2. Limited Dependent Variables Models

[1] Binary choice models (Review)

(1) Probit Model

• Model:
 \[y_t^* = x_t'\beta + \varepsilon_t, \quad t = 1, \ldots, T, \]
 where \(y_t^* \) is a unobservable latent variable (e.g., level of utility);
 \(y_t = 1 \) if \(y_t^* > 0 \); \(= 0 \) if \(y_t^* < 0 \);
 and the \((-\varepsilon_t)\) are i.i.d. \(N(0,1) \).

Digression to normal pdf and cdf

• \(X \sim N(\mu, \sigma^2) \):
 \[f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right), \quad -\infty < x < \infty. \]

• \(Z \sim N(0,1) \):
 \[\phi(z) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{z^2}{2} \right); \Phi(z) = \Pr(Z < z) = \int_{-\infty}^{z} \phi(v)dv. \]

• In LIMDEP, \(\phi(z) = \text{N01}(z) \) and \(\Phi(z) = \text{PHI}(z) \).
 In GAUSS, \(\phi(z) = \text{pdfn}(z) \) and \(\Phi(z) = \text{cdfn}(z) \).

• Some useful facts:
 \[\frac{d\Phi(z)}{dz} = \phi(z); \quad \frac{d\phi}{dz} = -z\phi(z); \quad \Phi(-z) = 1 - \Phi(z); \quad \phi(z) = \phi(-z). \]

End of digression

• Return to the Probit model
• PDF of the y_t:
 • $Pr(y_t = 1) = Pr(y_t^* > 0) = Pr(x_t\beta + \varepsilon_t > 0) = Pr(x_t\beta > -\varepsilon_t)$
 $$= Pr(-\varepsilon_t < x_t\beta) = \Phi(x_t\beta).$$
 \rightarrow This guarantees $p_t \equiv Pr(y_t = 1)$ being in the range $(0,1)$.
 • $f(y_t) = \left(\Phi(x_t\beta)^y_t \left(1 - \Phi(x_t\beta)\right)^{1-y_t} \right)$.

• Log-likelihood Function of the Probit model
 • $L_T(\beta) = \prod_{i=1}^{T} f(y_t)$.
 • $l_T(\beta) = \Sigma_i \ln(f(y_t)) = \Sigma_t \left\{ y_t \ln \Phi(x_t\beta) + (1 - y_t) \ln \left(1 - \Phi(x_t\beta)\right) \right\}$

• How to find MLE (See Greene Ch. 5 or Hamilton, Ch. 5)
 1. Newton-Raphson’s algorithm:
 STEP 1: Choose an initial $\hat{\theta}_o$. Then compute
 $$\hat{\theta}_1 = \hat{\theta}_o + [-H_T(\hat{\theta}_o)]^{-1}s_T(\hat{\theta}_o).$$
 STEP 2: Using $\hat{\theta}_1$, compute $\hat{\theta}_2$ by (\ast).
 STEP 3: Continue until $\hat{\theta}_{q+1} \approx \hat{\theta}_q$.

Note: N-R method is the best if $l_T(\theta)$ is globally concave (i.e., the Hessian matrix is always negative definite for any θ). N-R may not work, if $l_T(\theta)$ is not globally concave.
2. BHHH [Berndt, Hall, Hall, Hausman]
 - $l_T(\theta) = \sum_i \ln[f_i(\theta)]$.
 - Define:

 \[g_t(\theta) = \frac{\partial \ln[f_i(\theta)]}{\partial \theta} \]

 [p×1]
 \[s_T(\theta) = \sum_t g_t(\theta). \]

 \[B_T(\theta) = \sum_t g_t(\theta) g_t(\theta)' \] [cross product of first derivatives].

 Theorem: Under suitable regularity conditions,

 \[\frac{1}{T}B_T(\hat{\theta}) \to_p \lim_{T \to \infty} E\left(-\frac{1}{T}H_T(\theta_o)\right). \]

 Implication:

 - $B_T(\hat{\theta}) \approx -H_T(\hat{\theta})$, as $T \to \infty$.
 - $\text{Cov}(\hat{\theta})$ can be estimated by $[B_T(\hat{\theta})]^{-1}$ or $[-H_T(\hat{\theta})]^{-1}$.
 - BHHH algorithm uses

 \[\hat{\theta}_1 = \hat{\theta}_o + \lambda_o \left(B_T(\hat{\theta}_o)\right)^{-1}s_T(\hat{\theta}_o), \]

 where λ is called step length.
 - When BHHH is used, no need to compute second derivatives.
 - Other available algorithms: BFGS, BFGS-SC, DFP.
• Interpretation of β

1) β_j shows direction of influence of x_{ij} on $\Pr(y_t = 1) = \Phi(x_t, \beta)$.

$\rightarrow \beta_j > 0$ means that $\Pr(y_t = 1)$ increases with x_{ij}

2) Rate of change:

$$\frac{\partial \Pr(y_t = 1)}{\partial x_{ij}} = \frac{\partial \Phi(x_t, \beta)}{\partial x_{ij}} = \phi(x_t, \beta) \beta_j.$$

• Testing Hypothesis:

1. Wald test:

 • $H_0: w(\beta) = 0$.

 • $W_T = w(\hat{\beta})' [W(\hat{\beta}) \hat{W}(\hat{\beta})]^{-1} w(\hat{\beta}) \rightarrow_d \chi^2(df = \# \text{ of restrictions})$,

 where $\hat{\beta} =$ probit MLE and $W(\beta) = \frac{\partial w(\beta)}{\partial \beta'}$.

2. LR test:

 • Easy for equality or zero restrictions (i.e., $H_0: \beta_2 = \beta_3$, or $H_0: \beta_2 = \beta_3 = 0$).

 • EX 1: Suppose you wish to test $H_0: \beta_4 = \beta_5 = 0$.

 STEP 1: Do Probit without restriction and get $l_{T,UR} = \ln(L_{T,UR})$.

 STEP 2: Do Probit with the restrictions and get $l_{T,R} = \ln(L_{T,R})$.

 \rightarrow Probit without x_{t4} and x_{t5}.

 STEP 3: $LR_T = 2[l_{T,UR} - l_{T,R}] \rightarrow_d \chi^2(df = 2)$.

