MAE/MSE 502 Spring 2015, Homework #4

Prob. 1 (3 points) For \(u(x,t) \) defined on the domain of \(0 \leq x \leq 2\pi \) and \(t \geq 0 \), solve the PDE

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^3 u}{\partial x^3} ,
\]

with the boundary conditions (the first three simply indicate that the system is periodic in \(x \)),

(i) \(u(0, t) = u(2\pi, t) \)
(ii) \(u_x(0, t) = u_x(2\pi, t) \)
(iii) \(u_{xx}(0, t) = u_{xx}(2\pi, t) \)
(iv) \(u(x, 0) = \sin(x) + \cos(2x) \).

We expect a closed-form solution without any unevaluated integral or summation of infinite series. Plot the solution as a function of \(x \) at \(t = 0, 0.1, 0.2, \) and \(0.5 \).

Prob. 2 (3 points) For \(u(x,t) \) defined on the domain of \(0 \leq x \leq 1 \) and \(t \geq 0 \), solve the PDE,

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \cos(2\pi x) e^{-t} + t ,
\]

with the boundary conditions

\((i) \ u_x(0, t) = 0 \)
\((ii) \ u_x(1, t) = 0 \)
\((iii) \ u(x, 0) = 1 + \cos(\pi x) + \cos(2\pi x) \).

We expect a closed-form solution without any unevaluated integral or summation of infinite series.

Prob. 3 (3 points) For \(u(x,t) \) defined on the domain of \(0 \leq x \leq 2\pi \) and \(t \geq 0 \), solve the PDE

\[
\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} + \sin(x) e^{-t} + 1 ,
\]

with the boundary conditions (the first three simply indicate that the system is periodic in \(x \)),

(i) \(u(0, t) = u(2\pi, t) \)
(ii) \(u_x(0, t) = u_x(2\pi, t) \)
(iii) \(u_{xx}(0, t) = u_{xx}(2\pi, t) \)
(iv) \(u(x, 0) = 3 + \cos(x) \).

We expect a closed-form solution without any unevaluated integral or summation of infinite series. The solution of this problem is real. Please arrange your solution such that there is no imaginary number "\(i \)" (= \(\sqrt{-1} \)) in the final expression of \(u(x, t) \).