This assignment is for bonus only. The rules of collaboration are the same as those for the final project.

1. **Bonus question.** For \(u(x,t) \) and \(h(x,t) \) defined on the domain of \(0 \leq x \leq 10 \) and \(t \geq 0 \), consider the following system of equations,

\[
\frac{\partial u}{\partial t} = 2 \frac{\partial h}{\partial x}, \quad (1)
\]

\[
\frac{\partial h}{\partial t} = 0.5 \frac{\partial u}{\partial x}, \quad (2)
\]

with the boundary conditions,

\[
u(0, t) = 0,
\]

\[
u(10, t) = 0,
\]

and the initial conditions,

\[
h(x,0) \equiv 0,
\]

\[
u(x,0) = P(x),
\]

where

\[
P(x) \equiv \cos[0.5 \pi (x - 5)] , \text{ if } 4 \leq x \leq 6
\]

\[
\equiv 0 \quad , \text{ otherwise.}
\]

(Note that the \(P(x) \) here is identical to that used in HW1.) Solve the system numerically by using a staggered grid system as illustrated in Fig. 1, and the forward-in-time and central-in-space finite difference scheme for both equations. Use \(\Delta x = 0.01 \) and your own choice of \(\Delta t \). Plot the solution at \(t = 0.75 \) and 2.5, along with the initial state at \(t = 0 \). See Fig. 1 for the definition of \(\Delta x \). For this problem, the two boundary points should be the grid points for \(u \) (see Fig. 1), such that there is no need to impose the boundary conditions for \(h \). As usual, submit your code. Only high-quality solutions will receive bonus.

![Fig. 1](image-url)