LDV-4
• EX 2: Suppose you wish to test \(H_0: \beta_2 = \ldots = \beta_k = 0. \)

(Overall significance test)

- Let \(n = \sum y_t. \)
- \(l_T^* = n \ln(n/T) + (T-n) \ln[(T-n)/T]. \)
- \(LR_T = 2[l_{T,UR} - l_T^*] \rightarrow_p \chi^2(k-1). \)

(2) Logit Models

- Model:
 \[y_t^* = x_t' \beta + \epsilon_t, \]
 \(\epsilon_t \sim \text{logistic with } g(\epsilon) = e^\epsilon/(1+e^\epsilon)^2 \text{ and } G(\epsilon) = e^\epsilon/(1+e^\epsilon). \)
- Use \(\text{Pr}(y_t = 1) \equiv p_t = G(x_t, \beta) \) (instead of \(\Phi(x_t, \beta) \)).
- Logit MLE \(\hat{\beta}_{\text{logit}} \) max.

\[
\ln(L_T) = \sum_t \left\{ y_t \ln\left(G(x_t, \beta) \right) + (1-y_t) \ln\left(1 - G(x_t, \beta) \right) \right\}.
\]

Use \([-H_T(\hat{\beta}_{\text{logit}})]^{-1} \) or \([B_T(\hat{\beta}_{\text{logit}})]^{-1} \) as \(\text{Cov}(\hat{\beta}_{\text{logit}}) \).

- Interpretation of \(\beta \)
 - \(p_t = \frac{e^{x_t, \beta}}{1+e^{x_t, \beta}} \rightarrow \ln\left(\frac{p_t}{1-p_t} \right) = x_t, \beta. \)
 - \(\beta_j \) can be interpreted as the effect of \(x_{jt} \) on “log odds”.
 - \(\frac{\partial p_t}{\partial x_{jt}} = g(x_t, \beta) \beta_j. \)
(3) Nonparametric estimation of binary choice model

1) Cosslett (Econometrica, 1983)
 • See also Amemiya (1985, book)
 • \(\Pr(y_t = 1) = F(x_t \beta) \), where \(F \) is a unknown cdf.
 • Joint estimation of \(\beta \) and \(F \) is feasible, although it is not easy.
 • Asymptotic distribution of the estimator is not known.

2) Nonparametric Estimation of \(F(x_t \beta) \)
 • For binary choice models,
 \[
 E(y_t|x_t) = F(x_t) \quad (F(\bullet) = \text{pdf of } \varepsilon)
 \]
 \(\rightarrow \) For example, \(F(x_t) = \Phi(x_t \beta) \) for probit.
 \(\rightarrow \) The functional form of \(F(\bullet) \) is not known in general.
 • Possible to estimate \(F(x_t \beta) \) [but not \(F \) and \(\beta \)] for any \(t \)
 by Kernel Smoothing.
 \(\rightarrow \) See Härdle (1990, Applied Nonparametric Regression.)
 • LIMDEP can do this.

3) Nonparametric Estimation of \(\beta \):
 See Powell, Stock and Stoker (1989, Econ, 1403-30).
4) Manski (Journal of Econometrics, 1975)

- “Maximum Score Estimator.” (MSE)
- Motivation: The distribution of ε_t not known.
- Assumptions:
 - Med(ε_t) = 0 \rightarrow Pr($\varepsilon_t < 0$) = 1/2.
 - The x_{it} are iid over t.
- The model:
 $y^*_t = x_{it}'\beta + \varepsilon_t$; $y_t = 1$ iff $y^*_t > 0$.
- Define:
 $z_t = \text{sgn}(y^*_t) = 1$ if $y^*_t > 0$, and = -1, if $y^*_t < 0$.
- Define $b = \beta/((\beta'\beta)^{1/2}$ [Note that $b'b = 1$].
 [Need it for identification.]
- The MSE estimator, \hat{b}, maximizes
 $S(b) = (1/N) \sum_t[z_t \text{sgn}(x_{it}'b)]$.
- Intuition:
 - $\text{sgn}(x_{it}'\hat{b})$ = predicted z_t.
 - If the prediction is correct, $z_t \text{sgn}(x_{it}'\hat{b}) = 1$.
 - If the prediction is incorrect, $z_t \text{sgn}(x_{it}'\hat{b}) = -1$.
 - max. $S(b)$
 $= \text{max. # of correct predictions with penalty} !!!$
• Maximizing $S(b)$ is equivalent to:
 $$\min \sum |y_t - \max(0, \text{sgn}(x_t \cdot b))|. \quad (*)$$
• LIMDEP uses (*). [you don’t have to define z_t.]
• Properties of MSE:
 • Consistent.
 • It does not have a standard asymptotic distribution.
 • LIMDEP computes covariance matrix of \hat{b} using bootstrapping. But the method is not based on clean theories.

(4) **Probit/Logit Panel Models**

1) Model:
 $$y_{it}^* = x_{it} \beta + z_i \gamma + \alpha_i + \varepsilon_{it},$$
 where ε_{it} are iid $N(0,1)$ and $y_{it} = 1$ if $y_{it}^* > 0$; $= 0$ otherwise.

2) Fixed effects model
 • Treat the α_i as parameters to be estimated.
 • MLE
 [For probit]
 $$l_T(\beta, \gamma, \alpha_1, ..., \alpha_N) = \sum_i \sum_t \left[y_{it} \ln \Phi(x_{it} \beta + z_i \gamma + \alpha_i) + (1 - y_{it}) \ln \left(1 - \Phi(x_{it} \beta + z_i \gamma + \alpha_i) \right) \right].$$
[For logit]

\[l_T(\beta, \gamma, \alpha_1, ..., \alpha_N) = \sum_i \sum_i \left[y_{it} \left(x_{it} \beta + z_i \gamma + \alpha_i \right) \right] - \ln \left(1 + \exp \left(x_{it} \beta + z_i \gamma + \alpha_i \right) \right) \]

- **Facts:**
 - If \(N \) is large, probit (logit) ML estimators are computationally burdensome.
 - If \(T \) is small, probit (logit) ML estimators are severely biased: Chamberlain (1980, RES) derives the asymptotic bias of ML estimator for a simple logit model (scalar \(\beta \), no time invariant regressor, \(T = 2 \)). He found that \(\lim_{N \to \infty} \hat{\beta}_{ML} = 2\beta! \)
 - Some Monte Carlo experiments (e.g., Heckman, 1981) show that ML estimators behave relatively well if \(T \) is large (\(T = 10 \) or more).

3) Random Effects Model I

- Assume that regressors (\(x_{it} \) and \(z_i \)) are uncorrelated with \(\alpha_i \).
- \(\alpha_i \) iid \(N(0, \sigma^2_\alpha) \). Let \(\alpha_i = \sigma_{\alpha} g_i \) where \(g_i \sim N(0,1) \).
- See Butler and Moffitt (ECON, 1982) and Hsiao (Econometrics Reviews, 1984).
The joint pdf of \(y_{i1}, \ldots, y_{iT} \) is given by:

\[
f(y_{i1}, \ldots, y_{iT}) = E_{g_i}[r_i(\beta, \gamma, \sigma_\alpha g_i)] = \int r_i(\beta, \gamma, \sigma_\alpha g_i) f(g_i) dg_i,
\]

where

\[
r_i(\beta, \gamma, \sigma_\alpha g_i) = \prod_{t=1}^{T} \left(\Phi(x_{it} \beta + z_{it} \gamma + \sigma_\alpha g_i)^{y_{it}} \times (1 - \Phi(x_{it} \beta + z_{it} \gamma + \sigma_\alpha g_i))^{1-y_{it}} \right).
\]

Log-likelihood function:

\[
l_N(\beta, \gamma, \sigma_\alpha) = \sum_i \ln[f(y_{i1}, \ldots, y_{iT})].
\]

MLE requires integrations. LIMDEP can do integrations using an approximation procedure. [LIMDEP computes \(\beta, \gamma \) and \(\rho = \sigma_\alpha^2/(1+\sigma_\alpha^2) \). Data do not have to be balanced.

Simulated ML (SML) method:

- Generate random numbers, \(g_i^{(1)}, \ldots, g_i^{(H)} \) for each \(i \) (all are N(0,1)).
- If \(H \) is large,

\[
r_{iH}(\beta, \gamma, \sigma_\alpha) = \frac{1}{H} \sum_{h=1}^{H} r_i(\beta, \gamma, \sigma_\alpha g_i^{(h)}) \approx E_{g_i}[r_i(\beta, \gamma, \sigma_\alpha g_i)].
\]

Do MLE using (2) instead of (1). This alternative MLE is called Simulated ML (SML). SML is an efficient as MLE, and is computationally easier.
4) Random Effects Model II

- Regressors (x_{it} and z_i) are correlated with α_i.
 - $\alpha_i = x_{i1}\lambda_1 + \ldots + x_{iT}\lambda_T + z_i\pi + \eta_i$, where η_i are iid $N(0,\sigma^2)$.
 - $y_{it}^* = x_{it}\beta + z_i\gamma + \alpha_i + \varepsilon_{it} = x_{it}\beta + x_i^o\lambda + z_i(\gamma + \pi) + \eta_i + \varepsilon_{it}$, where $x_i^o = (x_{i1},\ldots,x_{iT})$ and $\lambda' = (\lambda_1',\ldots,\lambda_T')$.
 - Do MLE as in the case I, and estimate β, λ and $(\gamma+\pi)$.

5) Logit model with fixed effects.

- Use conditional MLE (Chamberlain, 1980, ReStud).
- Logistic distribution:
 - pdf: $f(h) = \exp(h)/[1+\exp(h)]^2$;
 - cdf: $F(h) = \exp(h)/[1+\exp(h)]$.
- Case in which $T = 2$. The results obtained below can apply to more general cases. [LIMDEP can do this.]
- Possible outcomes for (y_{i1},y_{i2}):
 - $(y_{i1},y_{i2}) \in \{(1,1),(1,0),(0,1),(0,0)\}$.
Choose the observations with (1,0) and (0,1) only.

\[
\Pr[(y_{i1}, y_{i2}) = (1,0) \text{ or } (0,1)]
\]

\[
= \Pr(y_{i1}=1)\Pr(y_{i2}=0) + \Pr(y_{i1}=0)\Pr(y_{i2}=1)
\]

\[
= \frac{\exp(x_{i1}\beta + z_i\gamma + \alpha_i)}{1 + \exp(x_{i1}\beta + z_i\gamma + \alpha_i)} \cdot \frac{1}{1 + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)}
\]

\[
+ \frac{1}{1 + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)} \cdot \frac{\exp(x_{i2}\beta + z_i\gamma + \alpha_i)}{1 + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)}
\]

\[
= \frac{\exp(x_{i1}\beta + z_i\gamma + \alpha_i) + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)}{[1 + \exp(x_{i1}\beta + z_i\gamma + \alpha_i)][1 + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)]}
\]

\[
\Pr[(y_{i1}, y_{i2}) = (1,0)] = \Pr(y_{i1} = 1)\Pr(y_{i2} = 0).
\]

\[
\Pr[(y_{i1}, y_{i2}) = (1,0)| (y_{i1}, y_{i2}) = (1,0) \text{ or } (0,1)]
\]

\[
= \Pr[(y_{i1}, y_{i2}) = (1,0)]/\Pr[(y_{i1}, y_{i2}) = (1,0) \text{ or } (0,1)]
\]

\[
= \frac{\exp(x_{i1}\beta + z_i\gamma + \alpha_i)}{[1 + \exp(x_{i1}\beta + z_i\gamma + \alpha_i)][1 + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)]}
\]

\[
= \frac{\exp(x_{i1}\beta + z_i\gamma + \alpha_i) + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)}{[1 + \exp(x_{i1}\beta + z_i\gamma + \alpha_i)][1 + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)]}
\]

\[
= \frac{\exp(x_{i2}\beta + z_i\gamma + \alpha_i)}{\exp(x_{i1}\beta + z_i\gamma + \alpha_i) + \exp(x_{i2}\beta + z_i\gamma + \alpha_i)} \equiv \Lambda(x_{i1}, x_{i2}, \beta).
\]
• Then:

\[f(y_{i1}, y_{i2} | (y_{i1}, y_{i2}) = (1,0) \text{ or } (0,1)) = \left[\Lambda(x_{i1}, x_{i2}, \beta) \right]^{y_i} \left[1 - \Lambda(x_{i1}, x_{i2}, \beta) \right]^{1-y_i} \]

where \(y_i = 1 \) if \((y_{i1}, y_{i2}) = (1,0); = 0 \) if \((y_{i1}, y_{i2}) = (0,1).\)

• The log-likelihood function:

\[l_N(\beta) = \sum_{i=1}^{N} \ln f(y_{i1}, y_{i2} | (y_{i1}, y_{i2}) = (1,0) \text{ or } (0,1)) \]

• A drawback is that it can’t estimate \(\gamma. \)

(1) Model:

\[y_{it}^* = x_{it} \beta + z_i \gamma + \alpha_i + \epsilon_{it}, \]

where the \(\epsilon_{it} \) are iid \(N(0, \sigma^2_{\epsilon}) \) and only the \(y_{it} = \max(0, y_{it}^*) \) are observed. Let \(\alpha_i = \sigma_{\alpha} g_i \) where \(g_i \sim N(0,1) \).

