(1) Some Discrete Probability Density Functions

- Binomial Distribution:
 - Tossing a coin m times.
 - $p =$ probability of having head from a trial.
 - $y =$ # of having heads from n trials ($y = 0, 1, \ldots, m$).
 -
 $$f_b(y \mid n) = \binom{m}{y} p^y (1 - p)^{1-y} = \frac{m!}{y!(m-y)!} p^y (1 - p)^{m-y}.$$
 - $E(y) = mp; \, \text{var}(y) = mp(1-p)$.

- Poisson Distribution:
 - Let $p = \mu/m$ for a binomial distribution.
 -
 $$f_p(y) = \lim_{m \to \infty} f_b(y \mid m) = \frac{\mu^y}{y!} e^{-\mu}, \, y = 0, 1, 2, \ldots.$$
 - $E(y) = \text{var}(y) = \mu$.

Digression to the Chocolate Chip Cookies problem:

- Wish to put at least one CC on a cookie with 95%.
- The CC machine locates CC’s in a cookie following a Poisson Distribution with μ.
 \[\Pr(y = 0) < 0.05 \Rightarrow e^{-\mu} < 0.05 \Rightarrow \mu > -\ln(0.05) = 2.995. \]
 → You need a machine with $\mu = \text{at least 3.}$

- Geometric Distribution:
 - $y = \# \text{ of trials until having a head.}$
 - $f_g(y) = (1 - p)^{y-1} p, \ y = 1, \ldots$
 - $E(y) = 1/p; \ \text{var}(y) = (1-p)/p^2.$

- Negative Binomial Distribution:
 - $y = \# \text{ of trials until having } r \text{ heads.}$
 - $f_n(y) = \binom{y-1}{r-1} p^r (1 - p)^{y-r}, \ y = r, \ r+1, \ldots$
 - $E(y) = r/p; \ \text{var}(y) = r(1-p)/p^2.$
Basic Poisson Regression Model

- Assume \(y_i \) i.i.d. with Poisson(\(\mu_i \)), where \(\mu_i = \exp(x_i' \beta) \).
 - EX: \(y_i \) = # of visiting doctors.

- \(f(y_i | x_i) = \frac{e^{-\mu_i}(\mu_i)^{y_i}}{y_i!} = \frac{e^{-e^{x_i' \beta}}(e^{x_i' \beta})^{y_i}}{y_i!} \).

- \(\ln f(y_i | x_i) = -e^{x_i' \beta} + y_i(x_i' \beta) - \ln(y_i!) \).

- \(l_N(\beta) = \sum_{i=1}^{N} \left\{ y_i(x_i' \beta) - e^{x_i' \beta} - \ln(y_i!) \right\} \).

- \(\frac{\partial l_N(\beta)}{\partial \beta} = \sum_{i=1}^{N} x_i'(y_i - e^{x_i' \beta}) \).

 - The Poisson ML estimator of \(\beta \) can be viewed as a GMM estimator based on

 \[E\left(x_i'(y_i - e^{x_i' \beta})\right) = 0. \]

 - This moment condition is valid as long as \(E(y_i | x_i) = e^{x_i' \beta} \).

 - It means that the Poisson ML estimator of \(\beta \) is consistent even if the Poisson assumption is incorrect.

- \(B_N(\beta) = \sum_{i=1}^{N} x_i x_i'(y_i - e^{x_i' \beta})^2 \); \(H_N(\beta) = -\sum_{i=1}^{N} e^{x_i' \beta} x_i x_i' \).

- If the Poisson assumption is truly correct, use

 \[[-H_N(\hat{\beta}_{POI-ML})]^{-1} \text{ or } [B_N(\hat{\beta}_{POI-ML})]^{-1} \]

 as an estimate of \(\text{Cov}(\hat{\beta}_{POI-ML}) \).
• If you are not sure, use
\[[-H_N(\hat{\beta}_{POI-ML})]^{-1} B_N(\hat{\beta}_{POI-ML}) [-H_N(\hat{\beta}_{POI-ML})]^{-1}. \]

• For the measures of goodness of fit, see Greene.

