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ABSTRACT

In this dissertation, I propose potential techniques to improve the quality-

of-service (QoS) of real-time applications in cognitive radio (CR) systems. Unlike

best-effort applications, real-time applications, such as audio and video, have a QoS

that need to be met. There are two different frameworks that are used to study the

QoS in the literature, namely, the average-delay and the hard-deadline frameworks.

In the former, the scheduling algorithm has to guarantee that the packet’s average

delay is below a prespecified threshold while the latter imposes a hard deadline on

each packet in the system. In this dissertation, I present joint power allocation and

scheduling algorithms for each framework and show their applications in CR systems

which are known to have strict power limitations so as to protect the licensed users

from interference.

A common aspect of the two frameworks is the packet service time. Thus,

the effect of multiple channels on the service time is studied first. The problem is

formulated as an optimal stopping rule problem where it is required to decide at

which channel the SU should stop sensing and begin transmission. I provide a closed-

form expression for this optimal stopping rule and the optimal transmission power of

secondary user (SU).

The average-delay framework is then presented in a single CR channel system

with a base station (BS) that schedules the SUs to minimize the average delay while

protecting the primary users (PUs) from harmful interference. One of the contribu-

tions of the proposed algorithm is its suitability for heterogeneous-channels systems

where users with statistically low channel quality suffer worse delay performances.

The proposed algorithm guarantees the prespecified delay performance to each SU

without violating the PU’s interference constraint.
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Finally, in the hard-deadline framework, I propose three algorithms that max-

imize the system’s throughput while guaranteeing the required percentage of packets

to be transmitted by their deadlines. The proposed algorithms work in heterogeneous

systems where the BS is serving different types of users having real-time (RT) data

and non-real-time (NRT) data. I show that two of the proposed algorithms have

the low complexity where the power policies of both the RT and NRT users are in

closed-form expressions and a low-complexity scheduler.
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Chapter 1

INTRODUCTION

Cognitive Radio (CR) systems are emerging wireless communication systems that

allow efficient spectrum utilization [1]. CRs refer to devices that coexist with the

licensed spectrum owners called the primary users (PUs), and that are capable of

detecting their presence. Once PU’s activity is detected on some frequency channel,

the CR user refrains from any further transmission on this channel. This may result

in service disconnection for the CR user, thus degrading the quality of service (QoS).

If the CR users have access to other channels, the QoS can be improved by switching

to another frequency channel instead of completely stopping transmission. If not,

then they should control their transmission power to avoid harmful interference to

the PUs. Hence, CR users are required to adjust their transmission power levels,

and -thus- their rates, according to the interference level the PUs can tolerate. This

adjustment could lead to severe degradation in the QoS provided for the CR users, if

not designed carefully.

1.1 Cognitive Radio Transmission Schemes

There are two main transmission schemes that CR systems may follow to coexist with

the PUs; the overlay and the underlay. In the overlay, CR users, also referred to as

the secondary users (SUs), transmit their signal only when the PUs are not using the

channel. In other words, the SUs look for the spectrum holes to transmit their data

as in Fig. 1.1. Hence, unlike conventional radios, SUs’s radios are equipped with a

spectrum sensor that is used to sense the spectrum before beginning the transmission

phase. In this sensing phase, the SUs listen to all frequency channels to overhear

the PUs’ transmission so as to decide which channels are free from PUs and which

are not. Upon this detection process, the SU picks up a channel, or more, out of
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Figure 1.1: Spectrum holes are the locations of the unused spectrum in time and
frequency.

the detected-free channels to transmit its data over for a limited amount of time.

Once the channel is occupied again by the PU, the SU is expected to refrain from

transmission over this channel but allowed to use a different channel after performing

the sensing phase again. A practical spectrum sensor might yield wrong decisions,

namely, it might detect the presence of a PU on some channel although this channel

is actually free, or might miss-detect the PU when it is using the channel. These

events are referred to as the false-alarm and miss-detection events, respectively. The

higher the false-alarm probability the higher the SU misses transmission opportunities

and, thus, the lower the SU’s throughput is. Similarly, the higher the probability of

miss-detection the more the SU’s packet collides with the PU’s and leading to a lower

throughput since collided packets are lost. While the false-alarm probability affects

the SU’s throughput alone, the miss-detection probability affects both the SU and

the PU. As the sensing phase duration increases, these two probabilities decrease

simultaneously. However, increasing the sensing phase duration comes at the expense

2



Figure 1.2: The sensing phase is used to sense M channels to detect the presence of
the PU. The SU starts transmitting its data in the transmission phase on one of the
free channels.

of the transmission phase duration thus decreasing the throughput. This tradeoff has

been studied extensively in the literature [2].

In the underlay scheme, the SU is allowed to transmit over any frequency

channel at any time as long as the PU can tolerate the interference caused by this

transmission. This tolerable level is referred to as the interference temperature as dic-

tated by the Federal Communications Commission (FCC) [3]. In order to guarantee

this protection for the PU, the SU has to adjust its transmission power according to

the gain of the channel to the primary receiver referred to as the interference channel.

The knowledge of this gain instantaneously is essential at the SU’s transmitter. While

this channel knowledge might be infeasible in CR systems that assume no cooperation

between the PU and the SU, in some scenarios the SU might be able to overhear the

pilots sent by the primary receiver when it is acting as a transmitter if the PU is

using a time division duplex scheme.

In both cases, the overlay and the underlay, the SU might interfere with the

PU. This in turn dictates that the SU should adopt its channel access scheme in such

a way that this interference is tolerable so that the PU’s quality of service (QoS) is

not degraded. With that being said, we might expect that the SUs located physically

closer to the PUs might suffer larger degradation in their QoS compared to those that

3



are far because closer SUs transmit with smaller amounts of power. This problem

does not appear in conventional non CR cellular systems since frequency channels

tend to be orthogonal in non CR systems. In other words, in non CR systems, all

users are allocated the channels via some scheduler that guarantees those users do

not interfere with each other. While in CR systems, since SUs interfere with PUs,

we need to develop scheduling and power control algorithms that prevent harmful

interference to PUs, as well as guaranteeing acceptable QoS for the SUs.

1.2 Guaranteeing Quality of Service in Cognitive Radio Systems

Since CR users operate in an interference limited environment, they are expected to

experience lower QoS than in conventional systems. However, the QoS provided needs

to fall within the acceptable level that varies with the application. For example, the

average delay of a packet in online streaming is required to be not more than 300ms

while that in online gaming should not exceed 50ms. However, these two applications

might tolerate small losses in their transmitted packets which is not the case with

some other applications as file sharing and email applications that, on the other hand,

might tolerate packet delays.

The QoS can include, but is not limited to, throughput, delay, bit-error-rate,

interference caused to the PU. Out of these metrics the most two major ones are the

throughput and the delay that have gained strong attention in the literature recently

[4]. The throughput metric is defined as the average amount of packets (or bits) per

channel-use that can be delivered in the SU’s network without violating the PU’s

interference constraints. On the other hand, the delay refers to as the amount of time

elapsed from the instant a packet joins the SU’s buffer until it is successfully and

fully transmitted to its intended receiver. A higher throughput is usually achieved by

the efficient power allocation algorithms while better delay performances are usually

4



achieved by efficient scheduling of users.

The problem of scheduling and/or power control has been widely studied in

the literature (see [5–11], and references therein). These works aim at optimizing

the throughput, providing delay guarantees and/or guaranteeing protection from in-

terference. There are two different frameworks to design scheduling algorithms for

real-time packets: the first is referred to in this manuscript as the “average-delay”

framework while the second is referred to as the “hard-deadline” framework. The

former imposes a bound on the average time a packet spends in the queue before

being transmitted to the user. The latter, on the other hand, requires every packet in

the system to be transmitted before a pre-specified hard deadline [12]. Clearly, due

to the randomness in the arrival process and transmission process, there exists no

practical scheduling algorithm that guarantees the transmission of all packets before

this hard deadline. In other words, there will exist some packets that will miss their

deadlines. Hence, the authors of [13] measure the performance of their algorithm

by the percentage of the packets that do not miss their deadlines. The higher this

percentage is, the better indication the algorithm is. In this work, we consider the

problem of scheduling and power allocation under the average-delay framework as

well as the hard-deadline framework.

Before discussing these two frameworks, we study a common factor inherited in

both: the “service time”. The service time is the amount of time required to transmit

a packet from the start of the transmission of its first bit until the transmission of its

last bit. The smaller this time is, the better quality a packet will experience under

both frameworks.

5



1.3 Service Time

The service time is affected by the amount of resources allocated to the packet at the

time of transmission. Resources might include power, channel bandwidth, coding rate

and transmission time. Several works have been done to address how to optimally al-

locate these resources over time and users. However, from a practical implementation

point of view, the most challenging resource is channel bandwidth. This is because

increasing the bandwidth requires allocating multiple channels to a user which might

require the user to be equipped with high cost transmitters (receivers) capable of

transmitting (receiving) over multiple channels simultaneously. On the other hand,

allocating a single fixed channel to a user is not optimal.

The problem of channel allocation in multi-channel CR systems has gained

attention in recent works due to the challenges associated with the sensing and ac-

cess mechanisms in a multichannel CR system. Practical hardware constraints on the

SUs’ transceivers may prevent them from sensing multiple channels simultaneously to

detect the state of these channels (free/busy). This leads the SU to sense the channels

sequentially, then decide which channel should be used for transmission [14, 15]. In

a time slotted system if sequential channel sensing is employed, the SU senses the

channels one at a time and stops sensing when a channel is found free. But due to

the independent fading among channels, the SU is allowed to skip a free channel if

its quality, measured by its power gain, is low and sense another channel seeking the

possibility of a higher future gain. Otherwise, if the gain is high, the SU stops at

this free channel to begin transmission. The question of when to stop sensing can be

formulated as an optimal stopping rule problem [15–18]. In [16] the authors present

the optimal stopping rule for this problem in a non-CR system. The work in [15] de-

velops an algorithm to find the optimal order by which channels are to be sequentially
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sensed in a CR scenario, whereas [17] studies the case where the SUs are allowed to

transmit on multiple contiguous channels simultaneously. The authors presented the

optimal stopping rule for this problem in a non-fading wireless channel. Transmis-

sions on multiple channels simultaneously may be a strong assumption for low-cost

transceivers especially when they cannot sense multiple channels simultaneously.

In general, if a perfect sensing mechanism is adopted, the SU will not cause

interference to the PU since the former transmits only on spectrum holes (referred

to as an overlay system). Nevertheless, if the sensing mechanism is imperfect, or if

the SU’s system is an underlay one (where the SU uses the channels as long as the

interference to the PU is tolerable), the transmitted power needs to be controlled to

prevent harmful interference to the PU. References [19] and [5] consider power control

and show that the optimal power control strategy is a water-filling approach under

some interference constrain imposed on the SU transmitter. Yet, all of the above

work studies single channel systems which cannot be extended to multiple channels

in a straightforward manner. A multiuser CR system was considered in [20] in a time

slotted system. To allocate the frequency channel to one of the SUs, the authors

proposed a contention mechanism that does not depend on the SUs’ channel gains,

thus neglecting the advantage of multiuser diversity. A major challenge in a multi-

channel system is the sequential nature of the sensing where the SU needs to take a

decision to stop and begin transmission, or continue sensing based on the informa-

tion it has so far. This decision needs to trade-off between waiting for a potentially

higher throughput and taking advantage of the current free channel. Moreover, if

transmission takes place on a given channel, the SU needs to decide the amount of

power transmitted to maximize its throughput given some average interference and

average power constraints.
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In Chapter 2, we model the overlay and underlay scenarios of a multi-channel

CR system that are sensed sequentially. The problem is solved for a single SU first

then we discuss extensions to a multi-SU scenario. For the single SU case, the problem

is formulated as a joint optimal-stopping-rule and power-control problem with the goal

of maximizing the SU’s throughput subject to average power and average interference

constraints. This formulation results in increasing the expected service time of the

SU’s packets. The expected service time is the average number of time slots that

pass while the SU attempts to find a free channel, before successfully transmitting a

packet. The increase in the service time is due to skipping free channels, due to their

poor gain, hoping to find a future channel of sufficiently high gain. If no channels

having a satisfactory gain were found, the SU will not be able to transmit its packet,

and will have to wait for longer time to find a satisfactory channel. This increase

in service time increases the queuing delay. Thus, we solve the problem subject to

a bound on the expected service time which controls the delay. In the multiple SUs

case, we show that the solution to the single SU problem can be applied directly to

the multi-SU system with a minor modification. We also show that the complexity

of the solution decreases when the system has a large number of SUs.

1.4 Average-Delay Framework

The average delay, or simply the delay, is defined as the average amount of time a

packet spends in the system starting from the instant it arrives to the buffer until it

is completely transmitted. The delay consists of two main factors, the service time,

discussed in the previous section, and the queue-waiting time. Unlike the service time,

the delay due to queue-waiting time is affected by the scheduling algorithm. The more

frequently a user is allocated the channel for transmission, the less its queue-waiting

time is, but the more the queue-waiting times for the other users are.
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Under the average-delay framework, the scheduling algorithm should guaran-

tee that the average queuing delay for each user does not exceed this pre-specified

bound. Delay due to the queue-waiting time is also well studied recently in the litera-

ture and scheduling algorithms have been proposed to guarantee small delay for users

in conventional systems [21–23]. In [21], the authors study the joint scheduling-and-

power-allocation problem in the presence of an average power constraint. Although

in [21] the proposed algorithm offers an acceptable delay performance, all users are

assumed to transmit with the same power. A power allocation and routing algorithm

is proposed in [23] to maximize the capacity region under an instantaneous power

constraint. While the authors show an upper bound on the average delay, this delay

performance is not guaranteed to be optimal.

Although queuing theory, that was originally developed to model packets at a

server, can be applied to wireless channels, the challenges are different. One of the

main challenges is the fading nature of the wireless channel that changes from a slot

to another. Fading requires adapting the user’s power and/or rate according to the

channel’s fading coefficient. The idea of power and/or rate adaptation based on the

channel condition does not have an analogy in server problems and, thus, is absent

in the aforementioned references. Instead, existing works treat wireless channels as

on-off fading channels and do not consider multiple fading levels. Among the relevant

references that consider a more general fading channel model are [23], which was

discussed above, [24, 25] where the optimization over the scheduling algorithm was

out of the scope of their work, and [26] that neglects the interference constraint since

it considers a non CR system.

In contrast with [6–9, 27] that do not optimize the queuing delay, the problem

of minimizing the sum of SUs’ average delays is considered in this work. The pro-
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posed algorithm guarantees a bound on the instantaneous interference to the PUs,

a guarantee that is absent in [21, 23]. Based on Lyapunov optimization techniques

[21], an algorithm that dynamically schedules the SUs as well as optimally controlling

their transmission power is presented.

1.5 Hard-Deadline Framework

While the average-delay framework might perform well for online streaming of pre-

recorded audio/video files, its performance in online streaming of on-air broadcast

data such as video conference calls is questionable. This is because, unlike pre-

recorded data of a finite time length, video calls have an endless stream of data that

needs to arrive in a timely manner. Moreover, not all packets have to be delivered

to the end user to have an acceptable QoS for a video call. Hence, the authors of

[13] present the second framework for modeling real-time traffic over wireless net-

works, namely, the “hard-deadline” framework. Quality-of-service-based scheduling

has received attention recently. It is shown in [28] and [29] that quality-of-service-

aware scheduling results in a better performance in LTE systems compared to quality-

of-service-unaware best-effort techniques. Depending on the application, quality-of-

service (QoS) metrics may refer to long-term throughput [30], short-term throughput

[31], per-user average delay [32], average number of packets missing a specific dead-

line [13], or the average time a user waits to receive its data [33]. Real-time audio

and video applications need to be served by algorithms that take hard deadlines into

consideration. That is, these algorithms need to be aware that these packets have

to be served before a certain deadline passes. This is because if a real-time packet

is not transmitted on time, the corresponding user might experience intermittent

connectivity of its audio or video.