(2) Random Effects Model I

- Regressors (\(x_{it} \) and \(z_i \)) are uncorrelated with \(\alpha_i \).
- The joint pdf of \(y_{i1}, \ldots, y_{iT} \) is given by:

\[
 f(y_{i1}, \ldots, y_{iT}) = E_{g_i} \left[r_i(\beta, \gamma, \sigma_{\epsilon}, \sigma_{\alpha} g_i) \right] = \int r_i(\beta, \gamma, \sigma_{\epsilon}, \sigma_{\alpha} g_i) \, dg_i,
\]

where,

\[
 r_i(\beta, \gamma, \sigma_{\epsilon}, \sigma_{\alpha} g_i) = \prod_{y_a > 0} \frac{1}{\sigma_{\epsilon}} \phi \left(\frac{y_{it} - x_{it} \beta - z_i \gamma - \sigma_{\alpha} g_i}{\sigma_{\epsilon}} \right) \times \prod_{y_a = 0} \left(1 - \Phi \left(\frac{x_{it} \beta + z_i \gamma + \sigma_{\alpha} g_i}{\sigma_{\epsilon}} \right) \right).
\]

- Log-likelihood function:

\[
 l_N(\beta, \gamma, \sigma_{\alpha}) = \Sigma_i \ln [f(y_{i1}, \ldots, y_{iT})].
\]

- MLE requires integrations. LIMDEP can do integrations using an approximation procedure. [LIMDEP computes \(\beta, \gamma \) and \(\rho = \sigma_{\alpha}^2/(1+\sigma_{\alpha}^2) \). Data do not have to be balanced.
• Simulated ML (SML) method:
 • Generate random numbers, $g_i^{(1)}, \ldots, g_i^{(H)}$ for each i (all are $N(0, 1)$).
 • If H is large,
 \[
 r_{iH}(\beta, \gamma, \sigma_\epsilon, \sigma_\alpha) = \frac{1}{H} \sum_{h=1}^{H} r_i(\beta, \gamma, \sigma_\epsilon, \sigma_\alpha g_i^{(h)}) \\
 \approx E_{g_i}[r_i(\beta, \gamma, \sigma_\epsilon, \sigma_\alpha g_i)]
 \]
 • Do MLE using r_{iH}. This alternative MLE is called Simulated ML (SML). SML is an efficient as MLE, and is computationally easier.

(3) Random Effects Model II

• Regressors (x_{it} and z_i) are correlated with α_i.
 • $\alpha_i = x_{i1} \lambda_1 + \ldots + x_{iT} \lambda_T + z_i \pi + \eta_i$, where η_i are iid $N(0, \sigma_\eta^2)$.
 • $y_{it}^* = x_{it} \beta + z_i \gamma + \alpha_i + \epsilon_{it} = x_{it} \beta + x_{i}^0 \lambda + z_i (\gamma + \pi) + \eta_i + \epsilon_{it}$,

 where $x_i^0 = (x_{i1}, \ldots, x_{iT})$ and $\lambda' = (\lambda_1', \ldots, \lambda_T')$.
 • Do MLE as in the case I, and estimate $\beta, \lambda, (\gamma + \pi), \sigma_\eta^2$ and σ_ϵ^2.

LDV-15
(4) Fixed Effects Models

- See Honore (1992, ECON).
 - Proposes a GMM type of estimator (complicated).
 - Based on the assumption that the ε_{it} are iid and symmetric around zero mean. (The ε_{it} do not have to be normal.)
 - Can’t estimate γ.
 - Extending to a dynamic model.
[4] Panel Selection Model

- Model:
 \[y_{it} = x_{it}\beta + z_{it}\gamma + \alpha_i + \varepsilon_{it}; \]
 \[h_{it}^* = w_{it}\theta + q_i\xi + \eta_i + \nu_{it}. \]

- Observe \(h_{it} \) (\(h_{it} = 1 \) if \(h_{it}^* > 0 \) and \(h_{it} = 0 \) if \(h_{it}^* < 0 \)).
- Observe \(y_{it} \) only if \(h_{it} = 1 \).

- Can use the random effect assumptions to estimate the model.
- For the fixed effects treatments, see Kyriazidou (1997, ECON).
Ordered probit model

(1) Basic Model

- \(y_t^* = x_t \beta + \varepsilon_t, \varepsilon_t \sim N(0,1). \)
- Observe \(y_t, \) where

 \[
 y_t = 0, \text{ if } y_t^* < \mu_0 \\
 = 1, \text{ if } \mu_0 < y_t^* < \mu_1 \\
 = 2, \text{ if } \mu_1 < y_t^* < \mu_2 \\
 \vdots \\
 = J, \text{ if } y_t^* > \mu_{J-1}.
 \]

Note:

- Need a restriction, \(\mu_0 = 0, \) for identification.

 \(\rightarrow \) OK for MLE of \(\beta \) (except the overall intercept term).

Example:

- Survey data (hate, so-so, like): \(y_t^* = \) degree of preference.

Unknown Parameters:

\(\beta, \mu_1, \ldots, \mu_{J-1}. \)

Note:

If \(J = 1, \) the model becomes the usual probit model.
Probabilities:

- \(p_{0t} \equiv Pr(y_t = 0) = Pr(y_t^* < \mu_0 = 0) = Pr(\varepsilon_t < 0 - x_t'\beta) = \Phi(-x_t'\beta) \);
- \(p_{1t} \equiv Pr(y_t = 1) = Pr(0 = \mu_0 < y_t^* < \mu_1) \)
 \[= Pr(y_t^* < \mu_1) - Pr(y_t^* < \mu_0) = \Phi(\mu_1 - x_t'\beta) - \Phi(-x_t'\beta) \);
- \(p_{2t} \equiv Pr(y_t = 2) = \Phi(\mu_2 - x_t'\beta) - \Phi(\mu_1 - x_t'\beta) \);
 \[: \]
- \(p_{Jt} \equiv Pr(y_t = J) = 1 - \Phi(\mu_{J-1} - x_t'\beta) \).

Log-likelihood function:

- Define \(d_{jt} = 1 \) if \(y_t = j \); \(= 0 \) otherwise.
- Then, the pdf of \(y_t \) is given by \((p_{0t})^{d_{0t}} \cdot (p_{1t})^{d_{1t}} \cdot \ldots \cdot (p_{Jt})^{d_{Jt}} \).
- \(l_T(\beta, \mu_1, \ldots, \mu_{J-1}) = \sum_{t=1}^{T} \{d_{0t} \ln(p_{0t}) + \ldots + d_{Jt} \ln(p_{Jt})\} \).

(2) Model with Heteroskedasticity

- \(y_t^* = x_t'\beta + \varepsilon_t \), \(\varepsilon_t \sim N\left(0, \left[\exp(z_t'\gamma)\right]^2\right) \):
 \[: \]
 - \(z_t \) may include some variables in \(x_t \).
 - \(z_t \) should not include overall intercept term.
• Observe y_t, where
 \[
 y_t = 0, \text{ if } y_t^{**} < \mu_0 = 0 \\
 = 1, \text{ if } \mu_0 < y_t^{**} < \mu_1 \\
 = 2, \text{ if } \mu_1 < y_t^{**} < \mu_2 \\
 \vdots \\
 = J, \text{ if } y_t^{**} > \mu_{J-1}.
 \]

Unknown Parameters:

β, γ, μ_1, ..., μ_{J-1}.

