When is it Biased? Assessing the Representativeness of Twitter’s Streaming API

Fred Morstatter
Arizona State University
699 S. Mill Ave
Tempe, AZ, 85281
fred.morstatter@asu.edu

Jürgen Pfeffer
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA, 15213
jpfeffer@cs.cmu.edu

Huan Liu
Arizona State University
699 S. Mill Ave
Tempe, AZ, 85281
huan.liu@asu.edu

ABSTRACT
Twitter shares a free 1% sample of its tweets through the “Streaming API”. Recently, research has pointed to evidence of bias in this source. The methodologies proposed in previous work rely on the restrictive and expensive Firehose to find the bias in the Streaming API data. We tackle the problem of finding sample bias without costly and restrictive Firehose data. We propose a solution that focuses on using an open data source to find bias in the Streaming API.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
Data Sampling, Sampling Bias, Twitter Analysis, Big Data

1. INTRODUCTION
Twitter’s policy for data sharing is very open, providing a free “Streaming API” that returns tweets matching a query. One drawback of the Streaming API is that it only returns at most 1% of the tweets on Twitter at a given moment. Once the volume of the query surpasses 1% of all of the tweets on Twitter, the response is sampled. The way in which Twitter samples the data is unpublished. Recent research [3] has shown that there is strong evidence of bias in the data returned from the Streaming API, namely in the top hashtags found in the text.

In this work we seek to find bias in the Streaming API automatically. We define “bias” as sample bias. We say that a hashtag is “biased” if the relative trend is statistically significantly over-represented or underrepresented in contrast to its true trend on Twitter. In particular, we are looking for particular time periods of bias in the Streaming API. Based on Twitter’s documentation, the sample size is determined by the volume of a query at a point in time. We identify time periods where the Streaming API is biased.

2. DISCOVERING BIAS IN THE STREAMING API WITHOUT THE FIREHOSE
With work showing evidence that the Streaming API is biased, researchers must be able to tell whether their Streaming API sample is biased. Vetting their dataset with the Firehose is prohibitive due to the cost and restrictive nature of the feed. We propose a methodology that can give an indication of bias for a particular hashtag using publicly-available data sources.

We investigate whether another open data source, Twitter’s Sample API, can be used to find bias in the Streaming API. We show that using the Sample API, one can detect bias in the Streaming API without the need of the prohibitive Firehose. We focus on alternative methods to help the user understand when their data diverges from the true activity on Twitter.

2.1 Vetting the Randomness of the Sample API
Given the evidence of bias that was observed in the Streaming API, we must proceed with caution before using the Sample API as a surrogate gold standard. We collect all of the tweets available through the Sample API on 2013-08-30 from 17:00 - 21:00 UTC, and post-filter them by the keyword “syria”. Simultaneously, we collect all of the tweets matching the keyword “syria” from the Gnip Twitter, another outlet for Firehose data. Gnip also provides 100% of the publicly-available Tweets on Twitter.

We compare the ranked list of top hashtags in both sets. We first plot Kendall’s \(\tau_{\beta} \) score of the Sample API against the Firehose. Kendall’s \(\tau_{\beta} \) calculates the number of concordant and discordant pairs between two ranked lists. This score gives us a sense of whether the frequency of hashtags

![Figure 1: Rank correlation of Sample API and Gnip Firehose. Relationship between \(n \) - number of top hashtags, and \(\tau_{\beta} \) - the correlation coefficient for different levels of coverage.](https://dev.twitter.com/docs/streaming-apis)
Normalized Occurrence

Figure 2: Figures outlining different steps of the process for finding bias in the Streaming API.

(a) Streaming API Results. Trendline for “#believemovie” over one day.
(b) Sample API Results. Trendline for “#believemovie” over one day.
(c) Bootstrapped distribution + Streaming API.

3. DISCUSSION AND FUTURE WORK

In this work we ask how to find bias in the Streaming API without the need for costly Firehose data. We test the representativity of another freely-available Twitter data source, the Sample API. We find that overall the tweets that come through the Sample API are a representative sample of the true activity on Twitter. Finally, we propose a solution to harness this data source to find time periods where the Streaming API is likely biased.

Future work is to correct the bias directly. A simple solution is to purchase the data from resellers during times when the Streaming API is biased. Another is to cross-reference users from Twitter with other social media outlets to gain additional insight. Another direction is to improve the performance of our method by exploring alternative bootstrapping methods that may be more suitable for sparse data, such as 3. We seek to find bias in sparse data scenarios, and adapt these methods to the speed and ephemerality of Twitter data.

4. ACKNOWLEDGMENTS

This work is sponsored, in part, by Office of Naval Research grants N000141010091 and N000141110527. The full version of this paper can be found here: http://arxiv.org/abs/1401.7909

5. REFERENCES