In [13] the authors consider binary erasure channels and present a sufficient
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and necessary condition to determine if a given problem is feasible. The work is

extended in three different directions. The first direction studies the problem un-

der delayed feedback [29]. The second considers general channel fading models [34].

While the third studies multicast video packets that have strict deadlines and uti-

lize network coding to improve the overall network performance [35, 36]. Unlike the

time-framed assumption in the previous works, the authors of [11] assume that ar-

rivals and deadlines do not have to occur at the edges of a time frame. They present a

scheduling algorithm under the on-off channel fading model and present its achievable

region under general arrivals and deadline patterns but with a fixed power transmis-

sion. In [37] the authors study the scheduling problem in the presence of real-time

and non-real-time data. Unlike real-time data, non-real-time data do not have strict

deadlines but have an implicit stability constraint on the queues. Using the dual func-

tion approach, the problem was decomposed into an online algorithm that guarantees

network stability and real-time users’ satisfaction.

Power allocation has not been considered for RT users in the literature, to the

best of our knowledge. In this chapter, we study resource allocation in the presence

of simultaneous RT and NRT users in a downlink cellular system. We formulate

the problem as a joint scheduling-and-power-allocation problem to maximize the sum

throughput of the NRT users subject to an average power constraint on the base

station (BS), as well as a delivery ratio requirement constraint for each RT user. The

delivery ratio constraint requires a minimum ratio of packets to be transmitted by a

hard deadline, for each RT user. Perhaps the closest to this work are references [37]

and [27]. The former does not consider power allocation, while the latter assumes

that only one user can be scheduled per time slot.
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Chapter 2

DELAY DUE TO SERVICE TIME

In this chapter we study the delay resulting from the service time of packets and

neglect the delay resulting from the waiting time in the queues. We treat the cognitive

radio system as a single secondary user (SU) accessing a multi-channel system. The

main problem studied in this chapter is the tradeoff between the service time and

the throughput. We assume the SU senses the channels sequentially to detect the

presence of the primary user (PU), and stops its search to access a channel if it offers

a significantly high throughput. The tradeoff exists because stopping at early-sensed

channels gives low average service time but, at the same time, gives low throughput

since early channels might have low gains. The joint optimal stopping rule and power

control problem is formulated as a throughput maximization problem with an average

service time and power constraint. We note that in this chapter we use the word delay

to refer to the service time.

To the best of our knowledge, this is the first work to study the joint power-

control and optimal-stopping-rule problem in a multi channel CR system. The con-

tribution in this chapter is the formulation of a joint power-control and optimal-

stopping-rule problem that also incorporates a delay constraint and present a low

complexity solution in the presence of interference/collision constraint from the SU

to the PU due to the imperfect sensing mechanism. The preliminary results in [38]

consider an overlay framework for single user case while neglecting sensing errors.

But in this work, we also study the problem in the underlay scenario where inter-

ference is allowed from the secondary transmitter (ST) to the primary receiver (PR)

and extend to multiple SU case. We also generalize the solution to the multi-SU case

when the number of SUs is large. We discuss the applicability of our formulation
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in typical delay-constrained scenarios where packets arrive simultaneously and have

a same deadline. We show that the proposed algorithm can be used to solve this

problem offline, to maximize the throughput and meet the deadline constraint at the

same time. Moreover, we propose an online algorithm that gives higher throughput

compared to the offline approach while meeting the deadline constraint.

2.1 Overlay System Model

Consider a PU network that has a licensed access toM orthogonal frequency channels.

Time is slotted with a time slot duration of T seconds. The SU’s network consists of

a single ST (SU and ST will be used interchangeably) attempting to send real-time

data to its intended secondary receiver (SR) through one of the channels licensed to

the PU. Before a time slot begins, the SU is assumed to have ordered the channels

according to some sequence (we note that the method of ordering the channels is

outside the scope of this work. The reader is referred to [15] for further details about

channel ordering), labeled 1, ...,M . The set of channels is denoted byM = {1, ...,M}.

Before the SU attempts to transmit its packet over channel i, it senses this channel to

determine its availability “state” which is described by a Bernoulli random variable

bi with parameter θi (θi is called the availability probability of channel i). If bi = 0

(which happens with probability θi), then channel i is free and the SU may transmit

over it until the on-going time slot ends. If bi = 1, channel i is busy, and the SU

proceeds to sense channel i + 1. Channel availabilities are statistically independent

across frequency channels and across time slots.

We assume that the SU has limited capabilities in the sense that no two

channels can be sensed simultaneously. This may be the case when considering radios

having a single sensing module with a fixed bandwidth, so that it can be tuned to

only one frequency channel at a time. The reader is referred to [39], [40] and [41]
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Figure 2.1: Sensing and transmission phases in one time slot. The SU senses each
channel for τ seconds, determines its state, then probes the gain if the channel is
found free. The sensing phase ends if the probed gain γi > γth (i), in which case
k∗ = i. Hence, k∗ is a random variable that depends on the channel states and gains.

for detailed information on advanced spectrum sensing techniques. Therefore, at the

beginning of a given time slot, the SU selects a channel, say channel 1, senses it for τ

seconds (τ ≪ T/M), and if it is free, the SU transmits on this channel if its channel

gain is high enough1. Otherwise, the SU skips this channel and senses channel 2, and

so on until it finds a free channel. If all channels are busy (i.e. the PU has transmission

activities on all M channels) then this time slot will be considered as “blocked”. In

this case, the SU waits for the following time slot and begins sensing following the

same channel sensing sequence. As the sensing duration increases, the transmission

phase duration decreases which decreases the throughput. But we cannot arbitrarily

decrease the value of τ since this decreases the reliability of the sensing outcome. This

trade-off has been studied extensively in the literature, e.g. [42], [43]. In this work

we study the impact of sequential channel sensing on the throughput rather than the

sensing duration on the throughput. Hence we assume that τ is a fixed parameter and

is not optimized over. For details on the trade-off between throughput and sensing

duration in this sequential sensing problem the reader is referred to [2].

The fading channel between ST and SR is assumed to be flat fading with

independent, identically distributed (i.i.d.) channel gains across the M channels. To

achieve higher data rates, the SU adapts its data rate according to the instantaneous

1How “high” is “high” is going to be explained later
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power gain of the channel before beginning transmission on this channel. To do this,

once the SU finds a free channel, say channel i, the gain γi is probed. The data rate

will be proportional to log(1 + P1,i(γi)γi), where P1,i(γi) is the power transmitted by

the SU at channel i as a function of the instantaneous gain [44]. Fig. 2.1 shows a

potential scenario where the SU senses k∗ channels, skips the first k∗ − 1, and uses

the k∗th channel for transmission until the end of this on-going time slot. In this

scenario the SU “stops” at the k∗th channel, for some k∗ ∈ M. Stopping at channel

i depends on two factors: 1) the availability of channel bi, and 2) the instantaneous

channel gain γi. Clearly, bi and γi are random variables that change from one time

slot to another. Hence, k∗, that depends on these two factors, is a random variable.

More specifically, it depends on the states [b1, ..., bM ] along with the gains of each

channel [γ1, ..., γM ]. To understand why, consider that the SU senses channel i, finds

it free and probes its gain γi. If γi is found to be low, then the SU skips channel i

(although free) and senses channel i+ 1. This is to take advantage of the possibility

that γj ≫ γi for j > i. On the other hand, if γi is sufficiently large, the SU stops

at channel i and begins transmission. In that latter case k∗ = i. Defining the two

random vectors b = [b1, ..., bM ]T and γ = [γ1, ..., γM ]T , k∗ is a deterministic function

of b and γ.

We define the stopping rule by defining a threshold γth (i) to which each γi is

compared when the ith channel is found free. If γi ≥ γth (i), channel i is considered to

have a “high” gain and hence the SU “stops” and transmits at channel i. Otherwise,

channel i is skipped and channel i + 1 sensed. In the extreme case when γth (i) = 0,

the SU will not skip channel i if it is found free. Increasing γth (i) allows the SU to

skip channel i whenever γi < γth (i), to search for a better channel, thus potentially

increasing the throughput. Setting γth (i) too large allows channel i to be skipped

even if γi is high. This constitutes the trade-off in choosing the thresholds γth (i).
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The optimal values of γth (i) i ∈M, determine the optimal stopping rule.

Let P1,i(γ) denote the power transmitted at the ith channel when the instan-

taneous channel gain is γ, if channel i was chosen for transmission. Since the SU

can transmit on one channel at a time, the power transmitted at any time slot at

channel i is P1,i(γi)1 (i = k∗), where 1 (i = k∗) = 1 if i = k∗ and 0 otherwise. Define

ci , 1 − iτ
T

as the fraction of the time slot remaining for the SU’s transmission if

the SU transmits on the ith channel in the sensing sequence. The average power

constraint is Eγ,b[ck∗Pk∗(γk∗)] ≤ Pavg, where the expectation is with respect to the

random vectors γ and b. We will henceforth drop the subscript from the expected

value operator E. This expectation can be calculated recursively from

Si(Γth(i),P1,i) = θici

∫ ∞

γth(i)

P1,i(γ)fγi(γ) dγ+
[

1− θiF̄γi(γth (i))
]

Si+1(Γth(i+1),Pi+1),

(2.1)

i ∈ M, where P1,i , [P1,i(γ), ..., P1,M (γ)]T and Γth(i) , [γth (i) , ..., γth (M)]T are

the vectors of the power functions and thresholds respectively, with SM+1(Γth(M +

1),PM+1) , 0, fγi(γ) is the Probability Density Function (PDF) of the gain γi of

channel i, and F̄γi(x) ,
∫∞

x
fγi(γ) dγ is the complementary cumulative distribution

function. The first term in (2.1) is the average power transmitted at channel i given

that channel is chosen for transmission (i.e. given that k∗ = i). The second term

represents the case where channel i is skipped and channel i+ 1 is sensed. It can be

shown that S1(Γth(1),P1,1) = E [ck∗Pk∗(γ)]. Moreover, we will also drop the index i

from the subscript of fγi(γ) and F̄γi(γ) since channels suffer i.i.d. fading. Although

we have only included an average power constraint in our problem, we will modify,

after solving the problem, the solution to include an instantaneous power constraint

as well.

The SU’s average throughput is defined as E[ck∗ log(1 +Pk∗(γk∗)γk∗)]. Similar
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to the average power, we denote the expected throughput as U1(Γth(1),P1,1) which

can be derived using the following recursive formula

Ui(Γth(i),P1,i) = θici

∫ ∞

γth(i)

log (1 + P1,i(γ)γ) fγ(γ) dγ+

[

1− θiF̄γ(γth (i))
]

Ui+1 (Γth(i+ 1),Pi+1) (2.2)

i ∈M, with UM+1(·, ·) , 0. U1(Γth(1),P1,1) represents the expected data rate of the

SU as a function of the threshold vector Γth(1) and the power function vector P1,1.

If the SU skips all channels, either due to being busy, due to their low gain or

due to a combination of both, then the current time slot is said to be blocked. The SU

has to wait for the following time slot to begin searching for a free channel again. This

results in a delay in serving (transmitting) the SU’s packet. Define the delay D as the

number of time slots the SU consumes before successfully transmitting a packet. That

is, D − 1 is a random variable that represents the number of consecutively blocked

time slots. In real-time applications, there may exist some average delay requirement

D̄max on the packets that must not be exceeded. Since the availability of each channel

is independent across time slots, D follows a geometric distribution having E[D] =

(Pr[Success])−1 where Pr[Success] = 1− Pr[Blocking]. In other words, Pr[Success] is

the probability that the SU finds a free channel with high enough gain so that it does

not skip all M channels in a time slot. It is given by Pr[Success] , p1(Γth(1)) which

can be calculated recursively using the following equation

pi(Γth(i)) = θiF̄γ(γth (i)) +
[

1− θiF̄γ(γth (i))
]

pi+1(Γth(i+ 1)), (2.3)

i ∈M, where pM+1 , 0. Here, pi(Γth(i)) is the probability of transmission on channel

i, i+ 1,..., or M .
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2.2 Problem Statement and Proposed Solution

From equation (2.2) we see that the SU’s expected throughput U1 depends on the

threshold vector Γth(1) and the power vector P1,1. The goal is to find the optimum

values of Γth(1) ∈ R
M and functions P1,1 that maximize U1 subject to an average

power constraint and an expected packet delay constraint. The delay constraint can

be written as E[D] ≤ D̄max or, equivalently, p1(Γth(1)) ≥ 1/D̄max. Mathematically,

the problem becomes

maximize U1(Γth(1),P1,1)

subject to S1(Γth(1),P1,1) ≤ Pavg

p1(Γth(1)) ≥ 1
D̄max

variables Γth(1),P1,1,

(2.4)

where the first constraint represents the average power constraint, while the second

is a bound on the average packet delay. We allow the power P1,i to be an arbitrary

function of γi and optimize over this function to maximize the throughput subject to

average power and delay constraints. Even though (2.4) is not proven to be convex,

we provide closed-form expressions for the optimal thresholds and power-functions

vector. To this end, we first calculate the Lagrangian associated with (2.4). Let λP

and λD be the dual variables associated with the constraints in problem (2.4). The

Lagrangian for (2.4) becomes

L (Γth(1),P1,1, λP, λD) = U1 (Γth(1),P1,1)−

λP (S1(Γth(1),P1,1)− Pavg) + λD

(

p1(Γth(1))−
1

D̄max

)

. (2.5)

Differentiating (2.5) with respect to each of the primal variables P1,i(γ) and γth (i)

and equating the resulting derivatives to zero, we obtain the KKT equations below
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which are necessary conditions for optimality [45, 46]:

P ∗
1,i(γ) =

(

1

λ∗P
− 1

γ

)+

, γ > γ∗th (i) , (2.6)

log

(

1 +

(

1

λ∗P
− 1

γ∗th (i)

)+

γ∗th (i)

)

− λ∗P
(

1

λ∗P
− 1

γ∗th (i)

)+

=
U∗
i+1 − λ∗PS∗

i+1 − λ∗D ·
(

1− p∗i+1

)

ci
, (2.7)

S∗
1 ≤ Pavg , p

∗
1 ≥

1

D̄max

, λ∗P ≥ 0 , λ∗D ≥ 0, (2.8)

λ∗P · (S∗
1 − Pavg) = 0, (2.9)

λ∗D ·
(

p∗1 −
1

D̄max

)

= 0, (2.10)

i ∈ M. We use U∗
i+1 , Ui+1

(

Γ∗
th (i+ 1) ,P∗

i+1

)

while S∗
i+1 , Si+1

(

Γ∗
th (i+ 1) ,P∗

i+1

)

and p∗i+1 , pi+1 (Γ
∗
th (i+ 1)) for brevity in the sequel. We note that UM+1 (·, ·) =

SM+1 (·, ·) = pM+1 (·) , 0 by definition. We observe that these KKT equations involve

the primal (Γ∗
th (1) and P∗

1) and the dual (λ∗P and λ∗D) variables. Our approach is to

find a closed-form expression for the primal variables in terms of the dual variables,

then propose a low-complexity algorithm to obtain the solution for the dual variables.

