20 m, dt = 2 m, ht = 2 m (see Fig. 4.1). The 

model also accounts for the difference in water consumption of different vegetation types: 

irrigation is not applied for xeric trees; whereas for mesic lawns, the initial soil moisture 

was set as 90% saturated and the lawn is irrigated at 9 pm (local time) every night in the 

simulation period to maintain saturated soil moisture in the model so that the cooling 

efficiency of lawns is not restrained by water availability. 
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To study the relative impact of different forms of urban green infrastructure, 

different combinations of green infrastructure forms (i.e. tree, lawn, green roof) are added 

to the control case. The baseline greening scenario consists of the set of (i) various xeric 

tree crown radii ranging from 0 m to 1 m with an interval of 0.2 m, (ii) various mesic 

lawn fraction ranging from 0% to 50% with an interval of 10%, and (iii) various green 

roof coverage ranging from 0% to 50% areal fraction with an interval of 10%. The range 

of parameters is determined from practical concerns of deployment of urban green 

infrastructure in the study area (e.g. EPA 2013, Wang et al 2016).  

In total, nine combinations of green infrastructure strategies are tested (see Table 

4.1), including Scenarios (a), (b), (c) with nominal (as in the baseline scenario) variation 

of xeric trees and mesic lawns, and 0, 25%, and 50% green roof fraction respectively, 

Scenarios (d), (e), (f) with nominal variation of urban lawns and green roofs, and tree 

crown size of 0 m,  0.5 m, and 1 m respectively, and Scenarios (g), (h), (i) with nominal 

variation of trees and green roofs, and mesic lawns of 0%, 25%, and 50% lawn coverage, 

respectively. The intercomparison of simulated results of these scenarios is presented in 

Figures. 4.4-4.7, where the subplot captions are identical to the scenario numbers. 
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Table 4.1: Description of the nine scenarios of urban greening 

Scenario # Tree crown radius (m) Lawn fraction (%) Green roof fraction (%) 
a [0,1] [0,50] 0 
b [0,1] [0,50] 25 
c [0,1] [0,50] 50 
d 0 [0,50] [0,50] 
e 0.5 [0,50] [0,50] 
f 1 [0,50] [0,50] 
g [0,1] 0 [0,50] 
h [0,1] 25 [0,50] 
i [0,1] 50 [0,50] 

  

4.2.1 Boundary-layer temperature 

Figure 4.4 and Figure 4.5 show the impact of urban greening on the UBL thermal 

states, measured in terms of maximum and minimum UBL temperature respectively, 

averaged from the top of urban canopy layer to the top of UBL. Comparing Figure 4.4 

and Figure 4.5 clearly shows that the cooling effect of urban green infrastructure is more 

significant during daytime than nighttime. Despite the mechanisms of different urban 

vegetation in re-distributing the surface energy balance (evaporative cooling by lawns 

and green roofs and radiative shading by xeric trees), the potential cooling effect is 

constrained by the ultimate energy incident on urban facets. The absence of solar 

radiation during nighttime therefore ultimately limits the potential cooling effect of all 

forms of urban mitigation strategies, leading to less surface cooling, which in turn 

circumscribes the air temperature reduction in the nocturnal UBL.  

The first rows, viz. Figure 4.4 and 4.5 (a)-(c) clearly indicate that the cooling 

effect of green roofs is significant over all different landscapes. For a desert landscape 

(with no lawn or tree coverage), the maximum UBL temperature θv,max reduces by 1 K 
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per 25% green roof fraction increment, while the minimum UBL temperature θv,min 

decreases 0.6 K and 0.4 K, with green roof coverage increased from 0% to 25% and from 

25% to 50%. For an oasis landscape (with maximum urban lawns and trees), every 25% 

increase of roof greening reduces θv,max by 1-1.5 K, and θv,min by 0.6 K. Similarly, for 

xeric (slighter wetter than desert) and mesic (slighter drier than oasis) landscapes, the 

same degree of roof greening leads to a similar amount of cooling. The cooling effect of 

roof greening can also be seen from Figures 4.4 and 4.5 (d)-(i), where the distribution of 

contours for green roof fractions fv,R is roughly uniform in all these subplots, indicating a 

relatively uniform UBL cooling rate (0.5 K at daytime and 0.2 K at nighttime) per 

constant 10% increase of green roof coverage. Similar linear cooling effect of green roof 

on surface temperature has been reported in earlier studies (e.g. Yang and Wang 2014a). 

But the current study identifies that uniform cooling by green roofs can “penetrate” from 

urban surface into the overlying UBL under both stable and unstable conditions.  