Redefine the model:

\[
y_t^* = y_t^{**} / \exp(z_t\gamma)
\]

\[
\rightarrow y_t^* = x_t\beta / \exp(z_t\gamma) + v_t, \text{ where } v_t \sim N(0,1).
\]

Probabilities:

• $p_{0t} \equiv \Pr(y_t = 0) = \Pr(y_t^{**} < \mu_0 = 0) = \Pr(y_t^* < 0 / \exp(z_t\gamma))$
 \[
 = \Pr(x_t\beta / \exp(z_t\gamma) + v_t < 0) = \Pr(v_t < -x_t\beta / \exp(z_t\gamma))
 = \Phi(-x_t\beta / \exp(z_t\gamma));
 \]

$ p_{1t} \equiv \Pr(y_t = 1) = \Phi((\mu_1 - x_t\beta) / \exp(z_t\gamma)) - \Phi(-x_t\beta / \exp(z_t\gamma));$

$ p_{2t} \equiv \Pr(y_t = 2)$
 \[
 = \Phi((\mu_2 - x_t\beta) / \exp(z_t\gamma)) - \Phi((\mu_1 - x_t\beta) / \exp(z_t\gamma));
 \]

\vdots

$ p_{Jt} \equiv \Pr(y_t = J) = 1 - \Phi((\mu_{J-1} - x_t\beta) / \exp(z_t\gamma)).$
Log-likelihood function:
- Define \(d_{jt} = 1 \) if \(y_t = j \); = 0 otherwise.
- \(l_T(\beta, \mu_1, \ldots, \mu_{J-1}) = \sum_{t=1}^{T} \{ d_{0t} \ln(p_{0t}) + \ldots d_{jt} \ln(p_{jt}) \} \).

(3) Application [Hausman, Lo and Mackinlay (1992, JF)]

Situation:
- Changes in prices of stock are quoted in discrete units (ticks).
 → 1 tick for equities = $0.125 (1/8);
 → 1 ticks for US treasury bond = $0.03125 (1/32).
- For NYSE, most of transactions occurs with zero or one-tick price changes. And, price changes greater than 4 ticks are greatly rare.
- Let \(y_t = \) change in transaction prices in ticks = -4,-3, ..., 0,...,3, 4.
- Let \(y_t^{**} = \) changes in actual continuous prices.
- Wish to estimate the effects of some exogenous variables \(x_t \) on \(y_t^{**} \).
- Wish to estimate the effects of \(x_t \) on \(\Pr(y_t = s) \), \(s = -4, \ldots, 4 \).
Solution:

- Let $y_t^{**} = x_t\beta + \varepsilon_t$, $\varepsilon_t \sim N\left(0, \exp(z_t\gamma)^2\right)$.

- Redefine:
 - $y_t = 0$ if actual $y_t = -4$ or more,
 - $y_t = 1$ if actual $y_t = -3$, ...

- Do MLE for the ordered probit with heteroskedasticity.
Unordered choice models

Example:
The dependent variable y may take many different values, 1, 2, ... , n. For example, $y_t = 1$ if drive, $y_t = 2$ if bus; and $y_t = 3$ if taxi.

(1) Multinomial Logit Models (Theil)

- Assume:
 \[\ln\left[\frac{Pr(y_t = j)}{Pr(y_t = i)} \right] = x_t(\beta_j - \beta_i), \quad i, j = 1, 2, \ldots, n, \]
 where x_t contains individual characteristics and β_j for choice j.

- This assumption (with the fact that the sum of probs = 1) implies:
 \[Pr(y_t = j) = \frac{\exp(x_t \beta_j)}{\sum_{i=1}^{n} \exp(x_t \beta_i)} . \]

- Need to normalize β’s (See Greene, 0. 721). Usually, $\beta_1 = 0$.
 - Under this normalization,
 \[Pr(y_t = 1) = 1/\xi_t, \quad \xi_t = 1 + \sum_{i=2}^{n} \exp(x_t \beta_i); \]
 \[Pr(y_t = j) = \exp(x_t \beta_j)/\xi_t, \quad j = 2, \ldots, n. \]
• Interpretation of estimates:
 • $\text{sgn}(\beta_{jh})$ (sign of β_{jh}) indicates the direction of the effects of x_{th} on $\Pr(y_t = j)/\Pr(y_t = 1)$.

(2) Conditional Logit Model (McFadden)

• $\ln[\Pr(y_t = j)/\Pr(y_t = i)] = (x_{tj} - x_{ti})\theta$, $j, i = 1, 2, \ldots, n$,
 where x_{jt} includes the characteristics of choice.

• Example: (Boskin, JPE, 1982)

 $y_t = \text{occupation}$;
 $x_{tj} = \text{variables such as the present value for the jth occupation, training cost/net worth of the jth occupation, and the present value of time unemployed for the jth occupation.}$

• $\Pr(y_t = j) = \frac{\exp(x_{tj} \theta)}{\sum_{i=1}^{n} \exp(x_{ti} \theta)}$.
(3) Unordered Multiple Probit (Hausman and Wise, ECON, ‘78)

- Problems in multinomial logit models (MLM):
 - In MLM, any possible correlation among choices is not allowed.
 - Called IIA (Independence of Irrelevant Alternatives).
 - IIA: In MLM, $\Pr(y_t = j)/\Pr(y_t = i)$ does not depend on the number or nature of other alternatives.

- Red bus-blue bus problem:
 - Suppose you have two alternative choices: blue bus and red buses. These choices must be highly correlated. However, MLM does not allow this.
 - You initially have two choices: red bus and drive. Assume:
 \[\Pr(\text{red bus}) = \Pr(\text{drive}) = 0.5 \rightarrow \Pr(\text{red bus})/\Pr(\text{drive}) = 1. \]
 - Now, let’s add blue bus to the choice set.
 - Intuitively, $\Pr(\text{red bus})/\Pr(\text{blue bus}) = 1$.
 - In MLM, $\Pr(\text{red bus})/\Pr(\text{drive}) = 1$:
 - \[\Pr(\text{red bus}) = \Pr(\text{blue bus}) = \Pr(\text{drive}) = 1/3. \]
 - Quite unreasonable.
 - Correct probabilities must be:
 \[\Pr(\text{red bus}) = \Pr(\text{blue bus}) = 1/4, \text{ and } \Pr(\text{drive}) = 1/2. \]
 - To avoid IIA, need to use multivariate normal distributions. But this alternative is very messy.
[7] Bivariate Probit Models

(1) Bivariate Normal Distribution

• \(\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right) \).