The optimality of this approach is discussed at the end of this section (in Section 2.2.3)

where we show that, loosely speaking, the KKT equations provide a unique solution

to the primal-dual variables. Hence, based on this unique solution, and on the fact

that the KKT equations are necessary conditions for the optimal solution, then this

solution is not only necessary but sufficient as well, and hence optimal.

2.2.1 Solving for Primal Variables

Equation (2.6) is a water-filling strategy with a slight modification due to having

the condition γ > γth (i). This condition comes from the sequential sensing of the

channels which is absent in the classic water-filling strategy [44]. Equation (2.6) gives

a closed-form solution for P1,1. On the other hand, the entries of the vector Γ∗
th (1)
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are found via the set of equations (2.7). Note that equation (2.7) indeed forms a set

of M equations, each solves for one of the γ∗th (i), i ∈ M. We refer to this set as the

“threshold-finding” equations. For a given value of i, solving for γ∗th (i) requires the

knowledge of only γ∗th (i+ 1) through γ∗th (M), and does not require knowing γ∗th (1)

through γ∗th (i− 1). Thus, these M equations can be solved using back-substitution

starting from γ∗th (M). To solve for γ∗th (i), we use the fact that γ∗th (i) ≥ λ∗P that is

proven in the following lemma.

Lemma 1. The optimal solution of problem (2.4) satisfies γ∗
th(i) ≥ λ∗P ∀i ∈M.

Proof. See Appendix A for proof.

The intuition behind Lemma 1 is as follows. If, for some channel i, γ∗th (i) < λ∗P

was possible, and the instantaneous gain γi happened to fall in the range [γ∗th (i) , λ
∗
P)

at a given time slot, then the SU will not skip channel i since γi > γ∗th (i). But the

power transmitted on channel i is P1,i(γi) = (1/λ∗P − 1/γi)
+ = 0 since γi < λ∗P. This

means that the SU will neither skip nor transmit on channel i, which does not make

sense from the SU’s throughput perspective. To overcome this event, the SU needs

to set γ∗th (i) at least as large as λ∗P so that whenever γi < λ∗P, the SU skips channel i

rather than transmitting with zero power.

Lemma 1 allows us to remove the (·)+ sign in equation (2.7) when solving for

γ∗th (i). Rewriting (2.7) we get

−λ∗P
γ∗th (i)

exp

( −λ∗P
γ∗th (i)

)

=

− exp

(

−U
∗
i+1 − λ∗PS∗

i+1 − λ∗D ·
(

1− p∗i+1

)

ci
− 1

)

, i ∈M, (2.11)

Equation (2.11) is now on the form W exp(W ) = c, whose solution is W = W0(c),

where W0(x) is the principle branch of the Lambert W function [47] and is given

20



by W0(x) =
∑∞

n=1
(−n)n−1

n!
xn. The only solution to (2.11) which satisfies Lemma 1 is

given for i ∈M by

γ∗th (i) =
−λ∗P

W0

(

− exp

(

−(U∗
i+1−λ∗

PS
∗
i+1−λ∗

D(1−p∗i+1))
+

ci
− 1

)) . (2.12)

Hence, Γ∗
th (1) and P∗

1 are found via equations (2.12) and (2.6) respectively

which are one-to-one mappings from the dual variables (λ∗P, λ
∗
D). And if we had an

instantaneous power constraint P1,i(γ) ≤ Pmax, we could write down the Lagrangian

and solve for P1,i(γ). The details are similar to the case without an instantaneous

power constraint and are, thus, omitted for brevity. The reader is referred to [5] for

a similar proof. The expression for P ∗
1,i(γ) is given by

P ∗
1,i(γ) =











(

1
λ∗
P
− 1

γ

)+

if 1
λ∗
P
− 1

γ
< Pmax

Pmax otherwise.
(2.13)

Since the optimal primal variables are explicit functions of the optimal dual

variables, once the optimal dual variables are found, the optimal primal variables are

found and the optimization problem is solved. We now discuss how to solve for these

dual variables.

2.2.2 Solving for Dual Variables

The optimum dual variable λ∗P must satisfy equation (2.9). Thus if λ∗P > 0, then

we need S∗
1 − Pavg = 0. This equation can be solved using any suitable root-finding

algorithm. Hence, we propose Algorithm 1 that uses bisection [48]. In each iteration

n, the algorithm calculates S∗
1 given that λP = λ

(n)
P , and given some fixed λD, compares

it to Pavg to update λ
(n+1)
P accordingly. The algorithm terminates when S∗

1 = Pavg,

i.e. λ
(n)
P = λ∗P. The superiority of this algorithm over the exhaustive search is due to

the use of the bisection algorithm that does not go over all the search space of λP.
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In order for the bisection to converge, there must exist a single solution for equation

S∗
1 = Pavg. This is proven in Theorem 1.

Theorem 1. S∗
1 is decreasing in λ∗P ∈ [0,∞) given some fixed λ∗D ≥ 0. Moreover, the

optimal value λ∗P satisfying S∗
1 = Pavg is upper bounded by λmax

P ,
∑M

i=1 θici/Pavg.

Proof. See Appendix B for the proof.

We note that Algorithm 1 can be systematically modified to call any other

root-finding algorithm (e.g. the secant algorithm [48] that converges faster than the

bisection algorithm).

Algorithm 1 Finding λ∗P given some λD

1: Initialize n← 1, λmin
P ← 0, λmax

P ←∑M
i=1 θici/Pavg, λ

(1)
P ←

(

λmin
P + λmax

P

)

/2
2: while |S∗

1 − Pavg| > ǫ do

3: Calculate S∗
1 given that λ∗P = λ

(n)
P . Call it S(n).

4: if S(n) − Pavg > 0 then

5: λmin
P = λ

(n)
P

6: else

7: λmax
P = λ

(n)
P

8: end if

9: λ
(n+1)
P ←

(

λmin
P + λmax

P

)

/2
10: n← n+ 1
11: end while

12: λ∗P ← λ
(n)
P

Now, to search for λ∗D, we state the following lemma.

Lemma 2. The optimum value λ∗D that solves problem (2.4) satisfies 0 ≤ λ∗D < λmax
D ,

where

λmax
D ,

c1 [log (t)− t+ 1] + Umax
2

1− pmax
2

(2.14)

with t ,
(

min
(

λmax
P , F̄−1

γ

(

1
θ1D̄max

)))

/
(

F̄−1
γ

(

1
θ1D̄max

))

and Umax
2 is an upper bound

on U∗
2 and is given by

(

∫∞

λmax
P

log (γ/λmax
P ) fγ(γ) dγ

)(

∑M
i=2 θici

)

, while pmax
2 is an

upper bound on p∗2 and is given by
∑M

i=2

∏i−1
j=2 (1− θj) θi.
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Proof. See Appendix C.

Lemma 2 gives an upper bound on λ∗D. This bound decreases the search space

of λ∗D drastically instead of searching over R. Thus the solution of problem (2.4) can

be summarized on 3 steps: 1) Fix λ∗D ∈ [0, λmax
D ) and find the corresponding optimum

λ∗P using Algorithm 1. 2) Substitute the pair (λ∗P, λ
∗
D) in equations (2.6) and (2.12)

to get the power and threshold functions, then evaluate U∗
1 from (2.2). 3) Repeat

steps 1 and 2 for other values of λ∗D until reaching the optimum λ∗D that satisfies

p∗1 = 1/D̄max. If there are multiple λ∗D’s satisfying p∗1 = 1/D̄max, then the optimum

one is the one that gives the highest U∗
1 .

Although the order by which the channels are sensed is assumed fixed, the

proposed algorithm can be modified to optimize over the sensing order by a relatively

low complexity sorting algorithm. Particularly, the dynamic programming proposed

in [15] can be called by Algorithm 1 to order the channels. The complexity of the

sorting algorithm alone is O(2M) compared to the O(M !) of the exhaustive search to

sort the M channels. The modification to our proposed algorithm would be in step

3 of Algorithm 1, where S∗
1 would be optimized over the number of channels (as well

as Γ∗
th (1)).

2.2.3 Optimality of the Proposed Solution

Since the problem in (2.4) is not proven to be convex, the KKT conditions provide only

necessary conditions for optimality and need not be sufficient [49]. This means that

there might exist multiple solutions (i.e. multiple solutions for the primal and/or dual

variables) satisfying the KKT conditions, at least one of which is optimal. But since

Theorem 1 proves that there exists one unique solution to λ∗P given λ∗D, then Γ∗
th (1)

and P∗
1 are unique as well (from equations (2.6) and (2.12)) given some λ∗D. Hence, by

sweeping λ∗D over [0, λmax
D ), we have a unique solution satisfying the KKT conditions,
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which means that the KKT conditions are sufficient as well and our approach is

optimal for problem (2.4).

2.3 Generalization of Deadline Constraints

In the overlay and underlay schemes discussed thus far, we were assuming that each

packet has a hard deadline of one time slot. If a packet is not delivered as soon as it

arrives at the ST, then it is dropped from the system. But in real-time applications,

data arrives at the ST’s buffer on a frame-by-frame structure. Meaning multiple

packets (constituting the same frame) arrive simultaneously rather than one at a

time. A frame consists of a fixed number of packets, and each packet fits into exactly

one time slot of duration T . Each frame has its own deadline and thus, packets

belonging to the same frame have the same deadline [36]. This deadline represents

the maximum number of time slots that the packets, belonging to the same frame,

need to be transmitted by.

In this section we solve this problem for the overlay scenario. The solution

presented in Section 2.2 can be thought of as a special case of the problem presented

in this section where the deadline was equal to 1 time slot and each frame consists of

one packet. We show that the solution presented in Section 2.2 can be used to solve

this generalized problem in an offline fashion (i.e. before attempting to transmit any

packet of the frame). Moreover, we propose an online update algorithm that updates

the thresholds and power functions each time slot and show that this outperforms

the offline solution.

2.3.1 Offline Solution

Assume that each frame consists of K packets and that the entire frame has a dead-

line of tf time slots (tf > K). If the SU does not succeed in transmitting the K

packets before the tf time slots, then the whole frame is considered wasted. Since
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instantaneous channel gains and PU’s activities are independent across time slots,

the probability that the SU succeeds in transmitting the frame in tf time slots or less

is given by

Pframe (K, tf ) =

tf
∑

n=K

(

tf
n

)

pn (1− p)tf−n (2.15)

where p is the probability of transmitting a packet on some channel in a single time slot

and is given by (2.3) or (2.21) if the SU’s system was overlay or underlay respectively.

Pframe (K, tf ) represents the probability of finding K or more free time slots out of a

total of tf time slots.

In order to guarantee some QoS for the real-time data the SU needs to keep

the probability of successful frame transmission above a minimum value denoted

rmin, that is Pframe ≥ rmin. Hence the problem becomes a throughput maximization

problem subject to some average power and QoS constraints as follows

maximize U1(Γth(1),P1,1)

subject to S1(Γth(1),P1,1) ≤ Pavg

Pframe(K, tf ) ≥ rmin

variables Γth(1),P1,1.

(2.16)

This is the optimization problem assuming an overlay system since we used equations

(2.2) and (2.1) for the throughput and power, respectively. It can also be modified

systematically to the case of an underlay system. Since there exists a one-to-one

mapping between Pframe(K, tf ) and p, then there exists a value for D̄max such that the

inequality p ≥ 1/D̄max is equivalent to the QoS inequality Pframe (K, tf ) ≥ rmin. That

is, we can replace inequality Pframe(K, tf ) ≥ rmin by p ≥ 1/D̄max for some D̄max that

depends on rmin, K and tf that are known a priori. Consequently, problem (2.16) is

reduced to the simpler, yet equivalent, single-time-slot problem (2.4) and the SU can

solve for P∗
1 and Γ∗

th (1) vectors following the approach proposed in Section 2.2. The
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SU solves this problem offline (i.e. before the beginning of the frame transmission)

and uses this solution each time slot of the tf time slots. With this offline scheme,

the SU will be able to meet the QoS and the average power constraint requirements

as well as maximizing its throughput.

2.3.2 Online Power-and-Threshold Adaptation

In problem (2.4), we have seen that as 1/D̄max decreases, the system becomes less

stringent in terms of the delay constraint. This results in an increase in the average

throughput U∗
1 . With this in mind, let us assume, in the generalized delay model,

that at time slot 1 the SU succeeds in transmitting a packet. Thus, at time slot 2 the

SU has K− 1 remaining packets to be transmitted in tf − 1 time slots. And from the

properties of equation (2.15), Pframe(K − 1, tf − 1) > Pframe(K, tf ). This means that

the system becomes less stringent in terms of the QoS constraint after a successful

packet transmission. This advantage appears in the form of higher throughput. To

see how we can make use of this advantage, define Pframe(K(t), tf − t+ 1) as

Pframe (K(t), tf − t+ 1) =

tf−t+1
∑

n=K(t)

(

tf − t+ 1

n

)

(p(t))n (1− p(t))tf−t+1−n, (2.17)

where K(t) is the remaining number of packets before time slot t ∈ {1, ..., tf} and

p(t) is the probability of successful transmission at time slot t. At each time slot

t ∈ {1, ...tf}, the SU modifies the QoS constraint to be Pframe(K(t), tf − t+1) ≥ rmin

instead of Pframe(K, tf ) ≥ rmin, that was used in the offline adaptation, and solve the
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following problem

maximize U1(Γth(1),P1,1)

subject to S1(Γth(1),P1,1) ≤ Pavg

Pframe(K(t), tf − t+ 1) ≥ rmin

variables Γth(1),P1,1,

(2.18)

to obtain the power and threshold vectors. When the delay constraint in (2.18)

is replaced by its equivalent constraint p ≥ 1/D̄max, the resulting problem can be

solved using the overlay approach proposed in Section 2.2 without much increase

in computational complexity since the power functions and thresholds are given in

closed-form expressions. With this online adaptation, the average throughput U∗
1

increases while still satisfying the QoS constraint.

2.4 Underlay System

In the overlay system, the SU tries to locate the free channels at each time slot to

access these spectrum holes without interfering with the PUs. Recently, the FCC has

allowed the SUs to interfere with the PU’s network as long as this interference does

not harm the PUs [50]. If the interference from the SU measured at the PU’s receiver

is below the tolerable level, then the interference is deemed acceptable.

In order to model the interference at the PR, we assume that the SU uses a

channel sensing technique that produces the sufficient statistic zi at channel i [51,

52]. The SU is assumed to know the distribution of zi given channel i is free and

busy, namely fz|b (zi|bi = 0) and fz|b (zi|bi = 1) respectively. For brevity, we omit the

subscript i from bi whenever it is clear from the context. The value of zi indicates

how confident the SU is in the presence of the PU at channel i. Thus the SU stops at

channel i according to how likely busy it is and how much data rate it will gain from

this channel (i.e. according to zi and γi respectively). Hence, when the SU senses
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channel i to acquire zi, the channel gain γi is probed and compared to some function

γth(i, zi); if γi ≥ γth(i, zi) transmission occurs on channel i, otherwise, channel i is

skipped and i + 1 is sensed. Potentially, γth(i, zi) is a function in the statistic zi.

