1. (7.1, 10 points) Let M be the PDA defined by

$$Q = \{q_0, q_1, q_2\}$$
$$\Sigma = \{a, b\}$$
$$\Gamma = \{A\}$$
$$F = \{q_1, q_2\}$$

$$\delta(q_0, a, \lambda) = \{[q_0, A]\}$$
$$\delta(q_0, \lambda, \lambda) = \{[q_1, \lambda]\}$$
$$\delta(q_0, b, A) = \{[q_2, \lambda]\}$$
$$\delta(q_1, \lambda, A) = \{[q_1, \lambda]\}$$
$$\delta(q_2, b, A) = \{[q_2, \lambda]\}$$

a) Describe the language accepted by M.

b) Give the state diagram of M.

c) Trace all computations of the strings aab, abb, aba in M.

d) Show that $aabb, aaab \in L(M)$.

Solution:

a) The PDA M accepts the language $\{a^i b^j \mid 0 \leq j \leq i\}$. Processing an a pushes A onto the stack. Strings of the form a^i are accepted in state q_1. The transitions in q_1 empty the stack after the input has been read. A computation with input $a^i b^j$ enters state q_2 upon processing the first b. To read the entire input string, the stack must contain at least j A’s. The transition $\delta(q_2, \lambda, A) = [q_2, \lambda]$ will pop any A’s remaining on the stack.

b) The state diagram of M is

![State Diagram](image)

c) The computations of aab in M are as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>aab</td>
<td>λ</td>
</tr>
<tr>
<td>q_1</td>
<td>aab</td>
<td>λ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>aab</td>
<td>λ</td>
</tr>
<tr>
<td>q_0</td>
<td>ab</td>
<td>A</td>
</tr>
<tr>
<td>q_1</td>
<td>ab</td>
<td>A</td>
</tr>
<tr>
<td>q_1</td>
<td>b</td>
<td>λ</td>
</tr>
</tbody>
</table>
The computations of abb in M are as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>abb</td>
<td>λ</td>
</tr>
<tr>
<td>q_1</td>
<td>abb</td>
<td>λ</td>
</tr>
<tr>
<td>q_0</td>
<td>bb</td>
<td>A</td>
</tr>
<tr>
<td>q_1</td>
<td>bb</td>
<td>A</td>
</tr>
<tr>
<td>q_1</td>
<td>bb</td>
<td>λ</td>
</tr>
<tr>
<td>q_2</td>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>q_2</td>
<td>b</td>
<td>λ</td>
</tr>
</tbody>
</table>

The computations of aba in M are as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>aba</td>
<td>λ</td>
</tr>
<tr>
<td>q_1</td>
<td>aba</td>
<td>λ</td>
</tr>
<tr>
<td>q_0</td>
<td>ba</td>
<td>A</td>
</tr>
<tr>
<td>q_1</td>
<td>ba</td>
<td>A</td>
</tr>
<tr>
<td>q_1</td>
<td>ba</td>
<td>λ</td>
</tr>
<tr>
<td>q_2</td>
<td>a</td>
<td>λ</td>
</tr>
</tbody>
</table>

d) To show that the string $aabb$ and $aaab$ are in $L(M)$, we trace a computation of M that accepts these strings.

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>$aabb$</td>
<td>λ</td>
</tr>
<tr>
<td>q_0</td>
<td>abb</td>
<td>A</td>
</tr>
<tr>
<td>q_0</td>
<td>bb</td>
<td>AA</td>
</tr>
<tr>
<td>q_2</td>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>q_2</td>
<td>λ</td>
<td>λ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>$aaab$</td>
<td>λ</td>
</tr>
<tr>
<td>q_0</td>
<td>aab</td>
<td>A</td>
</tr>
<tr>
<td>q_0</td>
<td>ab</td>
<td>AA</td>
</tr>
<tr>
<td>q_2</td>
<td>λ</td>
<td>A</td>
</tr>
<tr>
<td>q_2</td>
<td>λ</td>
<td>λ</td>
</tr>
</tbody>
</table>

2. (7.2, 10 points) Let M be the PDA in Example 7.1.3.