• In fact, we can estimate \(\beta \) by NLLS applied to \(y_i = e^{x_i\beta} + \varepsilon_i \) with heteroskedastic error terms.

Digression to NLLS with Heteroskedastic Errors:

• \(y_i = h(x_i, \beta) + \varepsilon_i \).

• Let \(H(x_i, \beta) = \frac{\partial h(x_i, \beta)}{\partial \beta} \).

• The NLLS estimator of \(\beta \) (\(\hat{\beta}_{NL} \)) minimizes:
\[\sum_{i=1}^{N} (y_i - h(x_i, \beta))^2. \]

\[\text{Cov}(\hat{\beta}_{NL}) \approx \left(\sum_{i=1}^{N} H(x_i, \hat{\beta}_{NL}) H(x_i, \hat{\beta}_{NL})' \right)^{-1} \]

\[\times \sum_{t=1}^{T} \varepsilon_i^2 H(x_i, \hat{\beta}_{NL}) H(x_i, \hat{\beta}_{NL})' \]

\[\times \left(\sum_{t=1}^{T} H(x_i, \hat{\beta}_{NL}) H(x_i, \hat{\beta}_{NL})' \right)^{-1} \]

where \(\varepsilon_i = y_i - h(x_i, \hat{\beta}_{ML}) \).

End of Digression
(2) Compound Poisson Model (Negative Binomial Model):

- Hausman, Hall, Griliches (HHG, ECON, 1984), and Cameron and Trivedi (CT, JAE, 1986).

- Assume that the y_i follow Poisson(λ_i), where $\lambda_i = e^{x_i^\prime \beta + \alpha_i} = \mu_i e^{\alpha_i}$, $\mu_i = e^{x_i^\prime \beta}$, $E(e^{\alpha_i}) = 1$, and the e^{α_i} follow a Gamma distribution:
 \[f_{\text{gamma}}(\eta) = \frac{\theta^\theta}{\Gamma(\theta)} e^{-\theta \eta} \eta^{\theta-1}, \]

 where $0 < \eta < \infty$ and $\Gamma(\theta) = \int_0^\infty t^{\theta-1} e^{-t} dt$.

 → Here, α_i is an unobservable individual effect.

Digression to Gamma distribution:

- The most general form of the Gamma density function is given:
 \[f_{\text{gen-gamma}}(y | \alpha, \beta) = \frac{1}{\Gamma(\alpha) \beta^\alpha} y^{\alpha-1} e^{-y/\beta}, \]

 where y is a continuous positive random variable ($y > 0$).

- $E(y) = \alpha \beta$ and $\text{var}(y) = \alpha \beta^2$.

- $f_{\text{gamma}}(\eta)$ is obtained by setting $y = \eta$, $\alpha = \theta$ and $\beta = 1/\theta$.

 → Choose $\alpha = \theta$ and $\beta = 1/\theta$ to make $E(\eta) = 1$ [a normalization.]

End of Digression
• Note \(f(y_i \mid x_i, u_i) = \frac{e^{-e^{x_i'\beta}u_i}(e^{x_i'\beta}u_i)^{y_i}}{y_i!} = \frac{e^{-e^{x_i'\beta}u_i}(e^{x_i'\beta}u_i)^{y_i}}{y_i!} \).

• Then,

\[
 f(y_i \mid x_i) = \int_0^\infty f(y_i \mid x_i, u_i) f_{\text{gamma}}(u_i) du_i = \frac{\Gamma(\theta + y_i)}{\Gamma(y_i + 1)\Gamma(\theta)} r_i^\theta (1-r_i)^{y_i},
\]

where \(r_i = \frac{\theta}{e^{x_i'\beta} + \theta} \), \(\Gamma(s) = (s-1)\Gamma(s-1) \), and \(\Gamma(s) = (s-1)! \) if \(s \) is an integer. Thus, when \(\theta \) is a positive integer,

\[
 f(y_i \mid x_i) = \left(\frac{(\theta + y_i) - 1}{\theta - 1}\right) r_i^\theta (1-r_i)^{\theta+y_i-\theta},
\]

→ This is the form of the negative binomial distribution.