This means that, at channel i, for each possible value that zi might take, there is

a corresponding threshold γth (i, z). Before formulating the problem we note that

this model can capture the overlay with sensing errors model as a special case where

fz|b (z|bi = 1) = (1 − PMD)δ(z − zb) + PMDδ(z − zf) while fz|b (z|bi = 0) = PFAδ(z −

zb)+ (1−PFA)δ(z− zf), where PMD and PFA are the probabilities of missed-detection

and false-alarm respectively, while δ(z) is the Dirac delta function, and zb and zf

that represent the values that z takes when the channel is busy and free, respectively.

Hence, the interference constraint, which will soon be described, can be modified to

a detection probability constraint and/or a false alarm probability constraint.

The SU’s expected throughput is given by U1(Γth (1, z) ,P1) which can be

calculated recursively from

Ui (Γth (i, z) ,Pi) =

ci
∫∞

−∞

∫∞

γth(i,z)
log(1 + Pi (γ) γ)fγ(γ) dγfz(z) dz+

pskipi Ui+1(Γth (i+ 1, z) ,Pi+1), i ∈M,

(2.19)

where UM+1(Γth (M + 1, z) ,PM+1) , 0, Γth (i, z) , [γth (i, z) , ..., γth (M, z)]T , fz(z) ,

θifz|b (z|bi = 0) + (1 − θi)fz|b (z|bi = 1) is the PDF of the random variable zi and

pskipi ,
∫∞

−∞

∫ γth(i,z)

0
fγ(γ) dγfz(z) dz. The first term in (2.19) is the SU’s throughput

at channel i averaged over all realizations of zi and that of γi ≥ γth (i, z). The second

term is the average throughput when the SU skips channel i due to its low gain. Also,

let the average interference from the SU’s transmitter to the PU’s receiver, aggregated

over all M channels, be I1(Γth (1, z) ,P1). This represents the total interference af-

fecting the PU’s network due to the existence of the SU. The SU is responsible for

guaranteeing that this interference does not exceed a threshold Iavg dictated by the
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PU’s network. I1(Γth (1, z) ,P1) can be derived using the following recursive formula

Ii(Γth (i, z) ,Pi) =

(1− θi) ci
∫∞

−∞

∫∞

γth(i,z)
Pi (γ) fγ(γ) dγfz|b (z|bi = 1) dz

+pskipi Ii+1(Γth (i+ 1, z) ,Pi+1), i ∈M,

(2.20)

where IM+1(Γth (M + 1, z) ,PM+1) , 0. This interference model is based on the

assumption that the channel gain from the SU’s transmitter to the PU’s receiver

is known at the SU’s transmitter. This is the case for reciprocal channels when

the PR acts as a transmitter and transmits training data to its intended primary

transmitter (when it is acting as a receiver) [53]. The ST overhears this training data

and estimates the channel from itself to the PR. Moreover, the gain at each channel

from the ST to the PR is assumed unity for presentation simplicity. This could be

extended easily to the case of non-unity-gain by multiplying the first term in (2.20) by

the gain from the ST to the PR at channel i. Finally, p1(Γth (1, z)) is the probability

of a successful transmission in the current time slot and can be calculated using

pi(Γth (i, z)) =
∫∞

−∞

∫∞

γth(i,z)
fγ(γ) dγfz(z) dz+

pskipi pi+1(Γth (i+ 1, z)),
(2.21)

i ∈M, pM+1(Γth (M + 1, z)) , 0. Given this background, the problem is

maximize U1(Γth (1, z) ,P1)

subject to I1(Γth (1, z) ,P1) ≤ Iavg

p1(Γth (1, z)) ≥ 1
D̄max

variables Γth (1, z) ,P1,

(2.22)

Let λI and λD be the Lagrange multipliers associated with the interference and delay

constraints of problem (2.22), respectively. Problem (2.22) is more challenging com-

pared to the overlay case. This is because, unlike in (2.4), the thresholds in (2.22)
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are functions rather than constants. The KKT conditions for (2.22) are given by

P ∗
i (γ) =

(

1

λ∗IPr [bi = 1|z] −
1

γ

)+

, i ∈M. (2.23)

γ∗th (i, z) =

−λ∗IPr [bi = 1|z]

W0

(

− exp

(

−(U∗
i+1−λ∗

I I
∗
i+1−λ∗

D(1−p∗i+1))
+

ci
− 1

)) , i ∈M, (2.24)

in addition to the primal feasibility, dual feasibility and the complementary slackness

equations given in (2.8), (2.9) and (2.10), where U∗
i+1 , U1 (Γ

∗
th (1, z) , P

∗
1 (γ)), I

∗
i+1 ,

I1 (Γ
∗
th (1, z) , P

∗
1 (γ)) and p∗i+1 , p1 (Γ

∗
th (1, z)) while Pr [bi = 1|z] is the conditional

probability that channel i is busy given zi and is given by

Pr [bi = 1|z] = (1− θi) fz|b (z|bi = 1)

fz (z)
. (2.25)

Note that P ∗
i (γ) is increasing in γ and is upper bounded by the term 1/ (λ∗IPr [bi = 1|z]).

Hence, as Pr [bi = 1|z] increases, the SU’s maximum power becomes more limited, i.e.

the maximum power decreases. This is because the PU is more likely to be occupy-

ing channel i. Thus the power transmitted from the SU should decrease in order to

protect the PU.

Algorithm 1 can also be used to find λ∗I . Only a single modification is required

in the algorithm which is that S∗
1 would be replaced by I∗1 . Thus the solution of

problem (2.22) can be summarized on 3 steps: 1) Fix λ∗D ∈ R
+ and find the corre-

sponding optimum λ∗I using the modified version of Algorithm 1. 2) Substitute the

pair (λ∗I , λ
∗
D) in equations (2.23) and (2.24) to get the power and threshold functions,

then evaluate U∗
1 from (2.19). 3) Repeat steps 1 and 2 for other values of λ∗D until

reaching the optimum λ∗D that satisfies p∗1 = 1/D̄max and if there are multiple λ∗D’s

satisfying p∗1 = 1/D̄max, then the optimum one is the one that gives the highest U∗
1 .

This approach yields the optimal solution. Next, Theorem 2 asserts the monotonicity

of I∗1 in λ∗I which allows using the bisection to find λ∗I given some fixed λ∗D.
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Theorem 2. I∗1 is decreasing in λ∗I ∈ [0,∞) given some fixed λ∗D ≥ 0.

Proof. We differentiate I∗1 with respect to λ∗I given that P ∗
i (γ) and γ

∗
th (i, z) are given

by equations (2.23) and (2.24) respectively, then show that this derivative is negative.

The proof is omitted since it follows the same lines of Theorem 1.

Although the interference power constraint is sufficient for the problem to

prevent the power functions from going to infinity, in some applications one may have

an additional power constraint on the SUs. Hence, problem (2.22) can be modified

to introduce an average power constraint that is given by S1(Γth (1, z) ,P1) ≤ Pavg

where

Si(Γth (i, z) ,Pi) = ci
∫∞

−∞

∫∞

γth(i,z)
Pi (γ) fγ(γ) dγfz(z) dz

+pskipi Si+1(Γth (i+ 1, z) ,Pi+1).
(2.26)

It can be easily shown that the solution to the modified problem is similar to that

presented in equations (2.23) and (2.24) which is

P ∗
i (γ) =

(

1

λ∗P + λ∗IPr [bi = 1|z] −
1

γ

)+

, (2.27)

γ∗th (i, z) =

− (λ∗P + λ∗IPr [bi = 1|z])

W0

(

− exp

(

−(U∗
i+1−λ∗

I I
∗
i+1−λ∗

PS
∗
i+1−λ∗

D(1−p∗i+1))
+

ci
− 1

)) , (2.28)

∀i ∈M where S∗
i , Si(Γ

∗
th (i, z) , P

∗
i (γ)). This solution is more general since it takes

into account both the average interference and the average power constraint besides

the delay constraint. Moreover, it allows for the case where the power constraint is

inactive which happens if the PU has a strict average interference constraint. In this

case the optimum solution would result in λ∗P = 0 making equations (2.27) and (2.28)

identical to equations (2.23) and (2.24) respectively.
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2.5 Multiple Secondary Users

In this section, we show how our single SU framework can be extended to multiple

SUs in a multiuser diversity framework without increase in the complexity of the

algorithm. We will show that when the number of SUs is high, with slight modi-

fications to the definitions of the throughput, power and probability of success, the

single SU optimization problem in (2.4) (or (2.22)) can capture the multi-SU scenario.

Moreover, the proposed solution for the overlay model still works for the multi-SU

scenario. Finally, at the end of this section, we show that the proposed algorithm pro-

vides a throughput-optimal and delay-optimal solution with even a lower complexity

for finding the thresholds compared to the single SU case, if the number of SUs is

large.

Consider a CR network with L SUs associated with a centralized secondary

base station (BS) in a downlink overlay scenario. Before describing the system model,

we would like to note that when we say that channel i will be sensed, this means that

each user will independently sense channel i and feedback the sensing outcome to the

BS to make a global decision. Although we neglect sensing errors in this section, the

analysis will work similarly in the presence of sensing errors by using the underlay

model. At the beginning of each time slot the L SUs sense channel 1. If it is free,

each SU observes it free with no errors and probes the instantaneous channel gain

and feeds it back to the BS. The BS compares the maximum received channel gain

among the L received channel gains to γth (1). Channel 1 is assigned to the user

having the maximum channel gain if this maximum gain is higher than γth (1), while

the remaining L − 1 users continue to sense channel 2. On the other hand if the

maximum channel gain is less than γth (1), channel 1 is skipped and channel 2 is

sensed by all L users. Unlike the case in the single SU scenario where only a single
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channel is claimed per time slot, in this multi-SU system, the BS can allocate more

than one channel in one time slot such that each SU is not allocated more than one

channel and each channel is not allocated to more than one SU. Based on this scheme,

the expected per-SU throughput UL
1 is calculated from

U l
i =

θici
l

∫ ∞

γth(i)

log (1 + P1,i(γ)γ) fl(γ) dγ+

θiF̄l(γth (i))

(

1− 1

l

)

U l−1
i+1 +

(

1− θiF̄l(γth (i))
)

U l
i+1 (2.29)

i ∈ M and l ∈ {L− i + 1, ..., L} with initialization U l
M+1 = 0. Here fl(γ) represents

the density of the maximum gain among l i.i.d. users’ gains, while F̄l(γ) is its com-

plementary cumulative distribution function. We study the case where L≫M , thus

when a channel is allocated to a user we can assume that the remaining number of

users is still L. Thus we approximate l with L ∀l ∈ {L−i, ..., L} and ∀i ∈M. Similar

to the the throughput derived in (2.29), we could write the exact expressions for the

per-SU average power and per-SU probability of transmission. And since L ≫ M ,

we can approximate Sl
i with S

L
i and pli with p

L
i , ∀l ∈ {L− i + 1, ..., L} and ∀i ∈ M.

The per-SU expected throughput UL
1 , the average power SL

1 and the probability of

transmission pL1 can be derived from

UL
i (Γth(i),P1,i) =

θici
L

∫ ∞

γth(i)

log (1 + P1,i(γ)γ) fL(γ) dγ+

[

1− θiF̄L(γth (i))

L

]

UL
i+1 (Γth(i+ 1),Pi+1) (2.30)

SL
i (Γth(i),P1,i) =

θici
L

∫ ∞

γth(i)

P1,i(γ)fL(γ) dγ+

[

1− θiF̄L(γth (i))

L

]

SL
i+1(Γth(i+ 1),Pi+1), (2.31)

pLi (Γth(i)) =
θi
L
F̄L(γth (i))+
[

1− θiF̄L(γth (i))

L

]

pLi+1(Γth(i+ 1)), (2.32)
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i ∈ M, respectively, with UL
M+1 = SL

M+1 = pLM+1 = 0. To formulate the multi-SU

optimization problem, we replace U1, S1 and p1 in (2.4) with UL
1 , S

L
1 and pL1 derived in

equations (2.30), (2.31) and (2.32), respectively. Taking the Lagrangian and following

the same procedure as in Section 2.2, we reach at the solution for P ∗
1,i and γ

∗
th (i) as

given by equations (2.6) and (2.12) respectively. Hence, equations (2.6) and (2.12)

represent the optimal solution for the multi-SU scenario. The details are omitted

since they follow those of the single SU case discussed in Section 2.2.

Next we show that this solution is optimal with respect to the delay as well as

the throughput when L is large. We show this by studying the system after ignoring

the delay constraint and show that the resulting solution of this system (which is

what we refer to as the unconstrained problem) is a delay optimal one as well. The

solution of the unconstrained problem is given by setting λ∗D = 0 in (2.12) arriving at

γ∗th (i) |λ∗
D=0 =

−λ∗P
W0

(

− exp

(

−(UL∗
i+1−λ∗

PS
L∗
i+1)

+

ci
− 1

)) . (2.33)

∀i ∈ M. As the number of SUs increases, the per-user expected throughput UL
1

decreases since these users share the total throughput. Moreover, UL
i decreases as

well ∀i ∈ M decreasing the value of γ∗th (i) (from equation (2.33) until reaching

its minimum (i.e. γ∗th (i) = λ∗P) (the right-hand-side of (2.33) is minimum when

its denominator is as much negative as possible. That is, when W0(x) = −1 since

W0(x) ≥ −1, ∀x ∈ R) as L→∞. From (2.32), it can be easily shown that pL1 (Γth(1))

is monotonically decreasing in γth (i) ∀i ∈ M. Thus the minimum possible average

delay (corresponding to the maximum pL1 (Γth(1))) occurs when γth (i) is at its mini-

mum possible value for all i ∈M. Consequently, having γ∗th (i) = λ∗P means that the

system is at the optimum delay point. That is, the unconstrained problem cannot

achieve any smaller delay with an additional delay constraint. Hence, the multi-
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SU problem, that is formulated by adding a delay constraint to the unconstrained

problem, achieves the optimum delay performance when L is asymptotically large.

Recall that the overall complexity of solution for the single SU case is due to

three factors: 1) evaluating the Lambert W function in Algorithm 1, 2) the bisection

algorithm in Algorithm 1 and 3) the search over λD. On the other hand, the com-

plexity of solution for the multi-SU case decreases asymptotically (as L→∞). This

is because of two reasons: 1) When L ≫ M , γ∗th (i) → λ∗P∀i ∈ M. Which means

that we will not have to evaluate the Lambert W function in (2.12) but instead we

set γ∗th (i) = λ∗P, since L≫M . 2) When γ∗th (i) = λ∗P there will be no need to find λ∗D

since the delay is minimum (we recall that in the single SU case, we need to calculate

λ∗D to substitute it in (2.12) to evaluate γ∗th (i), but in the multi-SU case γ∗th (i) = λ∗P).

2.6 Numerical Results

We show the performance of the proposed solution for the overlay and underlay

scenarios. The slot duration is taken to be unity (i.e. all time measurements are

taken relative to the time slot duration), while τ = 0.05T . Here, we use M = 10

channels that suffer i.i.d. Rayleigh fading. The availability probability is taken as

θi = 0.05i throughout the simulations. The power gain γ is exponentially distributed

as fγ (γ) = exp (γ/γ̄) /γ̄ where γ̄ is the average channel gain and is set to be 1 unless

otherwise specified.

Fig. 2.2 plots the expected throughput U∗
1 for the overlay scenario after solving

problem (2.4). U∗
1 is plotted using equation (2.2) that represents the average number

of bits transmitted divided by the average time required to transmit those bits, taking

into account the time wasted due to the blocked time slots. We plot U∗
1 with D̄max =

1.02T and with D̄max = ∞ (i.e. neglecting the delay constraint). We refer to the

former problem as constrained problem, while to the latter as unconstrained problem.
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We also compare the performance to the non optimum stopping rule case (No-OSR)

where the SU transmits at the first available channel. We expect the No-OSR case

to have the best delay and the worst throughput performances. We can see that the

unconstrained problem has the best throughput amongst all constrained problems.

Examining the constrained problem for different sensing orders of the chan-

nels, we observe that when the channels are sorted in an ascending order of θi, the

throughput is higher. This is because a channel i has a higher chance of being skipped

if put at the beginning of the order compared to the case if put at the end of the

order. This is a property of the problem no matter how the channels are ordered,

i.e. this property holds even if all channels have equal values of θi. Hence, it is more

favorable to put the high quality channels at the end of the sensing order so that they

are not put in a position of being frequently skipped. However, this is not necessarily

optimum order, which is out of the scope of this work and is left as a future work for

this delay-constrained optimization problem.

We also plot the expected throughput of a simple stopping rule that we call K-

out-of-M scheme, where we choose the highest K channels in availability probability

and ignore the remaining channels as if they do not exist in the system. The SU

senses those K channels sequentially, probes the gain of each free channel, if any,

and transmits on the channel with the highest gain. This scheme has a constant

fraction Kτ/T of time wasted each slot. Yet it has the advantage of choosing the best

channel among multiple available ones. In Fig. 2.2 we can see that the degradation

of the throughput when K = 5 compared to the optimal stopping rule scheme. The

reason is two-fold: 1) Due to the constant wasted fraction of time, and 2) Ignoring

the remaining channels that could potentially be free with a high gain if they were

considered as opposed to the constrained problem.
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Figure 2.2: The expected throughput for the overlay scenario for four cases: 1) Pro-
posed constrained problem: with average delay constraint for three channel order-
ing possibilities (ascending ordering of channel availability probabilities, descending
ordering, and random ordering), 2) Unconstrained problem that ignores the delay
constraint, 3) No optimum stopping rule (No-OSR) where the SU transmits at the
first free channel and 4) K-out-of-M scheme where the SU assumes the system has
only K = 5 channels and ignores the remaining M −K channels.

The delay is shown in Fig. 2.3 for both the constrained and the unconstrained

problems. We see that the unconstrained problem suffers around 6% increase in the

delay, at Pavg = 10, compared to the constrained one.

Studying the system performance under low average channel gain is essential.

A low average channel gain represents a SU’s channel being in a permanent deep

fade or if there is a relatively high interference level at the secondary receiver. Fig.
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Figure 2.3: The expected delay for the overlay scenario for problem (2.4). The
unconstrained problem can suffer arbitrary high delay. The constrained problem has
a guaranteed average delay for all ordering strategies. The No-OSR scenario, on the
other hand, has the best delay performance since the SU uses the first free channel.

2.4 shows γ∗th (i) versus the γ̄. At low γ̄, the throughput is expected to be small,

hence γ∗th (i) is close to its minimum value λ∗P so that even if γi is relatively small,

i should not be skipped. In other words, at low average channel gain, the expected

throughput is small, thus a relatively low instantaneous gain will be satisfactory for

stopping at channel i. While when the average channel gain increases, γ∗th (i) should

increase so that only high instantaneous gains should lead to stopping at channel i.

In both cases, high and low γ̄ there still is a trade-off between choosing a high versus

a low value of γ∗th (i).

The sensing channel (i.e. the channel between the PT and ST over which
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Figure 2.4: The gap between the optimum threshold γ∗th (i) and its minimum value λ∗P
increases as the average gain increases. This is because as γ̄ increases, Ui+1 increases
as well. Hence γ∗th (i) increases so that only sufficiently high instantaneous gains
should lead to stopping at channel i.

the ST overhears the PT activity) is modeled as AWGN with unit variance. The

distributions of the energy detector output z (average energy of N samples sampled

from this sensing channel) under the free and busy hypotheses are the Chi-square and

a Noncentral Chi-square distributions given by

fz|b (z|bi = 0) =

(

N

σ2

)N
zN−1

(N − 1)!
exp

(−Nz
σ2

)

, (2.34)

fz|b (z|bi = 1) =

(

N

σ2

)

( z

E
)

N−1
2

exp

(−N (z + E)
σ2

)

IBes
N−1

(

2N
√
Ez

σ2

)

, (2.35)

where σ2, which is set to 1, is the variance of the Gaussian noise of the energy detector,
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E is the amount of energy received by the ST due to the activity of the PT and is

taken as E = 2σ2 throughout the simulations, while IBes
i (x) is the modified Bessel

function of the first kind and ith order, and N = 10.

The main problem we are addressing in this chapter is the optimal stopping

rule that dictates for the SU when to stop sensing and start transmitting. As we have

seen, this is identified by the threshold vector Γ∗
th (1, z). If the SU does not consider

the optimal stopping rule problem and rather transmits as soon as it detects a free

channel, then it will be wasting future opportunities of possibly higher throughput.

Hence, we expect a degradation in the throughput. We plot the two scenarios in Fig.

2.5 for the underlay system with no delay constraint.

Throughout this chapter, we use bold fonts for vectors and asterisk to denote

that x∗ is the optimal value of x; all logarithms are natural, while the expected value

operator is denoted E[·] and is taken with respect to all the random variables in its

argument. Finally, we use (x)+ , max(x, 0) and R to denote the set of the real

numbers.

For the multiple SU scenario, the numerical analysis were run for the case of

L = 30 SUs whileM = 10 channels. We assumed the fading channels are i.i.d. among

users and among frequency channels. Each channel is exponentially distributed with

unity average channel gain. And since L is large, the distribution of the maximum

gain among L random gains converges in distribution to the Gumbel distribution

[54] having a cumulative distribution function of exp (− exp (−γ/γ̄)). The per-user

throughput UL∗
1 is plotted in Fig. 2.6 where the throughput of the delay-constrained

and of the unconstrained optimization problems coincide. This is because when L≫

M , the solution of the unconstrained problem is delay optimal as well. Hence, adding

a delay constraint does not sacrifice the throughput, when L is large. Moreover, the
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Figure 2.5: The underlay expected throughput versus the average interference thresh-
old Iavg. Two scenarios are shown: with and without the optimal stopping rule
formulation. In the latter, the SU transmits as soon as a channel is found free.

delay performance shown in Fig. 2.7 shows that the delay does not change with

and without considering the average delay constraint since the system is delay- (and

throughput-) optimal already.

We have simulated the system for the online algorithm of Section 2.3 for

K(1) = 2 packets and tf = 4 time slots. We simulated the system at rmin = 0.95

which means that the QoS of the SU requires that at least 95% of the frames to

be successfully transmitted. Fig. 2.8 shows the improvement in the throughput of
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Figure 2.6: Per user throughput of the system at L = 30 SUs. The throughput of the
constrained and unconstrained problem coincide since the system is throughput (and
delay) optimal.

the online over the offline adaptation. This is because the SU adapts the power and

thresholds at each time slot to allocate the remaining resources (i.e. remaining time

slots) according to the remaining number of packets and the desired QoS. This comes

at the expense of re-solving the problem at each time slot (i.e. tf times more).
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Figure 2.7: The average delay seen by each user in the system at L = 30 SUs. The
delay of the constrained and unconstrained problems coincide since the system is
delay (and throughput) optimal.

43



0.2 0.3 0.4 0.5 0.6 0.7
2

3

4

5

6

7

8

9

10

Average Power (Pavg)

E
x
p
ec
te
d
T
h
ro
u
g
h
p
u
t
(N

a
ts
/
ch
a
n
n
el

u
se
)

 

 

Online Adaptation

Offline Adaptation

Figure 2.8: The performance of the online adaptation algorithm for the general delay
model.
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Chapter 3

AVERAGE-DELAY FRAMEWORK

In this chapter we study the delay resulting from the service time and the queue-

waiting time. The service time is affected by the power transmitted by the SU, while

the queue-waiting time is affected by the transmitted power as well as the scheduling

algorithm. We propose a delay-optimal scheduling-and-power-allocation algorithm

that guarantees bounds on the SUs’ delays while causing an acceptable interference

to the PUs. This algorithm is useful to provide fair delay guarantees to the SUs

when delay fairness cannot be achieved due to the heterogeneity in SUs’ channel

statistics. The contributions in this chapter are: i) Proposing a joint power-control

and scheduling algorithm that is optimal with respect to the average delay of the

SUs in an interference-limited system; ii) Showing that the proposed algorithm can

provide differentiated service to the different SUs based on their heterogeneous QoS

requirements. Moreover, the complexity of the algorithm is shown to be polynomial

in time since it is equivalent to that of sorting a vector of N numbers, where N is the

number of SUs in the system.

3.1 Network Model

We assume a CR system consisting of a single secondary base station (BS) serving

N secondary users (SUs) indexed by the set N , {1, · · ·N} (Fig. 3.1). We are

considering the uplink phase where each SU has its own queue buffer for packets that

need to be sent to the BS. The SUs share a single frequency channel with a single

PU that has licensed access to this channel. The CR system operates in an underlay

fashion where the PU is using the channel continuously at all times. SUs are allowed

to transmit as long as they do not cause harmful interference to the PU. In this

work, we consider two different scenarios where the interference can be considered as
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Figure 3.1: The CR system considered is an uplink one with N SUs (in this figure
N = 2) communicating with their BS. There exists an interference link between each
SU and the existing PU. The PU is assumed to be using the channel continuously.

harmful. The first is an instantaneous interference constraint where the interference

received by the PU at any given slot should not exceed a prespecified threshold Iinst,

while the second is an average interference constraint where the interference received

by the PU averaged over a large duration of time should not exceed a prespecified

threshold Iavg. Moreover, in order for the secondary BS to be able to decode the

received signal, no more than one SU at a time slot is to be assigned the channel for

transmission.

3.1.1 Channel and Interference Model

We assume a time slotted structure where each slot is of duration T seconds, and

equal to the coherence time of the channel. The channel between SU i and the

BS is block fading with instantaneous power gain γ
(t)
i , at time slot t, following the

probability mass function fγi(γ) with mean γ̄i and i.i.d. across time slots, and γmax is

the maximum gain γ
(t)
i could take. The channel gain is also independent across SUs

but not necessarily identically distributed allowing heterogeneity among users. SUs

use a rate adaptation scheme based on the channel gain γ
(t)
i . The transmission rate
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of SU i at time slot t is

R
(t)
i = log

(

1 + P
(t)
i γ

(t)
i

)

bits, (3.1)

where P
(t)
i is the power by which SU i transmits its bits at slot t. We assume that

there exists a finite maximum rate Rmax that the SU cannot exceed. This rate is

dictated by the maximum power Pmax and the maximum channel gain γmax.

The PU experiences interference from the SUs through the channel between

each SU and the PU. The interference channel between SU i and the PU, at slot t,

has a power gain g
(t)
i following the probability mass function fgi(g) with mean ḡi,

and having gmax as the maximum value that g
(t)
i could take. These power gains are

assumed to be independent among SUs but not identically distributed. We assume

that SU i knows the value of γ
(t)
i as well as g

(t)
i , at the beginning of slot t through

some channel estimation phase [55]. The channel estimation to acquire g
(t)
i can be

done by overhearing the pilots transmitted by the primary receiver when it is acting

as a transmitter [55, Section VI]. The channel estimation phase is out of the scope of

this work, however the effect of channel estimation errors will be discussed in Section

4.6.

3.1.2 Queuing Model

3.1.2.1 Arrival Process

We assume that packets arrive to the SU i’s buffer at the beginning of each slot.

The number of packets arriving to SU i’s buffer follows a Bernoulli process with

a fixed parameter λi packets per time slot. Following the literature, packets are

buffered in infinite-sized buffers [56, pp.163] and are served according to the first-

come-first-serve discipline. Each packet has a fixed length of L bits that is constant

for all users. In this chapter, we study the case where L ≫ Rmax which is a typical

case for packets with large sizes as video packets [57, Section 3.1.6.1]. Due to the
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randomness in the channels, each packet takes a random number of time slots to be

completely transmitted to the BS. This depends on the rate of transmission R
(t)
i as

will be explained next.

3.1.2.2 Service Process

When SU i is scheduled for transmission at slot t, it transmits M
(t)
i bits of the head-

of-line (HOL) packet of its queue. The remaining bits of this HOL packet remain in

the HOL of SU i’s queue until it is reassigned the channel in subsequent time slots.

M
(t)
i is given by

M
(t)
i , min

(

R
(t)
i , L

rem
i (t)

)

bits, and (3.2)

respectively, where Lrem
i (t) is the remaining number of bits of the HOL packet at SU

i at the beginning of slot t. Lrem
i (t) is initialized by L whenever a packet joins the

HOL position of SU i’s queue so that it always satisfies 0 ≤ Lrem
i (t) ≤ L, ∀t. A packet

is not considered transmitted unless all its L bits are transmitted, at which point SU

i’s queue decreases by 1 packet. At the beginning of slot t + 1 the following packet

in the buffer, if any, becomes SU i’s HOL packet and Lrem
i (t + 1) is reset back to L

bits. Lrem
i (t) is given by

Lrem
i (t+ 1) ,











L1
(

Qi(t) + |A(t+1)
i | > 0

)

if Lrem
i (t) =M

(t)
i

Lrem
i (t)−M (t)

i otherwise
(3.3)

where A(t)
i is the set carrying the index of the packet, if any, arriving to SU i at

the beginning of slot t, thus |A(t)
i | is either 0 or 1 since at most one packet per slot

can arrive to SU i, 1(x) is the indicator function which is 1 if the event x occurs

and 0 otherwise, while Qi(t) represents the number of packets in SU i’s queue at the

beginning of slot t that evolves as follows

Qi(t+ 1) =
(

Qi(t) + |A(t)
i | − S(t)

i

)+

, (3.4)
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where the packet service indicator S
(t)
i = 1 if Lrem

i (t) =M
(t)
i .

The service time si of SU i is the number of time slots required to transmit one

packet for SU i, excluding the service interruptions. It can be shown that the average

service time for user i is L/E
[

R
(t)
i

]

time slots per packet where the expectation is

taken over the channel gain γ
(t)
i as well as over the power P

(t)
i when it is channel

dependent and random. One example of a random power policy is the channel in-

version policy as will be discussed later (see equation (3.15)). The service time is

assumed to follow a general distribution, throughout the chapter, that depends on

the distribution of P
(t)
i γ

(t)
i .

We define the delay W
(j)
i of a packet j as the total amount of time, in time

slots, packet j spends in SU i’s buffer from the slot it joined the queue until the

slot when its last bit is transmitted. The time-average delay experienced by SU i’s

packets is given by [21]

W̄i , lim
T→∞

E

[

∑T
t=1

∑

j∈A
(t)
i

W
(j)
i

]

E

[

∑T
t=1 |A

(t)
i |
] (3.5)

which is the expected total amount of time spent by all packets arriving in a time

interval, of a large duration, normalized by the expected number of packets that

arrived in this interval.

3.1.3 Transmission Process

At the beginning of each time slot t, the BS schedules a SU and broadcasts its index

i∗ and its power P
(t)
i∗ to all SUs on a common control channel. SU i∗, in turn, begins

transmission of M
(t)
i∗ bits of its HOL packet with a constant power P

(t)
i∗ . We assume

the BS receives these bits error-free by the end of slot t then a new time slot t + 1

starts. In this chapter, our main goal is the selection of the SU i∗ which is a scheduling
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problem, as well as the choice of the power P
(t)
i∗ which is power allocation. We now

elaborate further on this problem.