Unlike green roofs, the cooling effect of urban vegetation in street canyons, viz. 

mesic lawns and shade trees, is apparently limited by the abundance of total vegetation 

cover. This can be seen from the change of contour patterns for lawns in Figures 4.4&4.5 

(d)-(f), and for trees in Figures 4.4&4.5 (g)-(i), which is more prominent during nighttime. 

For example, when there is no green roof, greening urban canyons with 50% mesic lawn 

can effectively reduce θv,max and θv,min by 2.5 K and 1.0 K respectively when no shade tree 

is present in the canyon (Figures 4.4d and 4.5d), whereas with the presence of shade trees 

of 1 m crown radii, the cooling effect of the same amount of lawn coverage decreases 

drastically to around 0.5 K and 0.2 K for θv,max and θv,min respectively (Figures 4.4f and 

4.5f). A similar degree of reduced UBL cooling effect is also observed for xeric 
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landscape with or without the presence of lawns (cf. Figures 4.4&4.5 g with 4.4&4.5 i). 

This phenomenon of constrained cooling effect in the UBL by urban lawns and trees in 

street canyons is consistent with that of the surface temperature (Wang et al., 2016), 

which can be attributed to the competition for available energy by increases in grass 

richness, tree shading, and nocturnal radiative cooling.  
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(a) Without green roof 

 

(b) 25% green roof 

 

(c) 50% green roof 

 
(d) Without tree 

 

(e) 0.5 m tree crown radius 

 

(f) 1.0 m tree crown radius 

 
(g) Without lawn 

 

(h) 25% lawn 

 

(i) 50% lawn 

 
Figure 4.4: Comparison of maximum mean UBL temperature (K) at daytime for 
different urban greening scenarios: the numbering of subplots corresponds to that of 
urban greening scenarios. Note that the mean UBL temperature is averaged throughout 
the mixed layer.  
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(a) Without green roof 

 

(b) 25% green roof 

 

(c) 50% green roof 

 
(d) Without tree 

 

(e) 0.5 m tree crown radius 

 

(f) 1 m tree crown radius 

 
(g) Without lawn 

 

(h) 25% lawn 

 

(i) 50% lawn 

 
Figure 4.5: As Figure 4.4 but for minimum mean UBL temperature (K) 
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4.2.2 Boundary-layer height 

The impact of urban greening on the evolution of UBL height for convective 

(daytime) and stable (nocturnal) boundary layers is shown in Figures 4.6 and 4.7, 

respectively. As the evolution of the UBL height is strongly modulated by the surface 

thermal state and upwelling (mainly sensible) fluxes (Song and Wang, 2015a), it is 

expected that patterns of the contour plots in Figures 4.6 and 4.7 follow closely those in 

Figures 4.6 and 4.7. In general, the overall degree of modification of the UBL height by 

green infrastructure is greater in daytime than that in nighttime, again attributable to the 

magnitude of absolute amount of available energy. Furthermore, with increased degree of 

urban greening, the convective boundary-layer (CBL) height shrinks (Figure 4.6) whereas 

the stable boundary-layer (SBL) height increases (Figure 4.7). The underlying physics is 

that urban green infrastructure reduces uprising surface sensible heat flux that is 

positively related to the CBL height but negatively correlated with the SBL height 

(Ouwersloot and de Arellano, 2013; Yamada, 1979).  

The modification of UBL dynamics by urban greening has strong implications for 

urban air quality and human health. Firstly, the typical UBL height is ~O (1 km) at 

daytime, but ~O (100 m) during nighttime. In addition, the daytime boundary layer is 

highly convective, featuring strong turbulent mixing that favors pollutant dispersion. In 

contrast, the nocturnal boundary layer is relatively stable and causes accumulation of 

pollutants (Stull 1988). Due to shallower boundary layer and more stable atmosphere, 

pollutants, particulate matters, and other scalars produced at the land surface tend to 

stagnate over a built environment at night, leading to severe degradation of 

environmental quality. With urban greening, the UBL height decreases at daytime but 
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increases at nighttime. Pollutant concentration at daytime could be increased due to a 

shallower boundary layer and weakened vertical mixing (Sharma et al., 2016). However, 

pollutant concentration at nighttime could be reduced due to a deeper boundary layer. 

Apart from the indirect influence on improving nocturnal air quality, urban green 

infrastructure impacts directly on air quality by absorbing the deposition of atmospheric 

pollutants (Currie and Bass, 2008; Pugh et al., 2012). To accurately quantify the impact 

of green infrastructure on urban air quality, the coupling of both physical and bio-

chemical processes is required and needs interdisciplinary research efforts (Tzoulas et al., 

2007; Yang et al., 2008). 

