

CSE 355 HOMEWORK TWO

DUE 26 FEBRUARY 2013, START OF CLASS

(1) Give a regular expression to generate
 (a) \{ w \in \{0, 1\}^* : w \text{ has at least three 0s and at most two 1s} \}
 (b) \{ w \in \{0, 1\}^* : w \text{ contains the substring 101 but does not contain the substring 1101} \}
 (c) \{ w \in \{0, 1\}^* : w \text{ does not have 00 or 11 as a substring} \}
 (d) (not to be graded) \{ w \in \{0, 1\}^* : w \not\in 1^*0^* \}
 (e) (not to be graded) \{ w \in \{0, 1\}^* : w \text{ has even length and an even number of 1s} \}

(2) Convert each of your regular expressions from Question 1 to an equivalent NFA using the methods from class. ((a), (b), (c) parts only to be graded)

(3) A grammar \(G = (V, \Sigma, R, S) \) is regular if every rule is of the form \(A \to \epsilon \), \(A \to x \), or \(A \to xB \) where \(A, B \in V \) and \(x \in \Sigma \).

 • Show that every language generated by a regular grammar is a regular language.
 • (not to be graded) Show that if a language is regular, it is generated by some regular grammar.

(4) The reversal \(w^R \) of a string \(w = w_1 \cdots w_k \) with \(w_i \in \Sigma \) for \(1 \leq i \leq k \) is the string \(w = w_k \cdots w_1 \). The reversal \(L^R \) of a language \(L \) is \(L^R = \{ w^R : w \in L \} \). Using the inductive definition of regular expressions, show that if \(L \) is regular, so is \(L^R \).

(5) (not to be graded) Suppose that \(L \) is a language that we know to be regular, and suppose that \(L' \subseteq L \). Can we conclude that \(L' \) is regular? Why, or why not?