| $b\lambda/B, a\lambda/A$ | $bB/\lambda, aA/\lambda$ |

$M : \begin{array}{c}
\text{State} \\
\text{String} \\
\text{Stack}
\end{array} \begin{array}{c}
q_0 \\
aaab \\
A \\
A
\end{array} \begin{array}{c}
\lambda \\
A \\
A
\end{array} \begin{array}{c}
q_0 \\
aab \\
B \\
B
\end{array} \begin{array}{c}
\lambda \\
A \\
A
\end{array} \begin{array}{c}
q_0 \\
ab \\
A \\
A
\end{array} \begin{array}{c}
\lambda \\
A \\
A
\end{array} \begin{array}{c}
q_0 \\
bb \\
AA \\
AA
\end{array} \begin{array}{c}
\lambda \\
A \\
A
\end{array} \begin{array}{c}
q_0 \\
\lambda \\
A
\end{array} \begin{array}{c}
\lambda \\
A
\end{array} \begin{array}{c}
q_0 \\
b \\
AAA \\

a) Give the transition table of M.
b) Trace all computations of the strings $ab, abb, abbb$ in M.
c) Show that $aaaa, baab \in L(M)$.
d) Show that $aaa, ab \notin L(M)$.

Solution:
\(Q = \{ q_0, q_1 \} \)
\(\Sigma = \{ a, b \} \)
\(\Gamma = \{ A, B \} \)
\(F = \{ q_1 \} \)
\(\delta(q_0, b, \lambda) = \{ [q_0, B] \} \)
\(\delta(q_0, a, \lambda) = \{ [q_0, A] \} \)
\(\delta(q_0, \lambda, \lambda) = \{ [q_1, \lambda] \} \)
\(\delta(q_1, b, B) = \{ [q_1, \lambda] \} \)
\(\delta(q_1, a, A) = \{ [q_1, \lambda] \} \)

b) The computations of \(ab \) in \(M \) are as follows:

\[
\begin{array}{ccc}
\text{State} & \text{String} & \text{Stack} \\
q_0 & ab & \lambda \\
q_1 & ab & \lambda \\
\end{array}
\]

The computations of \(abb \) in \(M \) are as follows:

\[
\begin{array}{ccc}
\text{State} & \text{String} & \text{Stack} \\
q_0 & abb & \lambda \\
q_1 & abb & \lambda \\
q_0 & bb & A \\
q_1 & b & B A \\
q_1 & b & BA \\
q_1 & \lambda & A \\
\end{array}
\]

The computations of \(abbb \) in \(M \) are as follows:

\[
\begin{array}{ccc}
\text{State} & \text{String} & \text{Stack} \\
q_0 & abbb & \lambda \\
q_1 & abbb & \lambda \\
q_0 & bbb & A \\
q_1 & bbb & A \\
q_0 & b & B A \\
q_1 & b & B A \\
q_1 & \lambda & B B A \\
q_1 & \lambda & B B A \\
\end{array}
\]

\[\delta(q_0, b, \lambda) = \{ [q_0, B] \} \]
\[\delta(q_0, a, \lambda) = \{ [q_0, A] \} \]
\[\delta(q_0, \lambda, \lambda) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, b, B) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, a, A) = \{ [q_1, \lambda] \} \]

b) The computations of \(ab \) in \(M \) are as follows:

\[
\begin{array}{ccc}
\text{State} & \text{String} & \text{Stack} \\
q_0 & ab & \lambda \\
q_0 & b & A \\
q_1 & b & B A \\
q_1 & \lambda & BA \\
\end{array}
\]

The computations of \(abb \) in \(M \) are as follows:

\[
\begin{array}{ccc}
\text{State} & \text{String} & \text{Stack} \\
q_0 & abb & \lambda \\
q_0 & bb & A \\
q_1 & bb & A \\
q_0 & b & B A \\
q_1 & \lambda & B B A \\
q_1 & \lambda & B B A \\
\end{array}
\]

The computations of \(abbb \) in \(M \) are as follows:

\[
\begin{array}{ccc}
\text{State} & \text{String} & \text{Stack} \\
q_0 & abbb & \lambda \\
q_0 & bbb & A \\
q_1 & bbb & A \\
q_0 & b & B A \\
q_1 & b & B A \\
q_1 & \lambda & B B A \\
q_1 & \lambda & B B A \\
\end{array}
\]

\[\delta(q_0, b, \lambda) = \{ [q_0, B] \} \]
\[\delta(q_0, a, \lambda) = \{ [q_0, A] \} \]
\[\delta(q_0, \lambda, \lambda) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, b, B) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, a, A) = \{ [q_1, \lambda] \} \]

\[\delta(q_0, b, \lambda) = \{ [q_0, B] \} \]
\[\delta(q_0, a, \lambda) = \{ [q_0, A] \} \]
\[\delta(q_0, \lambda, \lambda) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, b, B) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, a, A) = \{ [q_1, \lambda] \} \]

c) To show that the string \(aaaa \) and \(baab \) are in \(L(M) \), we trace a computation of \(M \) that accepts these strings.
d) To show that the string \textit{aaa} and \textit{ab} are not in \(L(M)\), we trace all computations of these strings in \(M\), and check whether none of them accepts these strings. We have listed all the computations of \textit{ab} in (b), and none of them accepts it. Now we trace all computations of \textit{aaa} in \(M\).

Since none of the computations above is accepted, we have \textit{aaa} is not in \(M\).

3. \(7.3, 10\) points Construct PDAs that accept each of the following languages.

a) \(\{a^i b^j \mid 0 \leq i \leq j\}\)

b) \(\{a^i c^j b^i \mid i, j \geq 0\}\)

c) \(\{a^i b^j c^k \mid i + k = j\}\)

d) \(\{w \mid w \in \{a, b\}^* \text{ and } w \text{ has twice as many } a\text{'s as } b\text{'s}\}\)

e) \(\{a^i b^j \mid i \geq 0\} \cup a^* \cup b^*\)

f) \(\{a^i b^j c^k \mid i = j \text{ or } j = k\}\)

g) \(\{a^i b^j \mid i \neq j\}\)

h) \(\{a^i b^j \mid 0 \leq i \leq j \leq 2i\}\)

i) \(\{a^{i+j} b^i c^j \mid i, j > 0\}\)

j) The set of palindromes over \(\{a, b\}\)

Solution:
accepts strings that have twice as many a’s as b’s. A computation begins by pushing a C onto the stack, which serves as a bottom-maker throughout the computation. The stack is used to record the relationship between the number of a’s and b’s scanned during the computation. The stacktop will be a C when the number of a’s processed is exactly twice the number of b’s processed. The stack will contain n A’s if the automaton has read n more a’s than b’s. If n more b’s than a’s have been read, the stack will hold $2n$ B’s. When an a is read with an A or C on the top of the stack, an A is pushed onto the stack. This is accomplished by the transition to q_2. If a B is on the top of the stack, the stack is popped removing one b. If a b is read with a C or B on the stack, two B’s are pushed onto the stack. Processing a b with an A on the stack pops the A.

The lone accepting state of the automation is q_5. If the input string has twice as many a’s as b’s, the transition to q_5 pops the C, terminates the computation, and accepts the string.
e) The language $L = \{a^i b^j \mid 0 \leq i \leq j \leq 2 \cdot i\}$ is generated by the context-free grammar

$$S \rightarrow aSB \mid \lambda$$
$$B \rightarrow bb \mid b$$

The B rule generates one or two b's for each a. A pushdown automaton M that accepts L uses the a's to record an acceptable number of matching b's on the stack. Upon processing an a, the computation nondeterministically pushes one or two A's onto the stack. The transitions
of \(M \) are

\[
\begin{align*}
\delta(q_0, a, \lambda) &= \{ [q_1, A] \} \\
\delta(q_0, \lambda, \lambda) &= \{ [q_3, \lambda] \} \\
\delta(q_0, a, \lambda) &= \{ [q_0, A] \} \\
\delta(q_0, b, A) &= \{ [q_2, \lambda] \} \\
\delta(q_1, \lambda, \lambda) &= \{ [q_0, A] \} \\
\delta(q_2, b, A) &= \{ [q_2, \lambda] \}
\end{align*}
\]

The states \(q_2 \) and \(q_3 \) are the accepting states of \(M \). The null string is accepted in \(q_3 \). For a nonnull string \(a^i b^j \in L \), one of the computations will push exactly \(j \) \(A \)'s onto the stack. The stack is emptied by processing the \(b \)'s in \(q_2 \).

The state diagram of the PDA is

\[
\begin{align*}
\text{i) } M : & \quad \overset{a\lambda/A}{q_0} \xrightarrow{\lambda\lambda/A} q_1 \xrightarrow{b\lambda/\lambda} q_2 \\
\text{j) } M : & \quad \overset{a\lambda/A, b\lambda/B}{q_0} \xrightarrow{a\lambda/\lambda, b\lambda/\lambda, \lambda\lambda/\lambda} q_3
\end{align*}
\]

4. (7.7, 10 points) Let \(L \) be the language \(\{ w \in \{ a, b \}^* \mid w \text{ has a prefix containing more } b \text{'s than } a \text{'s.} \} \). For example, \(baa, abba, abbaaa \in L \), but \(aab, aabbab \notin L \).

a) Construct a PDA that accepts \(L \) by final state.

b) Construct a PDA that accepts \(L \) by empty stack.