In addition, the impact of different urban vegetation on ABL height change varies, 

similar to their influence on the ABL thermal structure. The effect of green roofs is 

relatively independent of the urban greening in canyons, and remains effective in 

modulating both CBL and SBL heights in a relatively uniform rate of increase with green 

roof coverage. For example, an increase of 50% green roof coverage leads to the 

reduction of CBL height by 350 m, 350 m, 450 m, and 450 m (Figures 4.6a-c), as well as 

increase of SBL height by 70 m, 120 m, 130 m, and 130 m (Figures 4.7a-c), over desert, 

xeric, mesic, and oasis landscapes respectively.  

In contrast, urban-greening in the street canyon level is not as effective as green 

roof systems in a desert city for all landscape types. For example, urban trees of 0.5 m 

radius can change the CBL height by 300 m (decrease) and the SBL height by 80 m 

(increase) over a desert landscape (Figures 4.6&4.7, d-e), whiles over an oasis landscape 

(with 50% lawns), the changes of the CBL and SBL heights by the same trees are 

reduced to 100 m and 40 m, respectively (Figures 4.6&4.7, e-f). It follows that (i) the 
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boundary-layer structure is more susceptible to urban trees over desert landscapes than 

those over oasis landscapes; and (ii) the CBL height is more sensitive to tree crown sizes 

than the SBL. In street canyons, the shading effect (blockage of direct solar radiation) of 

trees dominates during daytime, whereas the longwave trapping effect (multiple 

reflections of diffusive radiation) is overwhelming during nighttime (Wang, 2014). 

Similar to trees, the effect of urban lawns in regulating UBL heights is also constrained 

by the overall degree of greening in street canyons, largely resembling their impact on 

ABL temperatures (see Section 4.2.1). It also follows that adding urban lawns is more 

effective in regulating ABL height over xeric than mesic landscapes. 
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(a) Without green roof 

 

(b) 25% green roof 

 

(c) 50% green roof 

 
(d) Without tree 

 

(e) 0.5 m tree crown radius 

 

(f) 1.0 m tree crown radius 

 
(g) Without lawn 

 

(h) 25% lawn 

 

(i) 50% lawn 

 
Figure 4.6: As Figure 4.4 but for maximum daytime boundary layer height (m)  
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(a) Without green roof 

 

(b) 25% green roof 

 

(c) 50% green roof 

 
(d) Without tree 

 

(e) 0.5 m tree crown radius 

 

(f) 1.0 m tree crown radius 

 
(g) Without lawn 

 

(h) 25% lawn 

 

(i) 50% lawn 

 
Figure 4.7: As Figure 4.4 but for maximum nighttime boundary layer height (m) 

4.3 Summary 

This chapter evaluates the impact of urban green infrastructure on urban 

boundary-layer dynamics over a variety of landscapes using a coupled land-surface-

atmosphere modeling framework. In general, the implementation of green infrastructure 

is found to be effective in regulating the thermal states of the UBL, mainly via the re-

partitioning of the urban land surface energy balance and the resulting surface cooling. 

Constrained by the supply of available energy, the effect of urban greening, specifically 
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on temperature and boundary-layer height, is more significant on the convective 

atmospheric layers during daytime than the stable ones. It is also found that the effect of 

roof cooling, by vegetation or use of reflective materials, is roughly proportional to the 

degree of roof greening (viz. the areal fraction of coverage), and remains effective despite 

the presence of urban vegetation in street canyons. However, vegetated roof has a greater 

cooling capacity than reflective roof especially at nighttime. Specifically, the coverage of 

90% vegetated roof lead to additional ~1 K than the reflective roof. On the other hand, 

the cooling effect of urban lawns and shade trees depends on the initial state of urban 

greening and the overall abundance of green infrastructure in the neighborhood. The 

marginal effect of increasing urban lawns and trees diminishes with the total vegetation 

coverage as well as the soil moisture state (i.e. they are more effective over desert/xeric 

than mesic/oasis landscapes). With the presence of big trees (such as with tree crown 

radius of 1 m), the cooling effect of added lawn will be significantly restrained. It is 

noteworthy that with little demand of water via the drip irrigation system, shade trees 

over xeric landscapes present a promising urban mitigation strategy as an alternative to 

more traditional water-demanding urban lawns. This is particularly attractive to house-

owners and city planners in an arid or semi-arid environment like Phoenix. Moreover, 

note that the modeling framework used in this study resolves the vertical transport 

processes of heat and scalars in the soil-surface-atmosphere continuum. As our focus is 

on alleviating surface- and boundary-layer thermal stress using green infrastructure, this 

model setting helps to single out the impact of landscape modification and is 

representative of calm and clear weather conditions with a UBL dominated by free 

convection; these conditions are particularly relevant for our study of a desert valley city.   
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CHAPTER 5  SUMMARY AND FUTURE PERSPECTIVES 

5.1 Summary 

This dissertation presents a comprehensive effort focused on the development of a 

novel modeling framework of urban land-atmosphere interactions and its implications to 

urban environment. A new urban land-atmosphere coupling framework, viz. SLUCM-

SCM is developed for modelling the urban land-atmosphere interactions in this study, 

with the SLUCM enabling the realistic representation of urban geometry and green 

infrastructure and the SCM capturing both convective and stable boundary layer 

dynamics. The model is test against field measurements over multiple locations for the 

energy budgets in the urban canopy layer such as net radiation and sensible and latent 

heat fluxes, as well as ABL dynamics including profiles of temperature and humidity and 

the evolution of ABL height. The validated model framework is used to study the impact 

of urban land surface characteristics, including urban geometry, albedo, vegetation 

fraction and aerodynamic roughness on the growth of the ABL and the distributions of 

temperature and humidity in the mixed layer under convective conditions. Since model 

performances largely depend on the accuracy of input parameters, to quantify the model 

sensitivity to the input model parameters, an advanced Monte Carlo method, i.e. Subset 

Simulation was adopted to quantify the sensitivity of ABL dynamics to urban land 

surface changes based on the SLUCM-SCM framework.  

Results of case studies and sensitivity analyses show that changes in land-surface 

properties (hydrothermal or geometric) have a significant impact on the evolution of the 

overlying boundary layer. In particular, the urban street canyon geometry, represented by 

the canyon-aspect ratio h/w, imposes non-linear effects on the ABL responses (zh growth 
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and θv distribution in the mixed layer), through rather complex interactions of the 

opposing radiative trapping and shading effects co-evolving throughout the daytime. It is 

also found that widely-used urban planning strategies such as the implementation of cool 

and green roofs as well as modification of the vertical turbulent transfer through 

enhanced aerodynamic conductance, are effective in affecting the transport of momentum, 

heat and moisture in the urban boundary layers. 

In particular, the impact of urban green infrastructure on urban boundary layer 

dynamics is assessed. The implementation of green infrastructure (such as shade trees, 

lawns and green roofs) is effective in regulating the UBL dynamics (specifically UBL 

temperature and height) via the re-partitioning of the urban land surface available energy 

into more latent heat flux and less sensible heat flux. The effect of urban greening is more 

significant at daytime than at nighttime due to the difference of total available energy. 

Besides, the cooling effect of roof greening is relatively independent from that of street 

greening. However, the cooling effect of implementing additional street green 

infrastructure (i.e. urban lawns and shade trees) is more effective over desert/xeric than 

mesic/oasis landscapes. Besides, shade trees over xeric landscapes with little water 

demand present a promising urban mitigation strategy as an alternative to more 

traditional water-demanding urban lawns, which could be particularly attractive to house-

owners and city planners in an arid or semi-arid environment like Phoenix. 

5.2 Future perspectives 

The current SLUCM-SCM framework only resolves the typical daytime 

(convective) and nighttime (stable) schemes for the urban boundary layer. The inclusion 

of early morning and early evening transitions for boundary layer schemes over urban 
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surfaces will be of significant importance to complete the diurnal cycle physically and to 

resolve air quality issues at the transitional periods (Wildmann et al., 2015; Sastre et al., 

2015). The early morning transition from a SBL to a CBL can be divided into two phases 

(Stull 1988): (1) warming of land surface enables the growth of a shallow CBL below the 

remaining nighttime inversion layer, and (2) thermals rise through the whole ABL so that 

the top of CBL reaches the bottom of remaining inversion layer, forming the fully 

developed CBL. The early evening transition from a CBL to a SBL is induced by 

radiative cooling at the ground surface and can be divided into several phases including 

the sunset, the reversal of surface heat flux, and the establishment of a SBL. 

Measurements of transition periods are often conducted via remotely-piloted aircrafts 

with complementary instruments such as scintillometers and sonic anemometers. The 

vertical profiles of turbulent surface heat fluxes can be simulated via inverse models and 

large eddy simulations (LES), but simulating moisture flux remains a challenge (Bange et 

al., 2006).  

