Chapter 11A

Database Management Systems

Database Management Systems

• Database management system (DBMS)
• Store large collections of data
• Organize the data
• Becomes a data storage system

The Database

• Stores a collection of related items
• Collection is arranged in a structure
 – Organizes and describes the data
• Often includes helper documents
• Two different types
The Database

Field Name
Field
Record

Database Structure

The Database

• Fields
 – Hold an individual piece of data
 – Are named descriptively
 – Often called a column
 – Phone book examples
 • Name, address, e-mail, phone number
 – Fields may contain no data

• Records
 – One full set of fields
 – Often called a row
 – Phone book example
 • Smith, Joe, 123 Some Street, 412-555-7777
 – Databases may have unlimited rows
The Database

- **Tables**
 - One complete collection of records
 - Databases may have thousands of tables

Database Helper

- **Forms**
 - Present one record to the user
 - Often used to change or view data

- **Reports**
 - Produce printed results from the database
 - Includes tools to summarize data
Flat-file Databases

- Typically has only one table
 - If multiple, each has a separate file
- Useful for simple data storage needs
- Hard to manage large data needs
- Can waste disk space

Relational Databases

- Made of two or more tables
- Tables are related by a common field
 - Called a relationship or join
 - Can help organize data
- Most common form of database
- Maintaining data is easier than flat-file
- No wasted disk space

The DBMS

- Programs that control the database
- Allows
 - Entering data
 - Querying data
 - Printing reports
- Supports thousands of users
- Includes tools to protect the data
Working with a Database

- Creating tables
 - List the necessary fields
 - Steps to define a field
 - Descriptively name the field
 - Specify the field type
 - Determine the field size

- Field types
 - Describes the type of data stored
 - Most DBMS use the same types
 - Text fields store letters and numbers
 - Numeric field store numbers
 - Date and time field
 - Logical field stores yes or no
 - Binary field stores images or sounds
 - Counter field generates sequential numbers
 - Memo fields store large amounts of data

- Entering data into a table
 - Users type data into a field
 - Data must be entered accurately
 - Constraints help to verify data
 - Forms are typically used for data entry
Working with a Database

• Viewing records
 – Datasheet view shows all records
 – Filters can limit the records shown
 • Display only records matching a criteria
 – Forms allow viewing one record

• Sorting records
 – Order records based on a field
 – Multiple sub sorts resolve ‘ties’
 – Several types of sorts
 • Alphabetic
 • Numeric
 • Chronological
 • Ascending
 • Descending

• Querying a database
 – Statement that describes desired data
 – List of fields can be modified
 – Uses of querying
 • Find data
 • Calculate values per record
 • Delete records
 – Most important DBMS skill
Working with a Database

• Query languages
 – All DBMS use a query language
 • Most DBMS modify the language
 – Structured Query Language (SQL)
 • Most common query language
 – xBase
 • Query language for dBase systems
 – Query by example (QBE)
 • Interface to SQL or xBase
 • Interactive query design

Query Examples

• SQL
 Select FirstName, LastName, Phone
 From tblPhoneNumbers
 Where LastName="Norton";

• xBase
 Use tblPhoneNumbers
 List FirstName, LastName, Phone
 For LastName="Norton"

Working with a Database

• Generating reports
 – Printed information extracted from a database
 – Can calculate data
 • Calculate data per row
 • Calculate for entire table
 – Pictures and formatting can be included
Enterprise Software

- Enterprise definitions
 - Systems throughout the entire organization
 - Very large scale computer systems
 - Historically found on mainframes
 - Modern enterprise runs on PC servers
Enterprise Software

- Suite of programs
- Handles thousands of users at once
- Access to millions of records
- Looks and acts like a DBMS

Enterprise Software

- Distributed applications
 - Software installed on several machines
 - Data stored on several machines
 - Data placed closest to appropriate users
 - Work load is balanced among machines

Enterprise Software

- Tiers
 - Software between user and data
 - Tiers control one part of enterprise
 - Two tier systems
 - Data storage
 - Client interface
 - Three tier systems
 - Add calculation
 - There is no limit to the tiers
Enterprise Software

- Meet the needs of many users
 - Applications are very complex
 - Support many types of users
 - Supports many different nationalities
 - Must support large data flow

Enterprise Software

- Electronic document management
 - EDM
 - Tracks and organizes documents
 - Collaboration between team members
 - Database tracks all changes

Enterprise Software

- Disconnected databases
 - Connections are given a copy of data
 - Reduces the number of open connections
 - Reduces the data flow needs
 - May result in different versions of data
Databases at Work

- Required in nearly every business
- Can automate tasks
 - Increases business efficiency

Databases at Work

- Knowledge discovery
 - Technique of databases
 - Generates questions for the database
 - Those you did not think to ask

Databases at Work

- Data mining
 - Type of knowledge discovery
 - Searches for trends and patterns
 - Makes predictions on events
 - Supplies ideas for improving business
Databases at Work
• Internet uses
 – Commercial websites use databases
 – Supply image and price information
 – Specialty databases exist online
 – Search engines track links

Databases at Work
• Databases for individuals
 – Manage aspects of your life
 – Organizes hobbies for school
 – Microsoft Access is the most popular

Common Corporate DBMS
• Oracle
 – Most popular enterprise-level DBMS
 – Very flexible storage system
 – Can be very complex
 – Platform independent
 – Offers a wide range of solutions
Common Corporate DBMS

- **DB2**
 - Venerable IBM database
 - Platform independent
 - Only database using pure SQL

Common Corporate DBMS

- **Microsoft SQL Server**
 - Fastest growing DBMS
 - Only runs on Microsoft platforms
 - Eight different versions exist
 - Extremely scalable architecture
 - Software can grow with the data

Common Corporate DBMS

- **MySQL**
 - Leading DBMS for Linux
 - Very inexpensive
 - Features are those needed in business
 - Often faster than other DBMS
 - Platform independent
Chapter 11B

End of Chapter