Solution:

\[
\begin{align*}
\text{a) } M : & \quad \overset{a\lambda/A, b\lambda/\lambda}{q_0} \xrightarrow{\lambda\lambda/B, \lambda\lambda/\lambda} q_1, q_2 \\
\text{b) } M : & \quad \overset{a\lambda/A, b\lambda/\lambda}{q_0} \xrightarrow{\lambda\lambda/B, \lambda\lambda/\lambda} q_1, q_2
\end{align*}
\]
5. (7.12, 20 points) Use the technique of Theorem 7.3.1 to construct a PDA that accepts the languages of the Greibach normal form grammar.

\[S \rightarrow aABA \mid aBB \]
\[A \rightarrow bA \mid b \]
\[B \rightarrow cB \mid c \]

Solution: The state diagram for the extended PDA obtained from the grammar is

\[Q = \{ q_0, q_1 \} \]
\[\Sigma = \{ a, b, c \} \]
\[\Gamma = \{ A, B \} \]
\[F = \{ q_1 \} \]
\[\delta(q_0, a, \lambda) = \{ [q_1, ABA], [q_1, BB] \} \]
\[\delta(q_1, b, A) = \{ [q_1, A], [q_1, \lambda] \} \]
\[\delta(q_1, c, B) = \{ [q_1, B], [q_1, \lambda] \} \]

6. (7.15, 20 points) Let \(M \) be the PDA in Example 7.1.1.

\[Q = \{ q_0, q_1 \} \]
\[\Sigma = \{ a, b, c \} \]
\[\Gamma = \{ A, B \} \]
\[F = \{ q_1 \} \]
\[\delta(q_0, a, \lambda) = \{ [q_0, A] \} \]
\[\delta(q_0, b, \lambda) = \{ [q_0, B] \} \]
\[\delta(q_0, c, \lambda) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, a, A) = \{ [q_1, \lambda] \} \]
\[\delta(q_1, b, B) = \{ [q_1, \lambda] \} \]

a) Trace the computation in \(M \) that accepts \(bbcbb \).

b) Use the technique from Theorem 7.3.2 to construct a grammar \(G \) that accepts \(L(M) \).

c) Give the derivation of \(bbcbb \) in \(G \).

Solution:

<table>
<thead>
<tr>
<th>State</th>
<th>String</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(bbcbb)</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(bcb)</td>
<td>(B)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(cbb)</td>
<td>(BB)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(bb)</td>
<td>(BB)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>(B)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>

b) First we add transitions to \(M \) as follows.
\[\delta(q_0, a, \lambda) = \{[q_0, A]\} \]
\[\delta(q_0, a, A) = \{[q_0, AA]\} \]
\[\delta(q_0, a, B) = \{[q_0, AB]\} \]
\[\delta(q_0, b, \lambda) = \{[q_0, B]\} \]
\[\delta(q_0, b, A) = \{[q_0, BA]\} \]
\[\delta(q_0, b, B) = \{[q_0, BB]\} \]
\[\delta(q_1, a, A) = \{[q_1, \lambda]\} \]
\[\delta(q_1, a, B) = \{[q_1, \lambda]\} \]
\[\delta(q_1, b, B) = \{[q_1, \lambda]\} \]

Second the rules of the equivalent grammar \(G \) and the transition from which they were constructed are presented in Table 1.

c) \[
\begin{align*}
[q_0, bbcbb, \lambda] & \quad S \Rightarrow [q_0, \lambda, q_1] \\
[\vdash q_0, bbcbb, B] & \Rightarrow b([q_0, B, q_1]) \\
[\vdash q_0, cbb, BB] & \Rightarrow bb([q_1, B, q_1])([q_1, B, q_1]) \\
[\vdash q_1, bb, BB] & \Rightarrow bbc([q_1, B, q_1])([q_1, B, q_1]) \\
[\vdash [q_1, b, B] & \Rightarrow bbcb([q_1, \lambda, q_1])([q_1, B, q_1]) \\
[\vdash [q_1, \lambda, \lambda] & \Rightarrow bbcb([q_1, \lambda, q_1]) \\
& \Rightarrow bbcbb \\
\end{align*}
\]

7. (7.17, 20 points) Use the pumping lemma to prove that each of the following languages is not context-free.

a) \(\{a^k \mid k \text{ is a perfect square}\} \)

b) \(\{a^i b^j c^i d^j \mid i, j \geq 0\} \)

c) \(\{a^i b^{2i} a^i \mid i \geq 0\} \)

d) \(\{a^i b^j c^k \mid 0 < i < j < k < 2i\} \)

e) \(\{wu^r w \mid w \in \{a, b\}^*\} \)

f) The set of finite-length prefixes of the infinite string

\[abaababaabaab \ldots ba^na^nb^{n+1}a \ldots \]

Solution:

a) Assume that language \(L \) consisting of strings over \(\{a\} \) whose lengths are a perfect square is context-free. By the pumping lemma, there is a number \(k \) such that every string in \(L \) with length \(k \) or more can be written \(uvwxy \) where
<table>
<thead>
<tr>
<th>Transition</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(q_0, a, \lambda) = {[q_0, A]}$</td>
<td>$S \rightarrow (q_0, \lambda, q_1)$ $\langle q_0, \lambda, q_0 \rangle \rightarrow a\langle q_0, A, q_0 \rangle$ $\langle q_0, \lambda, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, a, A) = {[q_0, AA]}$</td>
<td>$\langle q_0, A, q_0 \rangle \rightarrow a\langle q_0, A, q_0 \rangle$ $\langle q_0, A, q_0 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow a\langle q_0, A, q_0 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, a, B) = {[q_0, AB]}$</td>
<td>$\langle q_0, B, q_0 \rangle \rightarrow a\langle q_0, A, q_0 \rangle$ $\langle q_0, B, q_0 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow a\langle q_0, A, q_0 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow a\langle q_0, A, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, b, \lambda) = {[q_0, B]}$</td>
<td>$\langle q_0, \lambda, q_0 \rangle \rightarrow b\langle q_0, B, q_0 \rangle$ $\langle q_0, \lambda, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, b, A) = {[q_0, BA]}$</td>
<td>$\langle q_0, A, q_0 \rangle \rightarrow b\langle q_0, B, q_0 \rangle$ $\langle q_0, A, q_0 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow b\langle q_0, B, q_0 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, b, B) = {[q_0, BB]}$</td>
<td>$\langle q_0, B, q_0 \rangle \rightarrow b\langle q_0, B, q_0 \rangle$ $\langle q_0, B, q_0 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow b\langle q_0, B, q_0 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow b\langle q_0, B, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, c, \lambda) = {[q_1, \lambda]}$</td>
<td>$\langle q_0, \lambda, q_0 \rangle \rightarrow c\langle q_1, \lambda, q_0 \rangle$ $\langle q_0, \lambda, q_1 \rangle \rightarrow c\langle q_1, \lambda, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, c, A) = {[q_1, A]}$</td>
<td>$\langle q_0, A, q_0 \rangle \rightarrow c\langle q_1, A, q_0 \rangle$ $\langle q_0, A, q_1 \rangle \rightarrow c\langle q_1, A, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_0, c, B) = {[q_1, B]}$</td>
<td>$\langle q_0, B, q_0 \rangle \rightarrow c\langle q_1, B, q_0 \rangle$ $\langle q_0, B, q_1 \rangle \rightarrow c\langle q_1, B, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_1, a, \lambda) = {[q_1, \lambda]}$</td>
<td>$\langle q_1, A, q_0 \rangle \rightarrow a\langle q_1, \lambda, q_0 \rangle$ $\langle q_1, A, q_1 \rangle \rightarrow a\langle q_1, \lambda, q_1 \rangle$</td>
</tr>
<tr>
<td>$\delta(q_1, b, \lambda) = {[q_1, \lambda]}$</td>
<td>$\langle q_1, B, q_0 \rangle \rightarrow b\langle q_1, \lambda, q_0 \rangle$ $\langle q_1, B, q_1 \rangle \rightarrow b\langle q_1, \lambda, q_1 \rangle$ $\langle q_0, \lambda, q_0 \rangle \rightarrow \lambda$ $\langle q_1, \lambda, q_1 \rangle \rightarrow \lambda$</td>
</tr>
</tbody>
</table>

Table 1: The rules of the equivalent grammar G and the transition from which they were constructed (Problem 7.15 (b))
(i) \(\text{length}(vwx) \leq k \)
(ii) \(v \) and \(x \) are not both null
(iii) \(uv^iwx^iy \in L \) for all \(i \geq 0 \).