Secondly, more realistic representations of urban green infrastructure can be 

incorporated to better resolve the balance and transport of urban surface energy, water 

and carbon budgets (Bowling et al., 2010). For example, more detailed dynamics, root-

soil physics and irrigation schemes should be considered when parameterizing mesic 

vegetation such as lawn and green roof. Besides, the model framework should take into 

account more practical concerns of green roof implementation above variable rooftop 

constructions (e.g. flat vs. sloped). More green roof parameters such as the roof slope, 

vegetation diversity, vegetation albedo, irrigation schedules, etc. could be added into the 

current model framework. Moreover, the tree parameterization in the current model is 
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limited to xeric tree (which has little water demand and small evapotranspiration potential) 

by only considering the effect on modifying radiative exchange processes. In the future, 

tree parameterization schemes could be improved in several ways, including (1) adding 

more realistic evapotranspiration schemes for trees so that the effect of mesic trees can be 

better resolved; (2) adding other physical parameters of trees such as tree species, tree 

crown shapes, leaf albedo, etc. 

In addition, by incorporating the realistic biological effect of vegetation and soil as 

well as anthropogenic effect (such as the inventory of anthropogenic emissions from 

vehicular traffic, human metabolism, electricity consumption, heating fuels, etc.) (Sailor 

and Lu, 2004), atmospheric dynamics of temperature, carbon and greenhouse gases in 

urban areas can be better resolved (Song and Wang, 2016b). In particular, by coupling 

the current model framework with bio-chemical schemes such as a big-leaf dry 

deposition model (Yang et al., 2008) which incorporates the dynamics of reactive scalars 

(such as O3, SO2, etc.), the impact of urban green infrastructure on air pollution issues 

can be better explored. Specifically, both the direct impact of vegetation in absorbing air 

pollutants and the indirect impact of vegetation in regulating the UBL height can be 

resolved. 

It is also noteworthy that the current modeling framework is limited by its 

inadequacy in capturing the horizontal advection and synoptic wind shear effects. In 

addition, since it is tested in the one-way (bottom-top) offline (stand-alone) setting, the 

current numerical framework does not have predictive skills, without projections of 

future atmospheric forcing. Thus it is of critical importance to run the model in an online 

setting (with two-way coupling including bottom-up and up-bottom feedbacks), e.g. by 
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incorporating the framework into a mesoscale numerical weather prediction model such as 

the WRF model, which remains our future work. This way, the proposed numerical 

framework can be driven by meteorological forcing from numerical predictions at 

regional scales and become predictive for scenarios of city-scale land-atmosphere 

interactions downscaled from future climatic projections. With land-surface processes 

represented by the latest SLUCM, online simulations using the coupled framework 

should help to provide important guidelines for future development of cities with 

sustainable urban planning, e.g. UHI mitigation and adaptation strategies. 
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APPENDIX A  

CALCULATION OF NET RADIATION IN A STREET CANYON 
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The net shortwave and longwave radiative fluxes for walls and ground inside a 

street canyon can be computed using a two-reflection model (Kusaka et al. 2001, Wang et 

al. 2013) as: 

  , (A1) 

 , (A2) 

 , (A3) 

  , (A4) 

where SW and SG are the net shortwave radiative fluxes for wall and ground respectively, 

LW and LG are the net longwave radiative fluxes for wall and ground respectively, SD and 

SQ are the direct and diffuse solar radiative fluxes, a is the albedo (solar reflectivity), Fi→j 

are the view factors for radiation emitted from a generic surface i and received by surface 

j, and lshadow is the normalized shadow length. The shadow length is estimated by (Kusaka 

et al. 2001), 
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where θz is the solar zenith angle, θn is the difference between the solar azimuth angle 

and canyon orientation. All view factors for radiative exchange between canyon facets 

are directly related to the aspect ratio h/w (Wang 2010).  
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APPENDIX B  

CALCULATION OF AERODYNAMIC RESISTANCE 
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 Based on Monin-Obukhov similarity theory, the aerodynamic resistance (ra) can 

be obtained by (Mascart et al. 1995): 

                                              ,                                                     (B1) 

                                              ,                                                 (B2) 

                      ,                               (B3)                                    

                                             ,                                      (B4) 

                                                     ,                                                       (B5) 

                                   ,                            (B6)  
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where Ua is wind speed; κ is the von Karman constant; zR is the roof elevation; zmR is the 

roughness length of momentum above roof; zhR is the roughness length of heat above roof; Rib is 

the bulk Richardson number; some empirical constants include C = 0.74, b = 9.4, b’ = 4.7 when 

Rib ≤ 0.21, b’ = 1 when Rib ＞ 0.21. 
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