• \(f(\varepsilon_1, \varepsilon_2 | \rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp \left[-\frac{\varepsilon_1^2 - 2\rho\varepsilon_1\varepsilon_2 + \varepsilon_2^2}{2(1-\rho^2)} \right], \) where \(-1 \leq \rho \leq 1\).

• The cdf is denoted by:

\[
F(h, k | \rho) = \Pr(\varepsilon_1 < h, \varepsilon_2 < k) = \Pr(\varepsilon_1 > -h, \varepsilon_2 > -k)
= \int_{-h}^{\infty} \int_{-k}^{\infty} f(\varepsilon_1, \varepsilon_2 | \rho) d\varepsilon_2 d\varepsilon_1.
\]

• Facts:

 • \(\Pr(\varepsilon_1 > -h, \varepsilon_2 > -k) = F(h, k | \rho) \).
 • \(\Pr(\varepsilon_1 > -h, \varepsilon_2 < -k) = \Pr(\varepsilon_1 > -h) - \Pr(\varepsilon_1 > -h, \varepsilon_2 > -k) = \Phi(h) - F(h, k | \rho) \).
 • \(\Pr(\varepsilon_1 < -h, \varepsilon_2 > -k) = \Phi(k) - F(h, k | \rho) \).
 • \(\Pr(\varepsilon_1 < -h, \varepsilon_2 < -k) = 1 - \Phi(h) - \Phi(k) + F(h, k | \rho) \).

 • \(\frac{\partial F(h, k | \rho)}{\partial h} = \phi(h)\Phi \left[\frac{k - \rho h}{\sqrt{1-\rho^2}} \right]; \quad \frac{\partial F(h, k | \rho)}{\partial k} = \phi(k)\Phi \left[\frac{h - \rho k}{\sqrt{1-\rho^2}} \right] \).
\[\frac{\partial F(h,k \mid \rho)}{\partial \rho} = f(h,k \mid \rho). \]

(2) **Full Observability Model**

Model:

\[y_{1t}^* = x_{1t} \beta_1 + \epsilon_{1t}; \]
\[y_{2t}^* = x_{2t} \beta_2 + \epsilon_{2t}. \]

- Observe: \(y_{1t} = 1 \) if \(y_{1t}^* > 0 \); \(y_{1t} = 0 \) if \(y_{1t}^* < 0 \)
\[y_{2t} = 1 \) if \(y_{2t}^* > 0 \); \(y_{2t} = 0 \) if \(y_{2t}^* < 0 \)

Example: AMEX card.
\[y_{1t}: \text{buy a good from CostCo or not.} \]
\[y_{2t}: \text{use AMEX card or not.} \]

Four possible outcomes:

\[p_{11,t} = \Pr(y_{1t} = 1, y_{2t} = 1) = \Pr(\epsilon_{1t} > -x_{1t} \beta_1, \epsilon_{2t} > -x_{2t} \beta_2) \]
\[= F(x_{1t} \beta_1, x_{2t} \beta_2 \mid \rho) \equiv F_t \]
\[p_{10,t} = \Pr(y_{1t} = 1, y_{2t} = 0) = \Phi(x_{1t} \beta_1) - F_t \equiv \Phi_{1t} - F_t \]
\[p_{01,t} = \Pr(y_{1t} = 0, y_{2t} = 1) = \Phi(x_{2t} \beta_2) - F_t \equiv \Phi_{2t} - F_t \]
\[p_{00,t} = \Pr(y_{1t} = 0, y_{2t} = 0) = 1 - \Phi_{1t} - \Phi_{2t} + F_t \]
PDF of y_{1t} and y_{2t}:

$$
\left(p_{11,t} \right)^{y_{1t}y_{2t}} \left(p_{10,t} \right)^{y_{1t}(1-y_{2t})} \left(p_{01,t} \right)^{(1-y_{1t})y_{2t}} \left(p_{00,t} \right)^{(1-y_{1t})(1-y_{2t})}.
$$

Log-likelihood function:

$$
l_T(\beta_1, \beta_2, \rho) = \sum_{t=1}^{T} \left\{ \begin{array}{l}
 y_{1t}y_{2t} \ln(p_{11,t}) + y_{1t}(1-y_{2t})\ln(p_{10,t}) \\
 + (1-y_{1t})y_{2t} \ln(p_{01,t}) + (1-y_{1t})(1-y_{2t})\ln(p_{00,t})
\end{array} \right\}.
$$

Note:

- Suppose that $\rho = 0$. Then, $F(x_{1t}\beta_1, x_{2t}\beta_2 | \rho) = \Phi(x_{1t}\beta_1)\Phi(x_{2t}\beta_2)$.
- $l_T(\beta_1, \beta_2) = \text{probit } l_T(\beta_1)$ for $y_{1t} + \text{probit } l_T(\beta_2)$ for y_{2t}.
- β_1 and β_2 can be estimated separately by separate probits.
- Even if $\rho \neq 0$, separate estimators are consistent, but not efficient. The bivariate probit ML is more efficient.

(3) **Censored Probit (Bivariate Probit with Selection)**

Model:

- We always observe $y_{1t} = 1$ if $y_{1t}^* > 0$ and $y_{1t} = 0$ if $y_{1t}^* > 0$.
- We observe y_{2t} iff $y_{1t} = 1$,

$$
\text{and } y_{2t} = 1 \text{ if } y_{2t}^* > 0 \text{ and } y_{2t} = 0 \text{ if } y_{2t}^* > 0.
$$

LDV-28
Example: Farber (1983, Research in Labor Economics)

\(y_{1t} = \) whether a worker wants to join union or not.
\(y_{2t} = \) whether union wants the worker or not.

Three cases:

\[
\Pr(y_{1t} = 1, y_{2t} = 1) = F(x_{1t}\beta_1, x_{2t}\beta_2 | \rho) \equiv F_t
\]
\[
\Pr(y_{1t} = 1, y_{2t} = 0) = \Phi(x_{1t}\beta_1) - F_t \equiv \Phi_{1t} - F_t
\]
\[
\Pr(y_{1t} = 0) = 1 - \Phi_{1t}.
\]

PDF of \(y_{1t} \) and \(y_{2t} \):

\[
(F_t)^{y_{it}y_{2it}}(\Phi_{1t} - F_t)^{y_{it}(1-y_{2it})}(1 - \Phi_{1t})^{(1-y_{it})}.
\]

Log-likelihood function:

\[
l_T(\beta_1, \beta_2, \rho) = \sum_{t=1}^{T} \left\{ y_{1t}y_{2t} \ln(F_t) + y_{1t}(1-y_{2t})\ln(\Phi_{1t} - F_t) \right\}
\]
\[
+ (1 - y_{1t}) \ln(1 - \Phi_{1t})
\]

Note:

- If \(\rho = 0 \),
 \[
l_T(\beta_1, \beta_2, \rho) = \text{probit for } y_{1t} \text{ with all observations } + \text{probit for } y_{2t} \text{ with the observations with } y_{1t} = 1.
\]
- \(\beta_1 \) and \(\beta_2 \) can be estimated by separate probits.
- Notice that the probit for \(\beta_2 \) uses observations with \(y_{1t} = 1 \) only, not all observations.
• If $\rho \neq 0$,
 • the probit ML estimator of β_1 is still consistent, but probit of β_2 is inconsistent.