→ Compound Poisson = Negative binomial distribution!

• Since \((\theta+y_i)\) follows Neg-Bin,

\[
 E(\theta+y_i) = \frac{\theta}{1-r_i} = e^{x_i'\beta} + \theta \rightarrow E(y_i) = e^{x_i'\beta}.
\]

\[
 \text{var}(y_i) = \text{var}(\theta+y_i) = \theta(1-r_i)/r_i^2 = e^{x_i'\beta} \left(1 + \frac{1}{\theta} e^{x_i'\beta}\right).
\]

• If we allow \(\theta \) to vary over \(i \) and set \(\theta_i = \frac{1}{\alpha} e^{x_i'\beta} \), we have

\[
 E(y_i) = e^{x_i'\beta}; \, \text{var}(y_i) = (1+\alpha)e^{x_i'\beta}.
\]

→ This model is called Neg-Bin 1 model (HHG).
• If we set $\theta = 1/\alpha$,

$$E(y_i) = e^{x_i'\beta}; \text{var}(y_i) = e^{x_i'\beta}(1 + \alpha e^{x_i'\beta}) = e^{x_i'\beta} + \alpha \left(e^{x_i'\beta}\right)^2.$$

→ This model is called Neg-Bin 2 model (HHG).

• Comment:

Poisson, Neg-Bin 1 and Neg-Bin 2 assume that $E(y_i) = \exp(x_i'\beta)$. If this mean specification is correct, the Poisson, Neg-Bin 1, Neg-Bin 2 MLE are all consistent as long as the true distribution belongs to the linear exponential family [see Gourieroux, Monfort and Trognon (ECON, 1984).]

(3) Testing Poisson:

• H_0: $E(y_i) = \text{var}(y_i) = e^{x_i'\beta}$ (Poisson);

• H_a: $E(y_i) = e^{x_i'\beta}$, but $\text{var}(y_i) = e^{x_i'\beta} + \alpha \left(e^{x_i'\beta}\right)^s$ and $\alpha \neq 0$.

[If $s = 1$, $H_a = \text{Neg-Bin 1}$. If $s = 2$, $H_a = \text{Neg-Bin 2}$.]

• For given s, under H_0,

$$E\left(\frac{1}{\mu_i}\{(y_i - \mu_i)^2 - y_i\}\right) = \frac{1}{\mu_i} \left(E\left\{(y_i - \mu_i)^2 - y_i\right\}\right) = 1 - 1 = 0;$$

$$\text{var}\left(\frac{1}{\mu_i}\{(y_i - \mu_i)^2 - y_i\}\right) = 2,$$
where $\mu_i = e^{x_i'\beta}$.

- Then, under H_0, CLT implies:

\[
T_L = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \frac{1}{\mu_i} \left\{ \left(y_i - \mu_i \right)^2 - y_i \right\}
\]

\[
\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\mu_i \right)^2} \sqrt{2} \rightarrow N(0,1).
\]

- Since $\mu_i = e^{x_i'\beta}$ is unobservable, we need to use $\hat{\mu}_i = e^{\hat{x}_i'\hat{\beta}}$, where $\hat{\beta}$ is the Poisson ML estimator. But, we still can show that under H_0,

\[
\hat{T}_L = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \frac{1}{\hat{\mu}_i} \left\{ \left(y_i - \hat{\mu}_i \right)^2 - y_i \right\}
\]

\[
\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{\mu}_i \right)^2} \sqrt{2} \rightarrow N(0,1).
\]

- H_0 may hold even if the y_i do not follow Poisson. For such cases, use

\[
\hat{T}'_L = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \frac{1}{\hat{\mu}_i} \left\{ \left(y_i - \hat{\mu}_i \right)^2 - y_i \right\}
\]

\[
\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{\mu}_i \right)^2} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\left(y_i - \hat{\mu}_i \right)^2 - y_i \right) \left(\left(y_i - \hat{\mu}_i \right)^2 - y_i \right)} \rightarrow N(0,1).
\]
(4) Poisson Model for Panel Data

- Assume y_{it} i.i.d. with Poisson(λ_{it}), where $\lambda_{it} = \exp(x_{it}'\beta + \alpha_i) = \mu_{it}\exp(\alpha_i)$.

- Fixed Effects Model
 - Treat α_i as parameters.
 - Surprisingly, MLE is consistent!

- $f(y_{it} | x_{it}) = \frac{e^{-\lambda_{it}}(\lambda_{it})^{y_{it}}}{y_{it}!}$.

- $\ln f(y_{it} | x_{it}) = -\lambda_{it} + y_{it}(x_{it}'\beta + \alpha_i) - \ln(y_{it}!)$.

- $l_{NT}(\beta, \alpha_1, \alpha_2, \ldots, \alpha_N) = \sum_{t=1}^{T}\sum_{i=1}^{N}\left\{ y_{it}(x_{it}'\beta + \alpha_i) - e^{x_{it}'\beta + \alpha_i} - \ln(y_{it}!\right\}$.

- $\frac{\partial l_{NT}(\beta, \alpha_1, \ldots, \alpha_N)}{\partial \alpha_j} = \sum_{t=1}^{T}\left\{ y_{it} - e^{\alpha_i}\mu_{it} \right\} = 0$.

 $\rightarrow \alpha_j = \ln\left(\frac{\sum_{t=1}^{T}y_{it}}{\sum_{t=1}^{T}\mu_{it}}\right)$.

- Substitute these solutions into l_{NT}:

 $l_{NT}^c(\beta) = \sum_{i=1}^{N}\sum_{t=1}^{T}y_{it}\ln p_{it}(\beta)$,

 where $p_{it} = \frac{\exp(x_{it}'\beta)}{\sum_{t=1}^{T}\exp(x_{it}'\beta)}$.

- The MLE estimator of β based on $l_{NT}^c(\beta)$ is consistent even if the true distribution of y_{it} is not Poisson as long as $E(y_{it}|x_{it},\alpha_i) = \exp(x_{it}\beta)\exp(\alpha_i)$ [Wooldridge (JEC, 1999)]. For correct
covariance matrix of the ML estimator of β, use the robust form $[(H_{NT})^{-1}B_{NT}(H_{NT})^{-1}]$.

- **Random Effects Model**
 - Assume that the e^{α_i} follow a Gamma Distribution.

\[
f(y_{i1}, \ldots y_{iT} \mid x_{i1}, \ldots, x_{iT}, u_i) = \prod_{t=1}^{T} f(y_{it} \mid x_{it}, \alpha_i)
\]
\[
= \prod_{t=1}^{T} \frac{e^{-\mu_{it}u_i} (\mu_{it}u_i)^{y_{it}}}{y_{it}!}.
\]

\[
f(y_{i1}, \ldots, y_{iT} \mid x_{i1}, \ldots, x_{iT}) = \int_0^\infty f(y_{i1}, \ldots, y_{iT} \mid x_{i1}, \ldots, x_{iT}, u_i) f_{\text{gamma}}(u_i) du_i
\]
\[
= \frac{\left(\prod_{t=1}^{T} \mu_{it}^{y_{it}}\right) \Gamma\left(\theta + \sum_{t=1}^{T} y_{it}\right)}{\left(\Gamma(\theta) \prod_{t=1}^{T} y_{it}!\right)\left(\left(\sum_{t=1}^{T} \mu_{it}\right)^{\sum_{t=1}^{T} y_{it}}\right)} Q_i^\theta (1 - Q_i)^{\sum_{t=1}^{T} y_{it}}
\]

where $Q_i = \frac{\theta}{\theta + \sum_{t=1}^{T} \mu_{it}}$.

- $l_{NT}(\beta, \theta) = \sum_{i=1}^{N} f(y_{i1}, \ldots, y_{iT} \mid x_{i1}, \ldots, x_{iT})$.

- Can use the Hausman test to determine whether RE or FE is correct.