How Computers Represent Data

• Number systems
 – A manner of counting
 – Several different number systems exist

• Decimal number system
 – Used by humans to count
 – Contains ten distinct digits
 – Digits combine to make larger numbers

How Computers Represent Data

• Binary number system
 – Used by computers to count
 – Two distinct digits, 0 and 1
 – 0 and 1 combine to make numbers

• Think of binary numbers in terms of switches. With two switches you can represent up to four different numbers.
 • * 0 0 (OFF OFF) = Decimal 0
 • * 0 1 (OFF ON) = Decimal 1
 • * 1 0 (ON OFF) = Decimal 2
 • * 1 1 (ON ON) = Decimal 3
How Computers Represent Data

• Bits and bytes
 – Binary numbers are made of bits
 – Bit represents a switch
 – A byte is 8 bits
 – Byte represents one character

How Computers Represent Data

• Text codes
 – Converts letters into binary
 – Standard codes necessary for data transfer
 – ASCII
 • American English symbols
 – Extended ASCII
 • Graphics and other symbols
 – Unicode
 • All languages on the planet

How Computers Process Data

• The CPU
 – Central Processing Unit
 – Brain of the computer
 – Control unit
 • Controls resources in computer
 • Instruction set
 – Arithmetic logic unit
 • Simple math operations
 • Registers
How Computers Process Data

• Machine cycles
 – Steps by CPU to process data
 – Instruction cycle
 • CPU gets the instruction
 – Execution cycle
 • CPU performs the instruction
 – Billions of cycles per second
 – Pipelining processes more data
 – Multitasking allows multiple instructions

How Computers Process Data

• Memory
 – Stores open programs and data
 – Small chips on the motherboard
 – More memory makes a computer faster

How Computers Process Data

• Nonvolatile memory
 – Holds data when power is off
 – Read Only Memory (ROM)
 – Basic Input Output System (BIOS)
 – Power On Self Test (POST)
How Computers Process Data

- Flash memory
 - Data is stored using physical switches
 - Special form of nonvolatile memory
 - Camera cards, USB key chains

How Computers Process Data

- Volatile memory
 - Requires power to hold data
 - Random Access Memory (RAM)
 - Data in RAM has an address
 - CPU reads data using the address
 - CPU can read any address

Components affecting Speed
Affecting Processing Speed

• Registers
 – Number of bits processor can handle
 – Word size
 – Larger indicates more powerful computer
 – Increase by purchasing new CPU

Affecting Processing Speed

• Virtual RAM
 – When the Computer is out of actual RAM
 – This is a file that emulates RAM
 – Computer swaps data to virtual RAM
 • Least recently used data is moved

Affecting Processing Speed

• The computer’s internal clock
 – Quartz crystal
 – Every tick causes a cycle
 – Speeds measured in Hertz (Hz)
 • Modern machines use Giga Hertz (GHz)
Affecting Processing Speed

• The bus
 – Electronic pathway between components
 – Expansion bus connects to peripherals
 – System bus connects CPU and RAM
 – Bus width is measured in bits
 – Speed is tied to the clock

Affecting Processing Speed

• External bus standards
 – Industry Standard Architecture (ISA)
 – Local bus
 – Peripheral control interface
 – Accelerated graphics port
 – Universal serial bus
 – IEEE 1394 (FireWire)
 – PC Card

Affecting Processing Speed

• Peripheral control interface (PCI)
 – Connects modems and sound cards
 – Found in most modern computers
Affecting Processing Speed

- **Accelerated Graphics Port (AGP)**
 - Connects video card to motherboard
 - Extremely fast bus
 - Found in all modern computers

Affecting Processing Speed

- **Universal Serial Bus (USB)**
 - Connects external devices
 - Hot swappable
 - Allows up to 127 devices to be connected (through hubs)
 - Cameras, printers, and scanners

Affecting Processing Speed

- **PC Card**
 - Used on laptops
 - Hot swappable
 - Devices are the size of a credit card
Affecting Processing Speed

- Cache memory
 - Very fast memory
 - Holds common or recently used data
 - Speeds up computer processing
 - Most computers have several caches
 - L1 holds recently used data
 - L2 holds upcoming data
 - L3 holds possible upcoming data

Chapter 5B
Modern CPUs

A Look Inside The Processor

- Architecture
 - Determines
 - Location of CPU parts
 - Bit size
 - Number of registers
 - Pipelines
 - Main difference between CPUs
Microcomputer Processors

- **Intel**
 - Leading manufacturer of processors
 - Intel 4004 was world's first microprocessor
 - IBM PC powered by Intel 8086
 - Current processors
 - Centrino
 - Itanium
 - Pentium IV
 - Xeon

- **Advanced Micro Devices (AMD)**
 - Main competitor to Intel
 - Originally produced budget products
 - Current products outperform Intel
 - Current processors
 - Sempron
 - Athlon FX 64
 - Athlon XP

- **Freescale**
 - A subsidiary of Motorola
 - Co-developed the Apple G4 PowerPC
 - Currently focuses on the Linux market
Microcomputer Processors

- IBM
 - Historically manufactured mainframes
 - Partnered with Apple to develop G5
 - First consumer 64 bit chip

The Apple Intel Chip

- The Intel Core microarchitecture allows for high performance, speed and energy efficiency
- Two processors engineered on a single chip
- The Chip allows the Windows OS to run natively in addition to OSX
- So - two systems for the price of one!
- Intel information on the Core Duo

Comparing Processors

- Speed of processor
- Size of cache
- Number of registers
- Bit size
- Speed of Front side bus
Advanced Processor Topics

• RISC processors
 – Reduced Instruction Set Computing
 – Smaller instruction sets
 – May process data faster
 – PowerPC and G5

Advanced Processor Topics

• Parallel Processing
 – Multiple processors in a system
 – Symmetric Multiple Processing
 • Number of processors is a power of 2
 – Massively Parallel Processing
 • Thousands of processors
 • Mainframes and super computers

Extending The Processors Power

• Standard computer ports
 – Keyboard and mouse ports
 – USB ports
 – Parallel
 – Network
 – Modem
 – Audio
 – Serial
 – Video
Standard PC Computer Ports

Mac Computer Ports

Extending The Processors Power

- Serial and parallel ports
 - Connect to printers or modems
 - Parallel ports move bits simultaneously
 - Made of 8 – 32 wires
 - Internal busses are parallel
 - Serial ports move one bit
 - Lower data flow than parallel
 - Requires control wires
 - UART converts from serial to parallel
Serial Communications

Parallel Communications

Extending The Processors Power

- SCSI
 - Small Computer System Interface
 - Supports dozens of devices
 - External devices daisy chain
 - Fast hard drives and CD-ROMs
Extending The Processors Power

• USB
 – Universal Serial Bus
 – Most popular external bus
 – Supports up to 127 devices
 – Hot swappable

Extending the Processors Power

• FireWire
 – IEEE 1384
 – Cameras and video equipment
 – Hot swappable
 – Port is very expensive

Extending the Processors Power

• Expansion slots and boards
 – Allows users to configure the machine
 – Slots allow the addition of new devices
 – Devices are stored on cards
 – Computer must be off before inserting
Extending the Processors Power

- PC Cards
 - Expansion bus for laptops
 - PCMCIA
 - Hot swappable
 - Small card size
 - Three types, I, II and III
 - Type II is most common

Extending the Processors Power

- Plug and play
 - New hardware detected automatically
 - Prompts to install drivers
 - Non-technical users can install devices