Please note that there is more than one way to answer most of these questions. The following only represents a sample solution.

Problem 1: Linz 2.1.7(b)(c)(g), 2.2.7. and 2.2.11

2.1.7: Find dfa’s for the following languages on Σ = \{a, b\}

(b): $L = \{w : |w| \mod 5 \neq 0\}$

A dfa for L is given by the following transition graph:

(c): $L = \{w : n_a(w) \mod 3 > 1\}$

A dfa for L is given by the following transition graph:
(g): $L = \{w : |w| \mod 3 = 0, |w| \neq 6\}$

A dfa for L is given by the following transition graph:

2.2.7: Design an nfa with no more than five states for the set $\{abab^n : n \geq 0\} \cup \{aba^n : n \geq 0\}$.

An nfa for the set is given by the following transition graph:

2.2.11: Find an nfa with four states for $L = \{a^n : n \geq 0\} \cup \{b^na : n \geq 1\}$.

An nfa for L is given by the following transition graph:
Problem 2: Linz 2.39 and 2.3.12

2.39: Let L be a regular language that does not contain λ. Show that there exists an nfa without λ-transitions and with a single final state that accept L.

Since L is regular there exists a dfa, $D = (Q, \Sigma, \delta, q_0, F)$, with an associated transition graph, G_D, such that $L(D) = L$. We will construct an nfa $N = (Q \cup \{q_f\}, \Sigma, \delta', q_0, \{q_f\})$ where $q_f \notin Q$ by giving its transition graph G_N as follows:

1. From G_D, remove the final label from every final state (making them nonfinal states).
2. Add a new state q_f and label it as a final state.
3. For every state q_i, if there is a transition from q_i to a state in F on input $a \in \Sigma$, then add a transition from q_i to q_f on input a.

Clearly, N has a single accept state, q_f, and no λ-transitions (since D is a dfa and we did not add any λ-transitions in our construction of N). We will now show that $L(N) = L$. First note that since $\lambda \notin L$, every $w \in L$ can be written as $w = va$ for some $v \in \Sigma^*$ and an $a \in \Sigma$.

Now, $w = va \in L$ iff there is a walk on G_D labeled with w from q_0 to q_i with $q_i \in F$
iff there is a walk on G_D labeled with v from q_0 to q_j and a transition from q_j to q_i on input a
iff there is a walk on G_N labeled with v from q_0 to q_j and a transition from q_j to q_f on input a
(since every transition in G_D is a transition in G_N and from step (3) in the construction of G_N)
iff there is a walk on G_N labeled with w from q_0 to q_f
iff $w \in L(N)$.

Thus, $w \in L$ iff $w \in L(N)$. Therefore we conclude that $L(N) = L$ and that for any regular language that does not contain λ, there exists an nfa without λ-transitions and with a single final state that accept L.

2.3.12: Show that if L is regular, so is L^R.

Since L is a regular language, we can construct a corresponding dfa, N, such that $L(N) = L$ (For every regular language, there is a corresponding dfa, by definition, and for every dfa, there is an equivalent nfa).

By definition, L^R consists of all strings in language L in reverse order. We will construct a nfa, N_R, representing L^R such that $L(N_R) = L^R$. N_R will contain an additional start state with λ-transitions to the final states of N. The direction of every transition in N is reversed. Also, the start state of N will be the final state of N_R. The construction of nfa N_R is as follows:

Let $N = (Q, \Sigma, \delta, q_n, F)$

$N_R = (Q \cup \{q_0\}, \Sigma, \delta_r, q_r, \{q_n\})$

Set of states of N_R = set of states of N along with $q_0 = Q \cup \{q_r\}$

$\Sigma = $ alphabet of $N_R = $ same as N

$q_r = $ start state of N_R

$\{q_n\} = $ set of final states of $N_R = $ start state of N

Transition function:

$\delta_r(q_r, a) = \{q_1 : \delta(q_1, a) = q\}$

$\delta_r(q_r, \lambda) = F$
\[\delta_r(q_r, a) = \emptyset, \text{ if } a \neq \lambda \]

Now we will show that \(L^R = L(N_R) \). \(w \in L^R \) iff \(w^R \in L \) iff there is a walk on the transition graph of \(N \) with label \(w^R \) from \(q_n \) to some \(q_i \in F \) iff there is a walk on the transition graph of \(N_R \) from \(q_r \) to \(q_i \) with label \(\lambda \) and a walk from \(q_i \) to \(q_n \) with label \(w \) (Following the reverse of every transition in the original graph) iff \(w \in L(N_R) \).

Since \(L_R \) can be represented by a nfa, it is regular (by equivalence of nfa to dfa, and dfa to regular language).

Problem 3: Linz 2.1.8

2.1.8: A run in a string is a substring of length at least two, as long as possible and consisting entirely of the same symbol. For instance, the string \(abbaabaab \) contains a run of \(b \)'s of length three and a run of \(a \)'s of length two. Find dfa’s for the following languages on \(\{a, b\} \).

(a): \(L = \{ w : w \text{ contains no runs of length less than four} \} \).
(b): \(L = \{w : \text{every run of } a\text{'s has length either two or three}\} \).

(c): \(L = \{w : \text{there are at most two runs of } a\text{'s of length three}\} \).
(d): \(L = \{ w : \text{there are exactly two runs of } a \text{'s of length 3} \}. \)

Problem 4: Linz 2.2.22

2.2.22: Let \(L \) be a regular language on some alphabet \(\Sigma \), and let \(\Sigma_1 \subset \Sigma \) be a smaller alphabet. Consider \(L_1 \), the subset of \(L \) whose elements are made up only of symbols from \(\Sigma_1 \), that is,
\[L_1 = L \cap \Sigma_1^* . \]
Show that \(L_1 \) is also regular.

Since \(L \) is a regular language, there should be a dfa, \(N \), representing \(L \) such that \(L(N) = L \), where \(N = (Q, \Sigma, \delta, q_0, F) \).

Since \(L_1 \) is made up of strings with alphabets from \(\Sigma_1 \), \(\Sigma_1 \subset \Sigma \), and \(L_1 \) is a subset of \(L \), \(L_1 \) contains only strings that are accepted by \(L \) as well. We can construct a dfa, \(M \), for \(L_1 \) as follows:

1. From the transition graph of \(N \), remove every transition that is labeled with some \(a \notin \Sigma_1 \).

Now we will show that \(L(M) = L_1 \). \(w = a_1a_2 \ldots a_n \in L_1 \) iff there is a walk on the transition graph of \(N \) with label \(w \) from \(q_0 \) to some \(q_i \in F \) and every \(a_i \in \Sigma_1 \) iff there is a walk on the transition graph of \(M \) from \(q_0 \) to \(q_i \) with label \(w \) (it will be the exact same path as it was in \(N \) iff \(w \in L(M) \).

Since \(L_1 \) can be represented by a dfa, it is regular.
Problem 5: Linz 2.3.3 and 2.3.8

2.3.3: Convert the following NFA into an equivalent DFA (see textbook for the diagram).

2.3.8: Find an NFA without λ-transitions and with a single final state that accepts $L = \{a\} \cup \{b^n : n \geq 1\}$.

Noting that $\lambda \notin L$, we can use the technique given in 2.3.9 (Problem 2) and we get the NFA given by the following transition graph: