
             Vertical structure of the atmosphere - Hydrostatic balance

Recap:  

      Radiative equilibrium:  
      Stratosphere:  T(z) increases with z while p(z) decreases with z
                             ⇒ density ρ(z) = p/RT always decreases with z
      Troposphere:  T(z) decreases with z while p(z) also decreases with z
                             ⇒ ρ(z) may decrease or increase with height, depending
                             on the detail of T(z) and p(z)
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Recap: 

For a system of liquid fluid, "static stability" (that indicates whether convection can 
happen spontaneously) can be determined by density stratification.

                                        Stable                                       Unstable
 

                                Density decreases                       Density increases
                                with height - stable                  with height - unstable

 
            For the atmosphere (close to an ideal gas), density depends strongly on
            both temperature and pressure,  = p/RT.  When an air parcel is moved
            up and down adiabatically, its density can change. This needs to be taken
            into account to determine whether an air parcel has positive or negative
            buoyancy.  
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                                                  Energetics of convection

                              The configuration at right has a higher gravitational
                              potential energy than the one at left.  When convection 
                              happens in the system at right, the overturning circulation
                              gains its kinetic energy at the expense of the loss of 
                              potential energy of the system as the density field evolves
                              toward the (stable) configuration at left.

                              This "conversion from potential to kinetic energy" is akin
                                 to the process of releasing (say) a metal ball in mid-air 
                                 and let it fall freely; The ball loses its potential energy while
                                 accelerating toward the ground.
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                    To determine the static stability of the atmosphere,
                 we need the knowledge of both T(z) and p(z) 

                    

 



                          Vertical structure of pressure ; Hydrostatic balance

        Simple example: Liquid fluid with constant density

                   Pressure = force (or weight) per unit area
                   Weight = mass ×  gravitational acceleration = (density ×  volume) ×  g
             
                   Pressure at point A = ρ  ×  (depth of fluid above point A) ×  g
                                                  =  ρ  g H
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            As long as the fluid remains static (or at least does not accelerate 
          in the vertical direction), pressure always increases with depth 
         (or decreases with height)
         ⇒  One-to-one correspondence between p and z



     If density depends on depth (or height, z), the total weight per unit area

     (i.e., pressure) at bottom is simply p =g∫
0

H

 z dz .  Or, the pressure at

     any height is

                                              p z =g∫
z

H

z ' dz ' .

     This is the integral form of the "hydrostatic balance" relation that connects
     pressure to density.  Differentiating this equation w.r.t. z, we may obtain the
     differential form of the hydrostatic equation,
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     Or, we can derive the hydrostatic equation by considering the vertical pressure
     difference across a thin slice of fluid

    

            Pressure difference between top and bottom is

                 p = ptop  pbottom = (z) g z    
           p/z = (z) g

          Taking the limit of z  0, we have the hydrostatic equation, 
                                           

                                               
dp
dz

=− g

(z)

g

0

z

z
zz

p
bottom

= p
top

+ (z)gz

p
top



      Note that the hydrostatic equation depicts the vertical balance of force for a piece
      of fluid at rest.  The balance is between the upward pressure gradient force and
      downward gravitational force 

      The hydrostatic equation is the vertical component of the momentum equation
      (Newton's equation of motion) for the fluid parcel when the forces are in 
       prefect balance and the net acceleration = 0.
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  If the two forces are not in perfect balance, there will be vertical acceleration
  of the fluid parcel according to Newton's 2nd law,

             
d w
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  where w  dz/dt is the vertical velocity of the fluid parcel.  This is the vertical 
  momentum equation for a fluid (in the absence of friction and diabatic forcing)
  in general.
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Preview of things to come ...

The "non-hydrostatic" equation,

                                                        
d w
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−g ,

is Newton's equation for a fluid parcel.  The vertical velocity of the parcel, w, is a function of the 
position of the parcel, (x(t), y(t), z(t)), therefore w  w(x(t),y(t),z(t),t). Recall from HW1 Prob 1 
that 
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we have
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This is the vertical component of the Navier-Stokes (momentum) equation, in the absence of 
friction and diabatic forcing. Note that the w here is now a 3-D field in space and time, not just the 
velocity for a designated air parcel.  This is the prognostic equation for vertical velocity in a
non-hydrostatic model (for instance for weather prediction).



                  The atmosphere is very close to hydrostatic balance most of the time, 
                  except at isolated locations when the vertical profile becomes statically
                  unstable.  In that situation, convection will happen to restore stability.
                  This takes place on a very short time scale (~ a few hours), therefore
                  after some spatial and temporal averaging the atmosphere is 
                  generally statically stable; For many applications, it is enough to 
                  replace the vertical momentum equation by the hydrostatic equation.

                  Perhaps the only exception is in the tropics, where the atmosphere
                  could be marginally unstable even in the time mean.



          Another way to view the hudrostatic relation is that if we analyze the 
          order of magnitude of the terms in the vertical momentum equation,
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           we will generally find that the two terms in the r.h.s. are much, much bigger than
           the terms in the l.h.s.

           We will revisit this in later chapters when we analyze the full Navier-Stokes equations.



                                                  Pressure as a vertical coordinate 

       Under hydrostatic balance, since pressure decreases monotonically with height,
       we can use pressure as an alternative coordinate.   This is a very useful alternative
       for treating the dynamics of large-scale atmosphere.  

       Since pressure and height has a one-to-one correspondence, we can swap the two
       by considering z as a function of p, z(p), as our dynamical variable, and p itself
       as the coordinate.  This works as long as the fluid is in hydrostatic balance.



                                           Pressure as a vertical coordinate

       More preview of things to come...

       Using p as the vertical coordinate, the horizontal momentum and thermodynamic
       equations need to be modified as well.  For example, in normal (x,y,z,t) coordinate,
       the "temperature advection" term in thermodynamic equation is
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       where v ≡ u , v ,w  is the 3-D velocity vector for the fluid.  With the new (x,y,p,t) 
       coordinate, it becomes
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       where v ≡ u ,v , , with ω  ≡   dp/dt is the "vertical velocity" in p-coordinate.  
       Note that ω  > 0 implies downward motion of the fluid parcel.

       The coordinate transformation would rely on the hydrostatic relation. For example,
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