• Very often, you may fail to obtain the censored MLE.
 • May need to restrict $\rho = 0$.
 • If we do, have to interpret the y_{1t}^* equation as a conditional one defined given $y_{1t} = 1$. (It describes $\Pr(y_{2t} = 1| y_{1t} = 1)$.)
 • For the censored probit with unrestricted ρ, the second equation is interpreted as unconditional one.

(4) **Poirier Probit (Journal of Econometrics, 1980)**

Model:
 • Observe only $y_t = y_{1t}y_{2t}$: $y_t = 1$ if $y_{1t}^* > 0$ and $y_{2t}^* > 0$; $= 0$, otherwise.

Example:
 • Two member committee with unanimity rule.
Two cases:
\[
\Pr(y_t = 1) = \Pr(y_{1t}^* > 0, y_{2t}^* > 0) = F_t
\]
\[
\Pr(y_t = 0) = 1 - F_t
\]

PDF of \(y_{1t} \) and \(y_{2t} \):
\[
(F_t)^{y_t} (1 - F_t)^{1-y_t}.
\]

Log-likelihood function:
\[
l_T(\beta_1, \beta_2, \rho) = \sum_{i=1}^{T} \left\{ y_t \ln(F_t) + (1 - y_{1t}) \ln(1 - F_t) \right\}
\]

Note:
- Separate probits are impossible even if \(\rho = 0 \).
- If \(\rho = 0 \), \(l_T(\beta_1, \beta_2) = \sum_{i=1}^{T} \left\{ y_t \ln(\Phi_{1t} \Phi_{2t}) + (1 - y_{1t}) \ln(1 - \Phi_{1t} \Phi_{2t}) \right\} \).
 - MLE of Abowd and Farber (1982, ILRR).
 - When \(\rho \) is restricted at zero, the second equation should be interpreted as conditional one.
- If \(\rho \neq 0 \), the A-F MLE is inconsistent for the estimation of unconditional equations for \(y_{1t} \) and \(y_{2t} \).
- If \(x_{1t} = x_{2t} \), can’t distinguish which estimates are for which equations.
Double Selection Model

Basic Model:

1) \[y_{1t}^* = x_{1t}\beta_1 + \varepsilon_{1t} \]

2) \[y_{2t}^* = x_{2t}\beta_2 + \varepsilon_{2t} \]

3) \[y_{3t} = x_{3t}\beta_3 + \varepsilon_{3t} \]

Assumptions:

• 1) and 2): a bivariate probit model.

• Let \(y_{1t} \) and \(y_{3t} \) be the dummy variables for 1) and 2).

• Observe \(y_{3t} \) only if \(y_{1t} = y_{2t} = 1 \).

\[
\begin{pmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t} \\
\varepsilon_{3t}
\end{pmatrix}
\sim N
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
1 & \rho & \sigma_{13} \\
\rho & 1 & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{pmatrix}.
\]

Example:

\(y_{1t} = LF; y_{2t} = EMP_t \rightarrow \text{consored probit}. \)

\(y_{3t} = LRATE_t \) (log of wage rate).
Two-Stage Estimation:

\[E(y_{3t}^* \mid y_{1t}^* > 0, y_{2t}^* > 0) = x_{3t}\beta_3 + E(\varepsilon_{3t} \mid \varepsilon_{1t} > -x_{1t}\beta_1, \varepsilon_{2t} > -x_{2t}\beta_2) \]

\[= x_{3t}\beta_3 + \sigma_{13}\lambda_{1t} + \sigma_{23}\lambda_{2t}, \]

where,

\[
\lambda_{1t} = \frac{\phi(x_{1t}\beta_1)\Phi\left[\frac{x_{2t}\beta_2 - \rho x_{1t}\beta_1}{\sqrt{1-\rho^2}}\right]}{F(x_{1t}\beta_1, x_{2t}\beta_2 \mid \rho)},
\]

\[
\lambda_{2t} = \frac{\phi(x_{2t}\beta_2)\Phi\left[\frac{x_{1t}\beta_1 - \rho x_{2t}\beta_2}{\sqrt{1-\rho^2}}\right]}{F(x_{1t}\beta_1, x_{2t}\beta_2 \mid \rho)}.
\]

Note:

• If \(\rho = 0 \), we have:

\[
\lambda_{1t} = \frac{\phi(x_{1t}\beta_1)\Phi(x_{2t}\beta_2)}{\Phi(x_{1t}\beta_1)\Phi(x_{2t}\beta_2)} = \frac{\phi(x_{1t}\beta_1)}{\Phi(x_{1t}\beta_1)}; \quad \lambda_{2t} = \frac{\phi(x_{2t}\beta_2)}{\Phi(x_{2t}\beta_2)}.
\]

→ inverse Mill’s ratios.
Note:

- For observed y_{3t},
 \[y_{3t} = x_{3t} \beta_3 + \sigma_{13} \lambda_{1t} + \sigma_{23} \lambda_{2t} + v_t, \]

 where,
 \[E(v_t | y_{2t}^* > 0, y_{2t}^* > 0) = 0; \]
 \[\text{var}(v_t | y_{1t}^* > 0, y_{2t}^* > 0) = \pi_t = \sigma_{33} - \xi_t; \]
 \[\xi_t = \sigma_{13}^2 [(x_{1t} \beta_1) \lambda_{1t} + \lambda_{2t}^2 + \rho \lambda_{3t}] + \sigma_{23}^2 [(x_{2t} \beta_2) \lambda_{2t} + \lambda_{1t}^2 + \rho \lambda_{3t}] \]
 \[-2 \sigma_{13} \sigma_{23} (\lambda_{3t} - \lambda_{1t} \lambda_{2t}); \]
 \[\lambda_{3t} = f(x_{1t} \beta_1, x_{2t} \beta_2 | \rho) / F(x_{1t} \beta_1, x_{2t} \beta_2 | \rho). \]

Two-step estimation

- Do bivariate probit and get $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\rho}$, $\hat{\lambda}_{1t}$, and $\hat{\lambda}_{2t}$.
- Do OLS on $y_{3t} = x_{3t} \beta_3 + \sigma_{13} \hat{\lambda}_{1t} + \sigma_{23} \hat{\lambda}_{2t} + \text{error}$.

