Dust Destruction in Expanding Circumstellar Envelopes

Carl Covatto (ASU)

A model of a two-component wind (gas and dust) driven by radiation pressure on dust is developed. Equations of motion for the gas and dust are coupled through a collision term which accounts for the transfer of momentum between the two components. Spherical amorphous carbon grains are assumed to form instantaneously near the sonic point of the flow with either a power law or log-normal size distribution. The grain size distribution is then modified by physical and chemical sputtering. Physical sputtering of grains occurs when the dust drift velocity exceeds a velocity threshold which depends upon the surface binding energy of the dust material as well as the the mass of the impinging gas atoms. Chemical sputtering is the removal of atoms from the surface of a grain by chemical reactions with atoms in the gas phase.

To study the effects of physical and chemical sputtering the size distribution of dust grains is calculated at every point in the flow. Results show that physical sputtering can be important in modifying the grain size distribution when the luminosity of the central star exceeds few $\times 10^4 L_\odot$ and only acts on the largest grains. The smallest grains are closely coupled to the gas and are not modified by physical sputtering. Chemical sputtering is important in modifying the grain size distribution for stellar effective temperatures ~ 2000 K and stellar luminosities $\lesssim 10^4 L_\odot$. This allows the grains to remain in the region where the density is high and have their temperatures near ~ 600 K. All grain sizes are modified by chemical sputtering, however it affects the small grain sizes the most.

This work was funded in part by a NASA Space Grant.

Abstract submitted for AAS [] meeting AAS197

Date submitted:Electronic form version 3.0 (21 June 2000)
American Astronomical Society Abstract Form

AAS Category 5
Running # 0
Session 0.00

Presentation type: dissertation

Presented by

Carl Covatto
Arizona State University
Deptartment of Physics and Astronomy
Tempe, AZ 85287
Phone: 480-965-3561
Fax:
Email: carl.covatto@asu.edu

Special instructions:

Membership number (presenting author or sponsor): 10117

☐ New address
☐ Session chair
☐ First AAS presentation
☐ New Ph.D.
☐ Newsworthy

AV Requirements:

Online version points to URL:
Online email inquiries directed to: