31 March 2011

NAME	Ima Sample
ASU ID |

You have 75 minutes to complete the exam.
Do not open the exam until you are instructed to do so.
Notes and texts are permitted, provided that you do not disrupt your neighbour or encroach on their space.
Computers, calculators, or communication devices are not permitted.
Write all answers on the examination paper itself.
BUDGET YOUR TIME WELL!
SHOW ALL WORK!

<table>
<thead>
<tr>
<th>Question 1</th>
<th>[10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 2</td>
<td>[10]</td>
</tr>
<tr>
<td>Question 3</td>
<td>[10]</td>
</tr>
<tr>
<td>Question 4</td>
<td>[10]</td>
</tr>
<tr>
<td>Question 5</td>
<td>[10]</td>
</tr>
<tr>
<td>Total</td>
<td>[50]</td>
</tr>
</tbody>
</table>

Bonus question [1 mark]: What is $\emptyset(\emptyset^*)$?
It is \emptyset

[10 in total] Question 1: Give examples (no explanation is needed) of languages A and B so that
[2 marks] (a) $A \subseteq B$, A is regular, and B is context-free but not regular. $A = \{01\}$, $B = \{0^n1^n : n \geq 1\}$
[2 marks] (b) $A \cap B$ is regular, A is regular, and B is context-free but not regular. $A = \{01\}$, $B = \{0^n1^n : n \geq 1\}$
[2 marks] (c) A ⊆ B, A is context-free but not regular, and B is regular.
A = \{0^n1^n : n ≥ 1\}, B = \{0,1\}^*

[2 marks] (d) A ∪ B is regular, A is regular, and B is context-free but not regular.
A = \{0,1\}^*, B = \{0^n1^n : n ≥ 1\}

[2 marks] (e) A ⊆ B, A is context-free but not regular, and B is context-free but not regular.
A = \{0^n1^n : n ≥ 2\}, B = \{0^n1^n : n ≥ 1\}

[10 marks in total] Question 2. Consider the language L = \{0^a1^{a-b}0^b : a ≥ b ≥ 0\}.

[5] a) Is L regular? Answer yes or no, and then provide a clear justification for your answer.

L is not regular. Suppose to the contrary that it is, so that the pumping lemma for regular languages applies. Let p be the pumping constant. Consider the string s = 0^{2p}1^p0^p. Then s is in L (take a=2p and b=p).
In order to write s = xyz with |xy| ≤ p, y can contain only 0s; and because |y| > 0, y must have some number t of 0s with 1 ≤ t ≤ p. Now consider xy^pz = 0^{2p-t}1^p0^p. Because t > 0, 2p-t ≠ 2p, and so xy^pz is not in L. This contradicts the assumption that L is regular, so L is NOT regular.

[5] b) Is L context-free? Answer yes or no, and then provide a clear justification for your answer.

L is context-free. I give a CFG for L.
S → 0S0 | T
T → 0T1 | ε

[10 marks in total] Question 3. Consider the language L = \{0^a1^{a+1}0^{b+1} : a,b ≥ 0\}.

[5] a) Is L context-free? Answer yes or no, and then provide a clear justification for your answer.

L is not context-free. Suppose (to the contrary) that it were. Then the pumping lemma for CFLs applies, so let p be the pumping constant. Let s = 0^p1^{p+1}0^{p+1}. Then s = uvwxy for |vx| > 0, |vwx| ≤ p, and uv^iwx^iy is in L for all i ≥ 0. Now if v or x contains the substring 01, then uv^2wx^2y contains
the substring 01 at least twice, so is not in \(L \). The same happens if \(v \) or \(x \) contains the substring 10. So we need only treat cases in which \(v \) contains one type of symbol or is empty, and in which \(x \) contains one type of symbol or is empty. Not both are empty because \(|vx| > 0 \). Suppose that \(vx \) contains \(m \) 0s from the \(0^p \) block, \(n \) 1s from the \(1^{p+1} \) block, and \(q \) 0s from the \(0^{q+1} \) block. Now of the numbers \(\{m,n,q\} \), at least one is 0, and at least one is not 0.

Now \(uv^2wx^2y = 0^{pp+m}1^{p+n+1}0^{p+q+1} \). For this to be in the language \(pp+m = (p+n)(p+q) = pp + (n+q)p + nq \). So if \(m=0 \), we would have \(0 = (n+q)p + nq \), which is impossible because \(p \) and \(n+q \) are both positive. So \(m \neq 0 \).

But then we must have \(m = (n+q)p + nq \). If \(n=q=0 \), this is impossible, so \(n+q \neq 0 \). Because \(|vwx| \leq p \), \(m+n+q \leq p \); but then \(m < p \), and \((n+q)p + nq \geq p \), a contradiction. So \(L \) cannot be context-free.

[5] b) Is \(L \) regular? Answer yes or no, and then provide a clear justification for your answer.

By the (a) part, \(L \) is not context-free. But every regular language is context-free, so \(L \) is not regular.

[10 marks] Question 4. Let \(G \) be the grammar with rules

\[
\begin{align*}
S & \rightarrow aABb \mid A \mid B \\
A & \rightarrow aSSb \mid C \mid D \mid \varepsilon \\
B & \rightarrow ab \mid BC \mid ECE \\
C & \rightarrow aBAb \mid CD \mid DC \mid \varepsilon \\
D & \rightarrow E \mid DE \mid FE \\
E & \rightarrow DD \\
F & \rightarrow BB \mid \varepsilon
\end{align*}
\]

Give an equivalent grammar in Chomsky normal form. Show your steps in producing the new grammar. (Hint: Can you simplify the grammar before converting it to Chomsky normal form?)

I am going to use the hint first. The main thing to notice is that once any derivation has used either of \(D \) or \(E \), we can never get rid of all the variables – every \(D \) makes an \(E \), and every \(E \) makes a \(D \). So the rules for these variables are useless in making any strings that only have terminals,
and we can delete variables D and E. But once D is deleted, there is no way to make an F, so we can delete variable F as well.
The rule A → C is not needed, because if A ⊢ C ⊢ ε, use A ⊢ ε. And if A ⊢ C ⊢ aBAb, use A ⊢ aSSb ⊢ aBSb ⊢ aBAb.
The rule S → aABb is not needed, because we can use S ⊢ A ⊢ aSSb ⊢ aASb ⊢ aABb.
Now C only appears once on the RHS of a rule, so substitute it into the RHS.
This simplifies the grammar to
\[S \rightarrow A \mid B \]
\[A \rightarrow aSSb \mid \varepsilon \]
\[B \rightarrow ab \mid BaBAb \]
Now the start variable cannot appear on the RHS of any rule (and it does), so I introduce a new start variable S₀, and the grammar is
\[S₀ \rightarrow S \]
\[S \rightarrow A \mid B \]
\[A \rightarrow aSSb \mid aSb \mid ab \]
\[B \rightarrow ab \mid BaBAb \mid BaBb \]
Now I remove ε-rules (allowing S₀ → ε if needed)
\[S₀ \rightarrow S \mid \varepsilon \]
\[S \rightarrow A \mid B \]
\[A \rightarrow aSSb \mid aSb \mid ab \]
\[B \rightarrow ab \mid BaBAb \mid BaBb \]
Now I remove unit rules
\[S₀ \rightarrow aSSb \mid aSb \mid ab \mid BaBAb \mid BaBb \mid \varepsilon \]
\[S \rightarrow aSSb \mid aSb \mid ab \mid BaBAb \mid BaBb \]
\[A \rightarrow aSSb \mid aSb \mid ab \]
\[B \rightarrow ab \mid BaBAb \mid BaBb \]
Now I make every rule have either variables or terminals on RHS but not both
\[S₀ \rightarrow X_aSSX_b \mid X_aSX_b \mid X_aX_b \mid BX_aBAX_b \mid BX_aBX_b \mid \varepsilon \]
\[S \rightarrow X_aSSX_b \mid X_aSX_b \mid X_aX_b \mid BX_aBAX_b \mid BX_aBX_b \]
\[A \rightarrow X_aSSX_b \mid X_aSX_b \mid X_aX_b \]
\[B \rightarrow X_aX_b \mid BX_aBAX_b \mid BX_aBX_b \]
\[X_a \rightarrow a \]
\[X_b \rightarrow b \]
Now I break up the rules that have three or more variables on the RHS.

\[
S_0 \rightarrow X_a T_5 \mid X_a T_2 \mid X_a X_b \mid BT_7 \mid BT_4 \mid \epsilon \\
S \rightarrow X_a T_5 \mid X_a T_2 \mid X_a X_b \mid BT_7 \mid BT_4 \\
A \rightarrow X_a T_5 \mid X_a T_2 \mid X_a X_b \\
B \rightarrow X_a X_b \mid BT_7 \mid BT_4 \\
X_a \rightarrow a \\
X_b \rightarrow b \\
T_1 \rightarrow BX_b \\
T_2 \rightarrow SX_b \\
T_3 \rightarrow AX_b \\
T_4 \rightarrow X_a T_1 \\
T_5 \rightarrow ST_2 \\
T_6 \rightarrow BT_3 \\
T_7 \rightarrow X_a T_6
\]

Done, at long last. I did not expect anyone, in the time available, to get all of these details written down correctly!

[10 marks] Question 5. Draw a state diagram for a pushdown automaton to accept \(\{a^i b^j c^i d^k : i, j, k \geq 0 \} \). The PDA must accept by final state and empty stack.

![State diagram for pushdown automaton]