3.2 Problem Statement

Each SU i has an average delay constraint W̄i ≤ di that needs to be satisfied. More-

over, there is an interference constraint that the SU needs to meet in order to coexist

with the PU. We discuss the two different constraints and state the problem associated

with each constraint.

3.2.1 Instantaneous Interference Constraint

Under the instantaneous interference constraint, the main objective is to solve the

following problem

minimize
{i∗(t)},{P(t)}

∑N
i=1 W̄i

subject to
∑N

i=1 P
(t)
i g

(t)
i ≤ Iinst , ∀t ≥ 1

W̄i ≤ di

P
(t)
i ≤ Pmax , ∀i ∈ N and ∀t ≥ 1,
∑N

i=1 1

(

P
(t)
i

)

≤ 1 , ∀t ≥ 1,

(3.6)

where P(t) , [P
(t)
1 , · · · , P (t)

N ]T , {i∗(t)} represents the scheduler at each time slot t ≥ 1,

while 1(x) , 1 if x 6= 0 and 0 otherwise. The last constraint indicates that no more

than a single SU is to be transmitting at slot t.

3.2.2 Average and Instantaneous Interference Constraint

Let I denote the long-term average interference received by the PU given by

I , lim
T→∞

N
∑

i=1

1

T

T
∑

t=1

P
(t)
i g

(t)
i . (3.7)
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The following problem is the same as (3.6) with an additional constraint on the

average interference:

minimize
{i∗(t)},{P(t)}

∑N
i=1 W̄i

subject to
∑N

i=1 P
(t)
i g

(t)
i ≤ Iinst , ∀t ≥ 1

I ≤ Iavg

W̄i ≤ di

P
(t)
i ≤ Pmax , ∀i ∈ N and ∀t ≥ 1,
∑N

i=1 1

(

P
(t)
i

)

≤ 1 , ∀t ≥ 1,

(3.8)

We notice that problems (3.6) and (3.8) are joint power allocation and schedul-

ing problems where the objective function and constraints are expressed in terms of

asymptotic time averages and cannot be solved by conventional optimization tech-

niques. The next section proposes low complexity update policies and proves their

optimality.

3.3 Proposed Power Allocation and Scheduling Algorithm

We solve problems (3.6) and (3.8) by proposing online joint scheduling and power

allocation policies that dynamically update the scheduling and the power allocation.

We show that these policies have performances that come arbitrarily close to being

optimal. That is, we can achieve a sum of the average delays arbitrarily close to its

optimal value depending on some control parameter V .

We first discuss the idea behind our policies. Then we present the proposed

policy for each problem, (3.6) and (3.8), separately.

3.3.1 Frame-Based Policy

The idea behind the policies that solve (3.6) and (3.8) is to divide time into frames

where frame k consists of a random number Tk time slots and update the power
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allocation and scheduling at the beginning of each frame. Where each frame begins

and ends is specified by idle periods and will be precisely defined later in this section.

During frame k, SUs are scheduled according to some priority list πππ(k) and each SU

is assigned some power to be used when it is assigned the channel. The priority list

and the power functions are fixed during the entire frame k and are found at the

beginning of frame k based on the history of the SUs’ time-averaged delays and, in

the case of (3.8), the PU’s suffered interference up to the end of frame k − 1.

We define πππ(k) , [π1(k), · · · , πN(k)]T where πj(k) is the index of the SU who

is given the jth priority during frame k. Given πππ(k), the scheduler becomes a priority

scheduler with preemptive-resume priority queuing discipline [56, pp. 205]. The idea

of dividing time into frames and assigning fixed priority lists for each frame was also

used in [21]. Lemma 1 of [21] proves that restricting the scheduling algorithm to

frame-based preemptive-resume priority lists does not result in any loss of optimality.

Frame k consists of Tk , |F(k)| consecutive time-slots, where F(k) is the set

containing the indices of the time slots belonging to frame k (see Fig. 3.2). Each

frame consists of exactly one idle period followed by exactly one busy period, both

are defined next.

Definition 1. An idle period is the time interval formed by the consecutive time slots

where all SUs have empty buffers. An idle period starts with the time slot t1 following

the completion of transmission of the last packet in the system, and ends with a time

slot t2 when one or more of the SUs’ buffer receives one a new packet to be transmitted

(see Fig. 3.2). In other words, t1 satisfies
∑

i∈N Qi(t1) = 0 and
∑

i∈N Qi(t1 − 1) 6= 0,

while t2 satisfies
∑t2−1

t=t1

∑

i∈N Qi(t) = 0 and
∑

i∈N Qi(t2) 6= 0.

Definition 2. Busy period is the time interval between two consecutive idle periods.
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Figure 3.2: Time is divided into frames. Frame k has Tk , |F(k)| slots, each is of
duration T seconds. Different frames can have different number of time slots.

The duration of the idle period I(k) and busy period B(k) of frame k are

random variables, thus Tk = I(k) + B(k) is random as well. Since frames do not

overlap, if t ∈ F(k1) then t /∈ F(k2) as long as k1 6= k2. Our goal in this chapter is

to choose, at the beginning of each frame k, the best priority list πππ(k) as well as the

best power allocation policy for each SU so that the system has an optimal average

delay performance satisfying the constraints in (3.6) or (3.8). An equivalent equation

for the average delay equation in (3.5) is

W̄i , lim
K→∞

E

[

∑K
k=0

(

∑

j∈Ai(k)
W

(j)
i

)]

E

[

∑K
k=0 |Ai(k)|

] (3.9)

where Ai(k) , ∪t∈F(k)A(t)
i is the set of all packets that arrive at SU i’s buffer during

frame k. We note that the long-term average delay W̄i in (3.9) depends on the chosen

priority lists as well as the power allocation policy, in all frames k ≥ 0.

3.3.2 Satisfying Delay Constraints

In order to guarantee a feasible solution satisfying the delay constraints in problems

(3.6) and (3.8), we set up a “virtual queue” associated with each delay constraint
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W̄i ≤ di. The virtual queue for SU i at frame k is given by

Yi(k + 1) ,



Yi(k) +
∑

j∈Ai(k)

(

W
(j)
i − ri(k)

)





+

(3.10)

where ri(k) ∈ [0, di] is an auxiliary random variable, that is to be optimized over and

Yi(0) , 0, ∀i. We define Y(k) , [Y1(k), · · · , YN(k)]T . Equation (3.10) is calculated at

the end of frame k− 1 and represents the amount of delay exceeding the delay bound

di for SU i up to the beginning of frame k. We first give the following definition, then

state a lemma that gives a sufficient condition on Yi(k) for the delay of SU i to satisfy

W̄i ≤ di.

Definition 3. A random sequence {Yi(k)}∞k=0 is mean rate stable if and only if

limK→∞ E [Yi(K)] /K = 0 holds.

Lemma 3. If {Yi(k)}∞k=0 is mean rate stable, then the time-average delay of SU i

satisfies W̄i ≤ di.

Proof. Removing the (·)+ sign from equation (3.10) yields

Yi(k + 1) ≥ Yi(k) +
∑

j∈Ai(k)

(

W
(j)
i − ri(k)

)

. (3.11)

Summing inequality (3.11) over k = 0, · · ·K − 1 and noting that Yi(0) = 0 gives

Yi(K) ≥
K−1
∑

k=0





∑

j∈Ai(k)

W
(j)
i



−
K−1
∑

k=0

(ri(k)|Ai(k)|). (3.12)

Taking the E [·] then dividing by E

[

∑K−1
k=0 |Ai(k)|

]

gives

E

[

∑K−1
k=0

(

∑

j∈Ai(k)
W

(j)
i

)]

E

[

∑K−1
k=0 |Ai(k)|

] ≤ E [Yi(K)]

K

K

E

[

∑K−1
k=0 |Ai(k)|

] +

∑K−1
k=0 E [|Ai(k)|ri(k)]
∑K−1

k=0 E [|Ai(k)|]
.

(3.13)

Replacing ri(k) by its upper bound di, taking the limit as K → ∞ then using the

mean rate stability definition and equation (3.9) completes the proof.
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Lemma 7 provides a condition on the virtual queue {Yi(k)}∞k=0 so that SU

i’s average delay constraint W̄i ≤ di in (3.6) and (3.8) is satisfied. That is, if the

proposed joint power allocation and scheduling policy results in a mean rate stable

{Yi(k)}∞k=0, then W̄i ≤ di. For both problems, the proposed policy depends on the

Lyapunov optimization where the goal is to choose the joint scheduling and power

allocation policy that minimizes the drift-plus-penalty. In Section 3.3.3 (Section 3.3.4)

we will show that if problem (3.6) (problem (3.8)) is feasible, then the proposed policy

guarantees mean rate stability for the queues {Yi(k)}∞k=0.

3.3.3 Algorithm for Instantaneous Interference Constraint

We now propose theDelay Optimal with Instantaneous Interference Constraint (DOIC )

policy that solves problem (3.6). This policy is executed at the beginning of each

frame k for finding P(t) as well as the optimum list πππ(k), given some prespecified

control parameter V . Given some fixed constant P define the random variable Ri(P )

as

Ri(P ) , log

(

1 + min

(

Iinst

g
(t)
i

, P

)

γ
(t)
i

)

, (3.14)

which is a special case of R
(t)
i given in (3.1), and define µi(P ) , E [Ri(P )] /L where

the expectation is taken over g
(t)
i and γ

(t)
i . The DOIC policy is as follows.

DOIC Policy (executed at the beginning of frame k):

1. The BS sorts the SUs according to the descending order of Yi(k)µi(Pmax). The

sorted list is denoted by πππ(k).

2. At the beginning of each slot t ∈ F(k) the BS schedules SU i∗ that has the

highest priority in the list πππ(k) among those having non-empty buffers.

3. SU i∗, in turn, transmits M
(t)
i∗ packets as dictated by equation (3.2) where
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P
(t)
i = 0 ∀i 6= i∗ while P

(t)
i∗ is calculated as

P
(t)
i∗ = min

(

Iinst

g
(t)
i∗

, Pmax

)

, (3.15)

4. At the end of frame k, for all i ∈ N the BS updates:

a) ri(k) = di if V < Yi(k)λi, and ri(k) = 0 otherwise, and then

b) Yi(k + 1) via equation (3.10).

Before we discuss the optimality of the DOIC in Theorem 3, we define the following

quantities. Let a , 1−ΠN
i=1 (1− λi) denote the probability of receiving a packet from

a user or more at a given time slot, while CY ,
∑N

i=1CYi
with CYi

,
√

E [A4]E [B4]+

d2i E [A2], where E [A2] and E [A4] are bounds on the second and fourth moments of

the total number of arrivals
∑

i |Ai(k)| during frame k, respectively, while E [B4] is

a bound on the fourth moment of the busy period B(k). The finiteness of these

moments can be shown to hold if the first four moments of the service time are finite.

In Appendix E we show that all the service time moments exist given any distribution

for P
(t)
i γ

(t)
i .

Theorem 3. If problem (3.6) is feasible, then the proposed DOIC policy results in a

time average of the SUs’ delays satisfying the following inequality

N
∑

i=1

W̄i ≤
aCY

V
+

N
∑

i=1

W̄ ∗
i (3.16)

where W̄ ∗
i is the optimum value of the delay when solving problem (3.6), while a and

CY are as given above. Moreover, the virtual queues {Yi(k)}∞k=0 are mean rate stable

∀i ∈ N .

Proof. See Appendix D.
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Theorem 3 says that the objective function of problem (3.6) is upper bounded

by the optimum value
∑

i W̄
∗
i plus some constant gap that vanishes as V →∞. Hav-

ing a vanishing gap means that the DOIC policy is asymptotically optimal. Moreover,

based on the mean rate stability of the queues {Yi(k)}∞k=0, the set of delay constraints

of problem (3.8) is satisfied. The drawback of setting V very large is that the time

needed for the algorithm to converge increases. This increase is linear in V [58]. That

is, if the number of frames required for the quantity
∑

i Yi(k)/(Nk) to be less than

ǫ (for some ǫ > 0) is O(K1), then increasing V to βV will require O(βK1) frames

for it to be less than ǫ, for any β > 1. We note that the complexity of the DOIC

policy is O(N) because calculating µi(Pmax) is of O(1), while the power is closed-form

in (3.15). We note that if problem (3.6) is not feasible, then this is because one of

two reasons; either one or more of the constraints is stringent, or otherwise because
∑N

i=1 λi/µi(Pmax) ≥ 1. If it is the former, then the DOIC policy will result in a point

that is as close as possible to the feasible region. On the other hand, if it is the latter,

then we could add an admission controller that limits the average number of packets

arriving at buffer i to λi(1− δ)/
(

∑N
i=1 λi/µi(Pmax)

)

for some δ > 0.

3.3.4 Algorithm for Average Interference Constraint

We now propose the Delay-Optimal-with-Average-Interference-Constraint (DOAC )

policy for problem (3.8). We first give the following useful definitions. Since the

scheduling scheme in frame k is a priority scheduling scheme with preemptive-resume

queuing discipline, then given the priority list πππ we can write the expected waiting

time of all SUs in terms of the average residual time [56, pp. 206] defined as TR
πj

,

∑j
l=1 λπl

E
[

s2πl

]

/2, where the expectation is taken over P
(t)
πl γ

(t)
πl . The waiting time of
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SU πj that is given the jth priority is [56, pp. 206]

Wπj

(

P, µπj
(P ), ρπj

(P ), ρ̄πj−1
, TR

πj

)

=
1

(

1− ρ̄πj−1

)

[

1

µπj
(P )

+
TR
πj

(

1− ρ̄πj−1
− ρπj

(P )
)

]

(3.17)

≤ 1
(

1− ρ̄max
πj−1

)





1

µπj
(P )

+
TR

(

1− ρ̄max
πj−1
− ρπj

(P )
)





, W up
πj

(

P, ρπj
(P ), ρ̄max

πj−1
, TR

)

, (3.18)

where we define ρi(P ) , λi/µi(P ), ρ̄πj−1
,
∑j−1

l=1 ρπl
(Pπl

), while TR is an upper

bound on TR
πj

and is given by TR ,
∑N

i=1 λi
(

L2 + L
(

1− pi(Pmin
i )

))

/p2i (P
min
i )/2 with

pi(P ) , 1 − Pr [Ri(P ) = 0] and Pmin
i is the minimum power satisfying ρi(P

min
i ) +

∑

j 6=i ρj(Pmax) < 1 (see Appendix E for the derivation of TR), while ρ̄max
i is some

upper bound on ρ̄i that will be defined later. We henceforth drop all the arguments

of W up
πj
(P, ρ̄max

πj−1
) except P and ρ̄max

πj−1
and all those of Wπj

(P ) except P .

To track the average interference at the PU up to the end of frame k we set up

the following virtual queue that is associated with the average interference constraint

in problem (3.8) and is calculated at the BS at the end of frame k.

X(k + 1) ,



X(k) +
N
∑

i=1

∑

t∈F(k)

P
(t)
i g

(t)
i − IavgTk





+

, (3.19)

where the term
∑N

i=1

∑

t∈F(k) P
(t)
i g

(t)
i represents the aggregate amount of interference

energy received by the PU due to the transmission of the SUs during frame k. Hence,

this virtual queue is a measure of how much the SUs have exceeded the interference

constraint above the level Iavg that the PU can tolerate. Lemma 4 provides a sufficient

condition for the interference constraint of problem (3.8) to be satisfied.

Lemma 4. If {X(k)}∞k=0 is mean rate stable, then the time-average interference re-

ceived by the PU satisfies I ≤ Iavg.
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Proof. The proof is similar to that of Lemma 7 and is omitted for brevity.

Lemma 4 says that if the power allocation and scheduling algorithm results

in mean rate stable {X(k)}∞k=0, then the interference constraint of problem (3.8) is

satisfied.

Before presenting the DOAC policy, we first discuss the idea behind it. The-

orem 4 will show that the optimum power allocation for SU i is

P
(t)
i = min

(

Iinst

g
(t)
i

, Pi(k)

)

, (3.20)

where Pi(k) ∈ [Pmin
i , Pmax] is a power parameter that is fixed within frame k (i.e.

∀t ∈ F(k)). Intuitively, a policy that solves problem (3.8) should allocate SU i’s power

and assign its priority such that SU i’s expected delay and the expected interference

to the PU is minimized. The DOAC policy is defined as the policy that selects the

power parameter vector P(k) , [P1(k), · · · , PN (k)]
T jointly with the priority list πππ(k)

that minimizes Ψ ,
∑N

j=1 ψπj
(Pπj

(k), ρ̄max
πj−1

) where

ψπj
(P, ρ̄max

πj−1
) , ψD

πj
(P, ρ̄max

πj−1
) + ψI

πj
(P ), with (3.21)

ψD
πj
(P, ρ̄max

πj−1
) , Yπj

(k)λπj
W up

πj
(P, ρ̄max

πj−1
), while (3.22)

ψI
πj
(P ) , X(k)ρπj

(P )P ḡπj
. (3.23)

The function ψD
πj
(P, ρ̄max

πj−1
) (and ψI

πj
(P )) represents the amount of delay (interference)

that SU πj is expected to experience (to cause to the PU) during frame k.

The brute search of P(k) and πππ(k) that minimizes Ψ is exponentially high. To

minimize Ψ in a computationally efficient way, we need the functions ψπj
(Pπj

(k), ρ̄max
πj−1

)

to become decoupled for all j ∈ N . That is, we want ψπj
(Pπj

(k), ρ̄max
πj−1

) not to depend

on Pπl
(k) as long as l 6= j. Hence, we set the function ρ̄max

πj−1
to some function that

does not depend on the optimization power variables Pπl
(k) for all l ≤ j − 1 but
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otherwise on some other fixed parameters. We need to choose these parameters such

that the bound

ρ̄max
πj−1
≥ ρ̄πj−1

,

j−1
∑

l=1

ρπl
(Pπl

) (3.24)

is satisfied. Thus, these functions, are given by

ρ̄max
πj−1

,

j−1
∑

l=1

ρπl

(

P ρ̄max

πl

)

, (3.25)

where

P ρ̄max

πl
, argmin

P
ψπl

(

P, ρ̄max
πl−1

)

. (3.26)

With ρ̄max
πj−1

given by (3.25), ψπj
(Pπj

(k), ρ̄max
πj−1

) is a function in Pπj
(k) only. Before we

show that the choice of (3.25) and (3.26) guarantees that (3.24) is satisfied, we note

that (3.25) dictates that in order to find ρ̄max
πj−1

we need to find P ρ̄max

πl
for all l < j − 1.

Hence, we find P ρ̄max

πj
recursively starting from j = 1 at which ρ̄max

π0
= 0 by definition.

We will show that ρ̄max
πj

is an upper bound on ρ̄πj
in the following lemma.

Lemma 5. Given some priority list πππ(k), for any user πj ∈ N the function ρ̄πj
evalu-

ated at the power vector Pρ̄ which is the power vector that minimizes
∑N

j=1 ψπj
(Pπj

, ρ̄πj−1
),

is upper bounded by ρ̄max
πj

. Namely,

ρ̄πj

∣

∣

Pρ̄ ≤ ρ̄max
πj

∣

∣

∣

Pρ̄max
(3.27)

where

Pρ̄ , argmin
P

N
∑

j=1

ψπj
(Pπj

, ρ̄πj−1
) (3.28)

while

Pρ̄max

, argmin
P

N
∑

j=1

ψπj
(Pπj

, ρ̄max
πj−1

) (3.29)

Proof. We first argue that P ρ̄
πj
≥ P ρ̄max

πj
for any j ∈ N . Then we show that ρ̄πj

is

decreasing in Pπl
for all l ≤ j which completes the proof.
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From (3.29), we have

P ρ̄max

πj
= argmin

Pπj
≤Pmax

N
∑

l=1

ψπl

(

Pπl
, ρ̄max

πl−1

)

. (3.30)

But since ρ̄max
πj

is not a function in Pπl
except if l = j, then we can remove the

summation in (3.30) and set l = j yielding

P ρ̄max

πj
= argmin

Pπj
≤Pmax

[

ψI
πj

(

Pπj

)

+ ψD
πj

(

Pπj
, ρ̄max

πj−1

)]

(3.31)

Moreover, from (3.28), we have

P ρ̄
πj

= argmin
Pπj

≤Pmax

N
∑

l=1

ψπl

(

Pπl
, ρ̄πl−1

)

(3.32)

= argmin
Pπj

≤Pmax

[

ψI
πj

(

Pπj

)

+
N
∑

l=j

ψD
πl

(

Pπl
, ρ̄πl−1

)

]

(3.33)

If ψI
πj

(

Pπj

)

is non increasing in Pπj
over its entire domain, then the optimum solution

for (3.33) is P ρ̄
πj

= Pmax, which is the same as the optimum solution of P ρ̄max

πj
from

(3.31). Hence, we continue the proof assuming that there exists a region in the domain

of Pπj
where ψI

πj

(

Pπj

)

is increasing.

Since W up
πj
(Pπj

, ρ̄πj−1
) is decreasing in Pπj

, ψD
πj

(

Pπj
, ρ̄πj−1

)

is also decreasing

in Pπj
. Hence, the summation in (3.33) is decreasing in Pπj

. At the same time,

ψI
πj

(

Pπj

)

is increasing in Pπj
. Thus, there are two forces in the objective of (3.33)

that determine the optimum value of P ρ̄
πj
; the first one is represented by ψI

πj

(

Pπj

)

and is in favor of decreasing it, while the second is the summation that is in favor of

increasing it. We continue the proof by induction on j. Setting j = 1 in (3.33), we

can easily see that if we neglect all the terms in the summation except the term when

l = 1, the value of P ρ̄
π1

decreases. Namely,

P ρ̄
π1
≥ argmin

Pπ1≤Pmax

[

ψI
π1
(Pπ1) + ψD

π1
(Pπ1 , ρ̄π0)

]

(3.34)

= P ρ̄max

π1
, (3.35)
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where the last equation follows after setting j = 1 in (3.31). From (3.14) we can see

that ρ̄π1 is decreasing in Pπ1 . With this in mind, and after using the inequality in

(3.35) we get ρ̄π1 ≤ ρ̄max
π1

. Setting j = 2 in (3.33) and neglecting all terms in the

summation except at j = 2 yields

P ρ̄
π2
≥ argmin

Pπ2≤Pmax

[

ψI
π2
(Pπ2) + ψD

π2
(Pπ2 , ρ̄π1)

]

(3.36)

≥ argmin
Pπ2≤Pmax

[

ψI
π2
(Pπ2) + ψD

π2

(

Pπ2 , ρ̄
max
π1

)]

(3.37)

= P ρ̄max

π2
. (3.38)

Thus we get ρ̄π2 ≤ ρ̄max
π2

. Repeating for a general j ≤ N and assuming that ρ̄πj−1
≤

ρ̄max
πj−1

, we get P ρ̄
π2
≥ P ρ̄max

π2
yielding ρ̄πj

≤ ρ̄max
πj

which completes the proof.

Lemma 5 states that we can replace ρ̄πj
by ρ̄max

πj
to upper bound (3.17) with

(3.18). ρ̄max
πj

has an advantage over ρ̄πj
(and hence ψπj

(

Pπj
, ρ̄max

πj−1

)

over ψπj

(

Pπj
, ρ̄πj−1

)

)

which is that it is not a function in Pπl
for l 6= j. This decouples the power search

optimization problem to N one-dimensional searches.

After reducing the search complexity of the power vector, we reduce the search

complexity of the priority list from N ! to 2N . To do this, we use the dynamic pro-

gramming illustrated in Algorithm 2 that solves minπππ(k),P(k)Ψ. Its search complexity

is of O(MN2N) where M is the number of iterations in a one-dimensional search,

while O(1) is the complexity of calculating Ψ for a given priority list πππ(k) and a given

power vector P(k). Compared to the complexity of O(MN · N !) which is that of

the N -dimensional power search along with the brute-force of all N ! permutations of

priority list πππ(k), this is a large complexity reduction. However, the O(MN2N) is

still high if N was large. Finding an optimal algorithm with a lower complexity is

extremely difficult since the scheduling and power control problem are coupled. In

other words, in order to find the optimum scheduler we need to know the optimum
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Algorithm 2 DOAC-Pow-Alloc: Optimization-problem-solution algorithm called by
the DOAC policy at the beginning of frame k to solve for P∗(k) as well as π∗(k).

1: Define S as the set of all sets formed of all subsets of N and define the auxiliary
functions

Ψ̃(·, ·) : N × S → R
+

ρ̃(·) : S → [0, 1],

S̃(X ) : S → N |X |,

P̃(X ) : S → [0, Pmax]
|X |,

P̄ (·, ·) : S ×N → [0, Pmax].

2: Initialize Ψ̃(0, ·) = 0, ρ̃(φ) = 0, S̃(φ) = [ ] and P̃(φ) = [ ], where φ is the empty
set.

3: for i = 1, · · · , N do

4: In stage i, the first i priorities have been assigned to i users. The corresponding
priority list is denoted [π1, · · · , πi]. In stage i we have

(

N
i

)

states each corre-
sponds to a set j formed from all possible combinations of i elements chosen
from the set N . We calculate Ψ̃(i, j) associated with each state j in terms of
Ψ̃(i− 1, ·) obtained in stage i− 1 as follows.

5: for j ∈ all possible i-element sets do
6: At state j , {π1, · · · , πi}, we have i transitions, each connects it to state j′

in stage i − 1, where j′ , j\l with l ∈ j. Find the power associated with
each transition l ∈ j denoted

P̄ (j, l) , argmin
P
ψl(P, ρ̃(j\l)) (3.39)

7: Set

l∗ = argmin
l∈j

Ψ̃ (i− 1, j\l) + ψl

(

P̄ (j, l), ρ̃(j\l)
)

,

Ψ̃(i, j) = Ψ̃(i− 1, j\l∗) + ψl∗
(

P̄ (j, l∗), ρ̃(j\l∗)
)

,

ρ̃(j) = ρ̃ (j\l∗) + ρ
(

P̄ (j, l∗)
)

,

S̃(j) =
[

S̃ (j\l∗) , l∗
]T

,

P̃(j) =
[

P̃ (j\l∗) , P̄ (j, l∗)
]T

.

8: end for

9: end for

10: Set π∗(k) = S̃ (N ) and P∗(k) = P̃ (N ).
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power vector and vice versa. In Section 3.3.5 we propose a sub-optimal policy with a

very low complexity and little degradation in the delay performance. We now present

the DOAC policy that the BS executes at the beginning of frame k.

DOAC Policy (executed at the beginning of frame k):

1. The BS executes DOAC-Pow-Alloc in Algorithm 2 to find the optimum power

parameter vector P∗(k) , [P ∗
1 (k), · · · , P ∗

N (k)]
T as well as the optimum priority

list π∗(k) , [π∗
1(k), · · · , π∗

N(k)]
T that will be used during frame k.

2. The BS broadcasts the vector P∗(k) to the SUs.

3. At the beginning of each slot t ∈ F(k), the BS schedules SU i∗ that has the

highest priority in the list π∗(k) among those having non-empty buffers.

4. SU i∗(t), in turn, transmitsM
(t)

i∗(t)
bits as dictated by equation (3.2) where P

(t)
i =

0 for all i 6= i∗(t) while P
(t)

i∗(t)
is given by equation (3.20).

5. At the end of frame k, for all i ∈ N the BS updates:

a) ri(k) = di if V < Yi(k)λi, and ri(k) = 0 otherwise,

b) X(k + 1) via equation (3.19),

c) Yi(k + 1) via equation (3.10), ∀i ∈ N .

Define CX ,
(

P 2
maxg

2
max + I2avg

)

((1− a)(2 + a) + E [B2] + 2E [B] (a− a2)) /a2 and C ,

CY +CX where E [B] is a bound on the mean of B(k). It can be shown that E [B] and

E [B2] are finite if the first two moments of the service time are finite (see Appendix

E for a proof of the finiteness of the service time moments). Thus, CX is finite. Next,

we state Theorem 4 that discusses the optimality of the DOAC policy.
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Theorem 4. When the BS executes the DOAC policy, the time average of the SUs’

delays satisfy the following inequality

N
∑

i=1

W̄i ≤
aC

V
+

N
∑

i=1

W̄ ∗
i (3.40)

where W̄ ∗
i is the optimum value of the delay when solving problem (3.8). Moreover,

the virtual queues {X(k)}∞k=0 and {Yi(k)}∞k=0 are mean rate stable ∀i ∈ N .

Proof. See Appendix F.

Theorem 4 says that the objective function of problem (3.8) is upper bounded

by the optimum value
∑

i W̄
∗
i plus some constant gap that vanishes as V →∞. Hav-

ing a vanishing gap means that the DOAC policy is asymptotically optimal. More-

over, based on the mean rate stability of {X(k)}∞k=0 and {Yi(k)}∞k=0, the interference

and delay constraints of problem (3.8) are satisfied.

3.3.5 Near-Optimal Low Complexity Algorithm for Average Interference Problem

As seen in the DOAC policy, the complexity of finding the optimal power vector and

priority list can be high when the number of SUs N is large. This is mainly due

to the large complexity of Algorithm 2. In this subsection we propose a suboptimal

solution with an extreme reduction in complexity and with little degradation in the

performance. This solution solves for the power allocation and scheduling algorithm,

thus it replaces the Algorithm 2.

The challenges in Algorithm 2 are three-fold. First finding the priority list

(scheduling problem) requires the search over N ! possibilities. Second, even with

a genie-aided knowledge of the optimum list, we still have to carry-out N one-

dimensional searches to find P∗(k) (power control problem). Third, the scheduling

and power control problems are coupled. We tackle the latter two challenges first, by
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finding a low-complexity power allocation policy that is independent of the scheduling

algorithm. Then we use the cµ rule [59] to find the priority list. The cµ rule is a

policy that gives the priority list that minimizes the quantity
∑N

i=1 Yi(k)λiWi(Pi(k)),

given some power allocation vector P(k).

Define Pmin to be the minimum power that satisfies
∑N

j=1 ρπj
(Pmin) < 1. In-

tuitively, if, for some πj ∈ N , X(k) ≫ Yπj
(k) then P ∗

πj
(k) is expected to be close

to Pmin since the interference term ψI
πj
(P ) dominates over ψD

πj
(P ) in the πjth term

of the summation in equation (3.21). On the other hand, if X(k) ≪ Yπj
(k) then

P ∗
πj
(k) ≈ Pmax. We propose the following power allocation policy for SU πj ∈ N

P̂πj
(k) =











Pmin if X(k) > Yπj
(k)

Pmax otherwise.
(3.41)

We can see that the power allocation policy in (3.41) does not depend on the position

of SU i in the priority list as opposed to Algorithm 2 which requires the knowledge

of SU πj’s priority position. In other words, P̂πj
(k) is a function of πj but it is

not a function of j. Before proposing the scheduling policy, we note the following

two properties. First, with a genie-aided knowledge of the power P∗(k), and when

X(k) = 0, the solution to the minimization problem minπππ Ψ is given by the cµ rule [59]

that sorts the SUs according to the descending order of Yπj
(k)µπj

(P̂πj
(k)). Second,

with a genie-aided knowledge of the power P∗(k), and when Yπj
(k) = 0 ∀πj ∈ N , any

sorting order would not affect the objective function Ψ.