The string \(z = a^{k^2} \) must have a decomposition \(uvwx \) that satisfies the preceding conditions. Consider the length of the string \(uv^2wx^2y \) obtained by pumping \(uvwx \).

\[
\text{length}(z) = \text{length}(uv^2wx^2y) = \text{length}(uvwx) + \text{length}(v) + \text{length}(x) = k^2 + \text{length}(v) + \text{length}(x) \leq k^2 + k < (k + 1)^2
\]

Since the length of \(z \) is greater than \(k^2 \) but less than \((k + 1)^2 \), we conclude that \(z \notin L \) and that \(L \) is not context-free.

b) Assume that language \(L = \{a^ib^jc^d | i, j \geq 0 \} \) is context-free. By the pumping lemma, there is a number \(k \) such that every string in \(L \) with length \(k \) or more can be written \(uvwx \) where

(i) \(\text{length}(vwx) \leq k \)
(ii) \(v \) and \(x \) are not both null
(iii) \(uv^iwx^iy \in L \) for all \(i \geq 0 \).

The string \(z = a^{k^2}b^{k^2}c^ka^k \) must have a decomposition \(uvwx \) that satisfies the preceding conditions. Consider the string \(uv^2wx^2y \) obtained by pumping \(uvwx \). Since \(v \) and \(x \) are not both null by condition (ii), we have that \(vwx \) contains at least one terminal. Without loss of generality, assume \(vwx \) contains a terminal which is either \(a \) or \(c \) (similar argument for the case that the terminal is either \(b \) or \(d \)). Condition (i) requires the length of \(vwx \) to be at most \(k \). This implies that \(vwx \) is a string that cannot contain both \(a \) and \(c \) types of terminal. Thus \(uv^2wx^2y \) increases the number of either \(a \)’s or \(c \)’s, but not both, compared with \(uvwx \). Hence \(uv^2wx^2y \notin L \), a contradiction. We conclude that \(L \) is not context-free.

c) Assume that language \(L = \{a^ib^{2i}a^i | i \geq 0 \} \) is context-free. By the pumping lemma, there is a number \(k \) such that every string in \(L \) with length \(k \) or more can be written \(uvwx \) where

(i) \(\text{length}(vwx) \leq k \)
(ii) \(v \) and \(x \) are not both null
(iii) \(uv^iwx^iy \in L \) for all \(i \geq 0 \).

The string \(z = a^{k^2}b^{2k}a^k \) must have a decomposition \(uvwx \) that satisfies the preceding conditions. Consider the string \(uv^2wx^2y \) obtained by pumping \(uvwx \). Since by assumption \(uv^2wx^2y \in L \), we must have that the union of \(v \) and \(x \) contains both \(a \) type and \(b \) type of terminals. Otherwise it only increases one type of terminal while keeping the other the same, thereby no longer in \(L \). Further more, condition (i) requires the length of \(vwx \) to be at most \(k \). This implies that the substring \(vwx \) of \(z \) cannot contain \(a \)’s from both sides of the \(b \)’s substring. Therefore \(uv^2wx^2y \) only increases the number of \(a \)’s either preceding or after \(b \)’s, but not both. Hence \(uv^2wx^2y \notin L \), and consequently, \(L \) is not context-free.
d) Assume that language \(L = \{a^ib^jc^k \mid 0 < i < j < k < 2i\} \) is context-free. By the pumping lemma, there is a number \(k \) such that every string in \(L \) with length \(k \) or more can be written \(uvwxy \) where

(i) \(\text{length}(vwx) \leq k \)
(ii) \(v \) and \(x \) are not both null
(iii) \(uv^iwv^jx \in L \) for all \(i \geq 0 \).