Facts on the two-step estimator:

- Consistent.
- F or Wald tests for $\sigma_{13} = \sigma_{23} = 0$ (no selection) using usual OLS covariance matrix \approx LM test, while individual t tests for $\sigma_{13} = 0$ and $\sigma_{23} = 0$ are wrong [Ahn (Economic Letters, 1992)].
- All other t or F tests based on usual OLS covariance matrix are all wrong.
Details on two-step estimation:

- The model we wish to estimate:
 \[y_{3t} = x_{3t} \beta_3 + \sigma_{13} \hat{\lambda}_{1t} + \sigma_{23} \hat{\lambda}_{2t} + v_t. \]
 But need to use \(\hat{\lambda}_{1t} \) and \(\hat{\lambda}_{2t} \).

- Let’s consider the consequence of this substitution:
 \[y_{3t} = x_{3t} \beta_3 + \sigma_{13} \hat{\lambda}_{1t} + \sigma_{23} \hat{\lambda}_{2t} + [\sigma_{13} (\lambda_{1t} - \hat{\lambda}_{1t}) + \sigma_{23} (\lambda_{2t} - \hat{\lambda}_{2t}) + v_t], \]
 where \([\bullet]\) is the error term in the model we estimate.

- As we discussed above, the error term \(v_t \) is heteroskedastic unless \(\sigma_{13} = \sigma_{23} = 0. \)

- The error component \(\sigma_{13} (\lambda_{1t} - \hat{\lambda}_{1t}) + \sigma_{23} (\lambda_{2t} - \hat{\lambda}_{2t}) \) are autocorrelated because they are the functions of estimated \(\beta_1, \beta_2, \) and \(\rho. \)

Derivation of the Corrected Covariance Matrix of the Two-Step Estimator [Ham, ReSTUD, 1982]

- Some notation:
 \[\theta = (\beta_1, \beta_2, \rho)'; \]
 \(\hat{\theta} = \) bivariate probit ML estimator with \(\hat{\Omega} = \) estimated \(Cov(\hat{\theta}) \)
 \[z_t = (x_{3t}, \hat{\lambda}_{1t}, \hat{\lambda}_{2t}); \gamma = (\beta_3', \sigma_{13}, \sigma_{23})'; \]
 \(\hat{v}_t = \) OLS residual from the second stage OLS (only for observed \(y_{3t} \)).
• In order to create F_t, use BVN command in LIMDEP and CDFBVN in GAUSS.

• By Taylor expansion,
\[
y_{3t} = x_{3t}\beta_3 + \sigma_{13}\hat{\lambda}_{1t} + \sigma_{23}\hat{\lambda}_{2t} + [\sigma_{13}(\lambda_{1t} - \hat{\lambda}_{1t}) + \sigma_{23}(\lambda_{2t} - \hat{\lambda}_{2t}) + \nu_t]
= x_{3t}\beta_3 + \sigma_{13}\hat{\lambda}_{1t} + \sigma_{23}\hat{\lambda}_{2t}
+ \left(-\frac{\partial\lambda_{1t}}{\partial\theta'}(\hat{\theta} - \theta) - \frac{\partial\lambda_{2t}}{\partial\theta'}(\hat{\theta} - \theta) + \nu_t \right)
= x_{3t}\beta_3 + \sigma_{13}\hat{\lambda}_{1t} + \sigma_{23}\hat{\lambda}_{2t}
+ \left(-\frac{\partial\lambda_{1t}}{\partial\theta'} - \frac{\partial\lambda_{2t}}{\partial\theta'} \right)(\hat{\theta} - \theta) + \nu_t
\]

• Important terms:
\[
\begin{align*}
\lambda_{3t} &= f(x_{1t}\beta_1, x_{2t}\beta_2 | \rho) / F(x_{1t}\beta_1, x_{2t}\beta_2 | \rho); \\
\xi_t &= \sigma^2_{13}[(x_{1t}\beta_1)\lambda_{1t} + \lambda_{2t}^2 + \rho\lambda_{3t}] + \sigma^2_{23}[(x_{2t}\beta_2)\lambda_{2t} + \lambda_{1t}^2 + \rho\lambda_{3t}] \\
&\quad - 2\sigma_{13}\sigma_{23}(\lambda_{3t} - \lambda_{1t}\lambda_{2t}); \\
\pi_t &= \sigma_{33} - \xi_t; \\
w_{2t} &= \sigma_{13}(\lambda_{3t} - \lambda_{1t}\lambda_{2t}) + \sigma_{23}[-(x_{2t}\beta_2)\lambda_{2t} - \lambda_{2t}^2 - \rho\lambda_{3t}]; \\
w_{1t} &= \sigma_{23}(\lambda_{3t} - \lambda_{1t}\lambda_{2t}) + \sigma_{13}[-(x_{1t}\beta_1)\lambda_{1t} - \lambda_{1t}^2 - \rho\lambda_{3t}]; \\
w_{3t} &= \sigma_{13}[-\{(x_{1t}\beta_1 - \rho x_{2t}\beta_2)/(1 - \rho^2)\}\lambda_{3t} - \lambda_{1t}\lambda_{3t}] \\
&\quad + \sigma_{23}[-\{(x_{2t}\beta_2 - \rho x_{1t}\beta_1)/(1 - \rho^2)\}\lambda_{3t} - \lambda_{2t}\lambda_{3t}]; \\
\hat{\sigma}_{33} &= \frac{1}{T_3}\sum_{t=1}^{T_3}\hat{\nu}_t + \frac{1}{T_3}\sum_{t=1}^{T_3}\hat{\xi}_t.
\end{align*}
\]
• In LIMDEP, XBR computes sample mean. Remember to use data with observed y_{3t} only.

\[
M_1 = \sum_{t=1}^{T_3} \begin{pmatrix} w_{2t}x_{2t}^t \cr w_{3t} \end{pmatrix} z_t^t; \quad M_2 = \sum_{t=1}^{T_3} \pi_t z_t^t; \quad M_3 = \sum_{t=1}^{T_3} z_t^t z_t^t.
\]

• Covariance matrix:

\[
Cov(\hat{y}) = M_3^{-1} \left(M_1' \hat{\Omega} M_1 + M_2 \right) M_3^{-1}.
\]

• Procedure:
 • Get $\hat{\theta}$ and $\hat{\Omega}$.
 • Do OLS on $y_{3t} = z_t'\gamma + \text{err}$ (using data with observed y_{3t}), and get $\hat{\gamma}$.
 • For $Cov(\hat{y})$, use observations with observed y_{3t}.
 • Estimate M_1, M_2 using $\hat{\nu}_i^2$ instead of π_t.