SYLLABUS FOR PHY-122: University Physics I Laboratory
FIRST SUMMER SESSION, 2003
INSTRUCTOR: Dr. Gary B. Adams
OFFICE: PSF-430 PHONE: 727-6511
E-MAIL: gary.adams@asu.edu

OFFICE HOURS:
Daily (except for examination days) 1:00–2:00 PM (in the Help–Study Room)

I. INTRODUCTION

PHY-122 is the 1-credit laboratory course accompanying PHY-121, University Physics I, which covers the subject of Introductory Mechanics. PHY-121 must be taken at the same time as (or either before) PHY-122.

For logistical and economical reasons the material covered in the two courses is not coordinated in time. The expectation is that, over the course of the term, material learned in one course will enhance the understanding of the material received in the other.

The manual for this laboratory is online at

http://www.public.asu.edu/~gbadams/sum03/122syll.html

You are responsible for downloading these pages, reading them beforehand, and bringing them with you to the appropriate lab. DO NOT PRINT OUT YOUR LABS ON THE PRINTERS IN THE LAB ROOMS. These files are in pdf format.

II. COURSE FORMAT AND POLICIES

A. Schedule

The course during this Summer Session commences on Tuesday, June 3 and concludes on Wednesday, July 2. There are no Monday sessions and each section will have an additional seven days on which it does not formally meet. Five of these days are reserved for "make-up and final interviews" as described below. A schedule of experiments and meeting dates is distributed with this Syllabus. Laboratory Sessions are scheduled on Tuesday – Friday from 10:40 AM until 12:40 PM or from 3:00 PM until 4:50 PM. IMPORTANT NOTE: NO FOOD OR DRINK IS ALLOWED IN THE PHYSICS LAB ROOMS.

Help–Study sessions are for the students’ benefit in gaining assistance with the conceptual and procedural basis of an experiment. The Help–Study Hall (PSH-462) will be staffed by the Instructor and Teaching Assistants from 1:00 until 3:00 PM each day except on PHY-121 examination days (June 9, 17, 25, and
July 3). Teaching Assistants will not otherwise keep office hours except by appointment, but will alert their respective sections to the hours which they will be present in the Help–Study hall. However, assistance may be solicited from any member of the course staff on duty.

B. Laboratory and Grading Policy

There are five experiments scheduled for the term. In order to obtain a passing grade (D or better), a student must have completed four of these. An A grade requires completion of all five.

The laboratory format is based on cooperative learning. Students will work together in teams of three or four. Teams will be organized by the section TA before the first two experiments, and reorganized before the final group of three experiments; thus, during the term each student will have two sets of teammates.

Each team will be given a team grade based upon an interview conducted by the TA and/or the lab instructor. Thus, in general, all members of each team will receive the same grade for each lab. However, the section TA has the option of lowering the grade for an individual team member based upon appropriate reasons including, but not limited to, absence or failure to participate fully with one’s team. Likewise, the TA may recommend a higher grade under suitable circumstances.

During the interview, each team member will be asked one or two questions. Questions are asked to the individual team member, not to the team as a whole, and those individuals must answer alone without prompting from other members of the team. So, no matter how you decide to divide up the tasks of the lab among your team members, it is the responsibility of the team to make sure that every team member knows all the relevant points of the lab before the interview begins. Also reviewed during the team interview will be the data, the analysis, and the conclusions, which must be prepared beforehand in an acceptable format (see below under Presentation of Results). The interview questions and this team write-up will carry approximately equal weights in determining the team grade.
The team grades will be letter grades carrying the following values:

\[\begin{array}{ccc}
A & 4.00 & B^+ & 3.33 & C^+ & 2.33 \\
A^- & 3.67 & B & 3.00 & C & 2.00 \\
B^- & 2.67 & etc.
\end{array}\]

Any team receiving a grade of less than \(B^-\) in the initial interview will be asked to repeat the interview and/or redo their team write-up. The highest possible grade in a repeat interview is an \(A^-\).

Roughly, in the interview and on the team write-up, major issues or questions are worth \(\frac{2}{3}\) of a point and secondary or smaller issues are worth \(\frac{1}{3}\) of a point. For example, though it is not the purpose of the lab, in the course of the first lab everyone should learn to use a vernier caliper. Failure of a team member to demonstrate this skill properly during the interview would cost the team about \(\frac{1}{3}\) of a point. Another question that might be asked for the first lab is, given a data set, find the standard deviation and the absolute error or uncertainty in the mean value. Learning this skill is a primary goal of the first lab and failure to demonstrate this skill in the interview would cost the team about \(\frac{2}{3}\) of a point. Similarly, in the team write-up for the first lab you are required to propagate errors in measurements of length into errors in volume. Failure to do clear and correct error propagation would cost the team about \(\frac{2}{3}\) of a point. On the other hand, smaller mistakes, like failing to properly label axes on graphs or giving a final answer with relative error instead of absolute error, might cost only \(\frac{1}{3}\) of a point or less.

Your final lab grade will be the average of your five lab grades with:

\[A \geq 3.5 \quad B = 2.5 - 3.49 \quad C = 1.5 - 2.49 \quad D = 0.5 - 1.49 \quad E < 0.5\]

Recall that completion of less than four labs is an automatic \(E\).

C. Data Recording

Data are to be recorded in ink on \(8 \frac{1}{2} \times 11\) quadrille sheets (5 \(\times\) 5). Team members should share the cost of a pad of quadrille paper. These are to be no erasures or "white-outs". Errors are to be lined out. At the end of each laboratory period or the conclusion of the experiment, each data sheet is to be dated and initialed by all team members and section TA. Data should be recorded in tabular form with well-labeled columns, or otherwise distinctly entered onto the data sheet. The data may be transferred to computer spread-sheets, etc., for analysis if the team so desires. For your own protection, you may wish to make at least one photocopy of all signed data sheets.
D. Presentation of Results

Under the interview structure and in light of the summer’s compact schedule, no individual formal written experimental reports are required. However, the data are to be analyzed, with full attention to experimental and statistical uncertainties and the results are to be presented in tabular and/or graphical format as appropriate. There should also be a clearly written description of the analysis process complete with pertinent equations. BE SURE TO STATE YOUR CONCLUSIONS PROMINENTLY AND CLEARLY. All these documents, as well as the original raw data sheets (initialed and dated), are to be presented at the interview.

E. Scheduling of Interviews

Most interviews will occur during the last hour or so of the second day on which the particular experiment is scheduled (‘FIRST INTERVIEW’ on the calendar schedule sheet) on a first-come first-served basis. Teams that need to revisit the experiment and/or repeat their interview can do so in the ’MAKE-UP AND FINAL INTERVIEW’ period during the third day of the experiment cycle. Interviews normally will last no more than ten or fifteen minutes.

F. Relation to Lecture

The Department of Physics and Astronomy cannot afford to stock sufficient equipment to allow all students to conduct the same experiment at one time. Therefore, it is impossible to coordinate closely the laboratory work with material covered in the PHY-121 lecture. Consequently, some students may encounter a concept or physical principle in the lab before learning about it in lecture. This is not necessarily a bad ordering of the learning process; many prefer it. On the other hand, some students may wait for a week or more after learning the physics theory before doing the relevant experiments. In either case, it is expected that material encountered in each course will eventually be reinforced by material from the other course in such a way as to enhance understanding.

Beginning June 3, this information, plus course info updates, will be available on the internet at http://www.public.asu.edu/~gbadams