Without loss of generality, we assume \(k > 2 \), since we can always increase \(k \) while maintaining the three conditions above. Then the string \(z = a^kb^{k+2}c^k \) is in \(L \) and must have a decomposition \(uvwxy \) that satisfies the preceding conditions. Consider the string \(uv^kw^kxy \) obtained by pumping \(uvwxy \). Condition (i) requires the length of \(vwx \) to be at most \(k \). This implies that \(vwx \) is a string containing only one type of terminal or the concatenation of either \(a \) and \(b \) types, or \(b \) and \(c \) types. If \(c \) is not contained in \(vwx \), pumping \(v \) and \(x \) only increases the number of \(a \)'s or \(b \)'s. Thus the new string cannot keep the number of \(b \)'s less than the number of \(b \)'s which is less than the number of \(c \)'s, i.e. \(k + 2 \). If \(c \) is contained in \(vwx \), then \(a \) is not contained in \(vwx \). Thus \(uv^kw^kxy \) would have at least \((k + 2) + (k - 1) = 2k + 1 \) number of \(c \)'s while keeping the number of \(a \)'s the same, i.e. \(k \). Hence \(uv^kw^kxy \notin L \), and consequently, \(L \) is not context-free.

e) Assume that language \(L = \{w^R \mid w \in \{a,b\}^*\} \) is context-free. By the pumping lemma, there is a number \(k \) such that every string in \(L \) with length \(k \) or more can be written \(uvwxy \) where

(i) \(\text{length}(vwx) \leq k \)
(ii) \(v \) and \(x \) are not both null
(iii) \(uv^iwv^jx \in L \) for all \(i \geq 0 \).

The string \(z = (a^kb^k)(a^kb^k)^R(a^kb^k) = a^kb^{2k}a^{2k}b^k \) must have a decomposition \(uvwxy \) that satisfies the preceding conditions. By condition (ii), we have \(v \) and \(x \) have at least one terminal. Without loss of generality, assume that at least one \(a \) is in \(v \) or \(x \) (similar argument for the case of at least one \(b \) in \(v \) or \(x \)). Condition (i) requires the length of \(vwx \) to be at most \(k \). This implies that the substring \(vwx \) of \(z \) cannot contain \(a \)'s from both sides of \(b^{2k} \). If the \(a \)'s in the substring \(vwx \) of \(z \) are before \(b^{2k} \), then \(uv^2wx^2y \) increases the number of \(a \)'s before \(b^{2k} \) while keeping the number of \(a \)'s after \(b^{2k} \) the same as \(2k \). Hence \(uv^2wx^2y \notin L \) is no longer in \(L = \{w^R \mid w \in \{a,b\}^*\} \). If the \(a \)'s in the substring \(vwx \) of \(z \) are after \(b^{2k} \), we have \(uv^2wx^2y \notin L \) by similar argument. Therefore \(L \) is not context-free.

f) Assume that the language \(L \) consisting of prefixes of string

\[
\text{abaabaaaaaaba} \cdots ba^nba^{n+1}b
\]

is context-free and let \(k \) be the number specified by the pumping lemma. Consider the string \(z = abab \cdots ba^kb \), which is in the language and has length greater than \(k \). Thus \(z \) can be written \(uvwxy \) where

(i) \(\text{length}(vwx) \neq k \)
(ii) v and x are not both null

(iii) $uv^iwx^iy \in L$ for all $i \geq 0$.

To show that the assumption that L is context-free produces a contradiction, we examine all possible decomposition of z that satisfy the conditions of the pumping lemma. By (ii), one or both of v and x must be nonnull. In the following argument we assume that $v \neq \lambda$.

Case 1: v has no b's. In this case, v consists solely of a's and lies between two consecutive b's. That is, v occurs in z in a position of the form

\[\cdots ba^nva^n+2b \cdots \]

where $i + \text{length}(v) + j = n + 1$. Pumping v produces an incorrect number of a's following ba^n and, consequently, the resulting string is not in the language.

Case 2: v has two or more b's. In this case, v contains a substring ba^n. Pumping v produces a string with two substrings of the form ba^n. No string with this property is in L.

Case 3: v has one b. Then v can be written a^iba^j and occurs in z as

\[\cdots ba^{n-1}ba^n-ivaba^{n+1-j}b \cdots \]

Pumping v produces the substring

\[\cdots ba^{n-1}ba^n-ia^iba^jababa^{n+1-j}b \cdots = \cdots ba^{n-1}ba^nba^jababa^{n+1}b \cdots , \]

which cannot occur in a string in L.

Regardless of its makeup, pumping any nonnull substring v of z produces a string that is not in the language L. A similar argument shows that pumping x produces a string not in L whenever x is nonnull. Since one of v or x is nonnull, there is no decomposition of z that satisfies the requirements of the pumping lemma and we conclude that the language is not context-free.

\[\blacksquare \]