The two-step scheduling and power allocation algorithm that we propose is 1)

allocate the power vector P(k) according to (3.41), then 2) assign priorities to the

SUs in a descending order of Yπj
(k)µπj

(P̂πj
(k)) (the cµ rule). The complexity of this

algorithm is that of sorting N numbers, namely O(N log(N)). This is a very low

complexity if compared to that of the DOAC policy of O(MN · N !). In Section 4.6
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we will demonstrate that this huge reduction of complexity causes little degradation

to the delay performance.

3.4 Achievable Rate Region of the DOAC

We have shown that the DOAC policy is delay optimal. In this section we show how

much of the capacity region this policy achieves. We also present different scenarios

where the DOAC policy achieves the whole capacity region, hence becoming both

throughput optimal and delay optimal at the same time.

Theorem 1 in [58, pp. 52] explicitly states the capacity region in the case of

an instantaneous power constraint. In general this capacity region is strictly convex.

A simple example of this capacity region is shown in Fig. 4.5 for a 2-user case with

channel gains γ
(t)
i ∈ {0, 1} while g(t)i = 0, for all i = 1, 2. The next lemma presents

the rate region that the DOAC achieves.

Lemma 6. Under the DOAC policy, the queues of all users will be stable if and only

if the arrival rate vector satisfies
∑

i∈N ρi(Pmax) < 1 with strict inequality.

Proof. If
∑

i∈N ρi(Pmax) ≥ 1, then for any π ∈ P we will have W̄πN
=∞ from (3.5).

Thus, the queue of at least one of the users will build up. Moreover, if the inequality
∑

i∈N ρi(Pmax) < 1 holds, we will have W̄i <∞ for all i ∈ N . Little’s law completes

the proof.

The achievable region provided in Lemma 8 is shown in Fig. 4.5 for the

2-user case. This is a straight line intersecting the two axes at (µ1(Pmax), 0) and

(0, µ2(Pmax)), respectively. Although, in general, this rate region lies strictly inside

the capacity region, there are cases where the two regions coincide. Before presenting

two of these examples, we note that in these cases the DOAC is delay optimal and

throughput optimal at the same time.
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Figure 3.3: Capacity region for a 2-user case.

Example 1 (Unknown channel gain): If all SUs are not able to estimate the gain

of their direct channel to their BS, then each SU would be transmitting with a fixed

rate that corresponds to the minimum non-zero channel gain γmin
i , min

γ
(t)
i 6=0

γ
(t)
i .

Hence the capacity region shrinks [60, pp. 115] to be the region bounded by the hyper

plane intersecting the ith axis at the point [0, · · · , µmin
i , 0, · · · ]T where

µmin
i ,

log
(

1 + Pmaxγ
min
i

)

(

1−Pr
[

γ
(t)
i = 0

])

L
, (3.42)

thus coinciding with the DOAC achievable rate region.

Example 2 (Non-fading channel): When we have a non-fading channel, each

SU transmits with a fixed rate equals log(1 + Pmax) bits per slot. Hence the capac-

ity region becomes the region in the first quadrant that is bounded by the hyper

plane intersecting the each axis at log(1 + Pmax)/L, thus coinciding with the DOAC

achievable rate region.

3.5 Performance Under Channel Estimation Errors

In this section, we present the solution of the system under channel estimation errors.

We assume that SU i estimates γ
(t)
i and g

(t)
i with α% error relative to its actual value,
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where α > 0 represents the percentage of maximum deviation from the true value.

This is a good model when the source of channel errors is mainly due to quantization.

The observed values satisfy

(

1− α

2

)

γ
(t)
i ≤ γerri (t) ≤

(

1 +
α

2

)

γ
(t)
i , (3.43)

(

1− α

2

)

g
(t)
i ≤ gerri (t) ≤

(

1 +
α

2

)

g
(t)
i , (3.44)

From equation (3.1), in order to prevent outage, we need to consider the worst case

scenario for γ
(t)
i . Therefore, we estimate γ

(t)
i to be

γ
(t)
i =

γerri (t)

1 + α
2

. (3.45)

Although this is a worst case estimation of γ
(t)
i , we will show through simulations

that the reduction in performance is not high even with a relatively high value of α.

Similarly, instantaneous interference constraint in equation (3.6) is satisfied using a

worst-case estimate of g
(t)
i as

g
(t)
i =

gerri (t)

1− α
2

. (3.46)

With the estimated CSI values given by equations (3.45) and (3.46), the two

problems of instantaneous and average interference constraint, namely problems (3.6)

and (3.8), become functions of the observed CSI values as well as the parameter α.

Hence, the two policies DOIC and DOAC can be used to to solve problems (3.6) and

(3.8), respectively, under estimation errors. Section 4.6 simulates this system and

shows the performance under this error model.

3.6 Simulation Results

We simulated a system of N = 2 SUs. Table 4.1 lists all parameter values for both

scenarios; the instantaneous as well as the average interference constraint. We expect

SU 1 to have higher average delay in both scenarios. This is because it has a lower
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Table 3.1: Simulation Parameter Values

Parameter Value Parameter Value
L 1000 bits per packet Iinst 50

Rmax 82 bits per slot Pmax 100
λ1 = λ2 = λ λ ∈ {1, · · · 10} × 10−3 packets/slot N 2 SUs

fγi(γ) exp (−γ/γ̄i)/γ̄i α 0.1
fgi(g) exp (−g/gi)/gi ǫ 0.1
(γ̄1, γ̄2) (2, 4) V 10
(g1, g2) (0.4, 0.2) d2 40T

average channel gain and higher interference channel gain compared to those of SU 2.

However, the DOIC policy can guarantee a bound on this delay using the constraint

W̄1 ≤ d1, so that the QoS requirement of SU 1 is satisfied. In our simulations we set

d1 = 30T unless otherwise specified.

3.6.1 Instantaneous Interference

In Figures 3.4 and 3.5 we consider problem (3.6) and assumed perfect knowledge

of the direct and interference channel state information (CSI), namely g
(t)
i and γ

(t)
i .

Fig. 3.4 plots the average per-SU delay W̄i, from equation (3.5), for two cases; the

first being the constrained optimization problem where d1 = 30T while setting d2 to

any arbitrarily high value (we set d2 = 40T ), while the second is the unconstrained

optimization problem where both d1 and d2 are set arbitrarily high (we set d1 = d2 =

40T ). We call it the unconstrained problem because the average delay of both SUs

is strictly below 40T , thus both delay constraints are inactive. The X-axis is the

probability of a packet arrival per time slot λ, where λ , λ1 = λ2. From Fig. 3.4 we

can see a gap, in the unconstrained problem, between the average delay of SU 1 and

that of SU 2. Hence, SU 1 suffers from high delay. While for the constrained problem,

the DOIC policy has forced W̄1 to be smaller than 30T for all λ values. This comes

at the cost of SU 2’s delay. We conclude that the delay constraints in problem (3.6)

can force the delay vector of the SUs to take any value as long as it is feasible.

70



0 2 4 6 8 10
15

20

25

30

35

40

λ1 = λ2 = λ× 10−3 Packets/slot

P
er
-S
U

A
v
er
a
g
e
D
el
ay

W̄
i
(T

im
e
sl
o
ts
)

SU 1’s Delay - Unconstrained Prob
SU 1’s Delay - Constrained Prob
SU 1’s Delay - Genie-Aided-CSMA
SU 2’s Delay - Unconstrained Prob
SU 2’s Delay - Constrained Prob
SU 2’s Delay - Genie-Aided-CSMA

Figure 3.4: Average per-user delay for both the constrained and unconstrained opti-
mization problems

3.6.2 Average Interference

Problem (3.8) differs than problem (3.6) by an additional average interference con-

straint. This comes at the cost of the sum of average delays of SUs. We simulated the

system with d1 = 40T and compared it to the performance of the DOIC policy with

d1 = 40T as well. The sum of average delays of the two SUs is plotted in Fig. 3.6 for

both algorithms. The increase in the average delay for the DOAC policy is due to

adding an additional average interference constraint. However, when comparing the

DOAC policy to a Carrier-Sense-Multiple-Access (CSMA) scheduling policy we find
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Figure 3.5: Sum of cost functions for the perfect CSI estimates for the DOIC policy
to solve problem (3.6).

it to have a lower average delay performance. This is because the CSMA allocates

the channels randomly uniformly among users and does not prioritize the users based

on their delay requirement di. On the other hand, the DOAC allocates the chan-

nels based on the objective of minimizing the sum of average delays. We note that

the CSMA policy plotted in Fig. 3.6 uses a “genie-aided” power allocation policy

obtained from Algorithm 2. Thus, even when the two algorithms, the CSMA policy

and the DOAC policy, have the same power allocation policy, the DOAC scheduling

policy has an improved delay performance over the CSMA policy.
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Figure 3.6: Comparing the CSMA policy with the DOIC policy and the DOAC
policy. The power allocation scheme used for the DOAC policy is the one used for
the CSMA, hence the term genie-aided. However, the genie-aided CSMA policy has
a worse delay performance compared to the DOAC policy.

3.6.3 Low-Complexity Algorithm Performance

When implementing the suboptimal algorithm proposed in Section 3.3.5 we find that

the sum of the average delay across SUs is very close to its optimal value found via

Algorithm 2. This is demonstrated in Fig. 3.7 where the error doesn’t exceed 0.37%

at λ = 0.01

3.6.4 CSI Estimation Errors

For the imperfect CSI case, we assumed that each SU has an error of α = 10% in

estimating each of g
(t)
i and γ

(t)
i and simulated the system with d1 = 32T . In order
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Figure 3.7: The low-complexity algorithm proposed in Section 3.3.5 has a close-to-
optimal average delay performance with a maximum error of 0.37%.

to avoid outage we substitute by equation (3.45) in (3.1). To guarantee protection

to the PU from interference, we substitute equation (3.46) in (3.20) for the DOAC

policy, and in (3.15) for the DOIC policy. From Fig. 3.8 we see that the performance

difference between the perfect and the imperfect CSI problem, for the DOAC policy,

ranges between 2.4% at λ = 10−3, and 9.5% at λ = 10−2. We note that this perfor-

mance difference represents an upper bound on the actual difference since the 10% is

an upper bound on the actual estimation error.
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Chapter 4

HARD-DEADLINE FRAMEWORK

In the previous chapters, it was assumed that all packets that arrive to the system can

be transmitted at any point in time as long as the average delay is bounded. While this

assumption might result in an acceptable performance for online streaming of pre-

recorded audio/video files, its performance in online streaming of on-air broadcast

data such as video conference calls is questionable. This is because, unlike pre-

recorded data of a finite time length, video calls have an endless stream of data that

needs to arrive in a timely manner. Moreover, not all packets have to be delivered to

the end user to have an acceptable QoS for a video call.

Hence, in this chapter another framework for modeling real-time traffic over

wireless networks is studied, namely, the “hard-deadline” framework. This model

was first introduced in [13] where the authors assume the existence of a deadline

associated with each packet that arrives to the system. The packet is considered

useful as long as it is transmitted before this deadline and useless, i.e. dropped out of

the system and doesn’t count towards the user’s throughput, otherwise. The user is

considered a satisfied user if, on average, the percentage of missed packets are below

a prespecified threshold. The value of this threshold depends on several factors as

the type of application these packets belongs to, the amount of money the user pays

and others.

In [13] the authors consider binary erasure channels and present a sufficient

and necessary condition to determine if a given problem is feasible. The work is

extended in three different directions. The first direction studies the problem un-

der delayed feedback [29]. The second considers general channel fading models [34].

While the third studies multicast video packets that have strict deadlines and uti-
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lize network coding to improve the overall network performance [35, 36]. Unlike the

time-framed assumption in the previous works, the authors of [11] assume that ar-

rivals and deadlines do not have to occur at the edges of a time frame. They present a

scheduling algorithm under the on-off channel fading model and present its achievable

region under general arrivals and deadline patterns but with a fixed power transmis-

sion. In [37] the authors study the scheduling problem in the presence of real-time

and non-real-time data. Unlike real-time data, non-real-time data do not have strict

deadlines but have an implicit stability constraint on the queues. Using the dual func-

tion approach, the problem was decomposed into an online algorithm that guarantees

network stability and real-time users’ satisfaction.

Power allocation has not been considered for RT users in the literature, to the

best of our knowledge. In this chapter, we study resource allocation in the presence

of simultaneous RT and NRT users in a downlink cellular system. We formulate

the problem as a joint scheduling-and-power-allocation problem to maximize the sum

throughput of the NRT users subject to an average power constraint on the base

station (BS), as well as a delivery ratio requirement constraint for each RT user. The

delivery ratio constraint requires a minimum ratio of packets to be transmitted by a

hard deadline, for each RT user. Perhaps the closest to our work are references [37]

and [27]. The former does not consider power allocation, while the latter assumes

that only one user can be scheduled per time slot. The contributions in this chapter

are as follows:

• We present two scheduling-and-power-allocation algorithms. The first is for

the on-off channel fading model while the second is for the continuous channel

fading model.

• We show that both algorithms are optimal. That is, both satisfy the aver-
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age power constraint, the delivery ratio requirement constraint, in addition to

achieving the capacity region. However, the complexity of the first is polynomial

in the number of users, while the second is shown to have an average complexity

that is close-to-linear.

• We present closed-form expressions for the power allocation policy used by both

algorithms. It is shown that the power allocation expressions for the RT and

NRT users have a different structure.

• Through simulations, we show the complexity and throughput performances of

the proposed algorithms over baseline ones.

• Further, we present a third suboptimal algorithm with linear complexity and

compare its throughput performance to the optimal algorithm using simulations.

To provide an outline of how the problem is addressed in this chapter, a

summary is provided here. In Section 4.1 we present the system model and the

underlying assumptions. The problem is formulated in Section 4.2. For the on-off

channel model, the proposed power-allocation and scheduling algorithm as well as its

optimality is presented in Section 4.3. In Section 4.4 we present the optimal algorithm

for the continuous channel model as well as a low-complexity suboptimal algorithm.

The capacity region of the problem is presented in Section 4.5. Simulation results and

comparisons with baseline approaches is presented in Section 4.6. Finally, the chapter

is concluded in Section 5. I note that the main problem addressed in this chapter

could apply for cognitive radio systems as well as regular systems. We present the

problem under the latter kind of systems, in this chapter, for ease of presentation.
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4.1 System Model

We assume a time slotted downlink system with slot duration T seconds. The system

has a single base station (BS) having access to a single frequency channel. There

are N users in the system indexed by the set N , {1, · · · , N}. The set of users

is divided into the RT users NR , {1, · · · , NR}, and NRT users NNR , {NR +

1, · · · , N} with NR and NNR , N −NR denoting the number of RT and NRT users,

respectively. Following [13], we model the channel between the BS and the ith user

as a fading channel with power gain γi(k) = 1 if it is in a “good” state during the

kth slot and γi(k) = 0 otherwise. Channel gains are fixed over the whole slot and

change independently in subsequent slots and are independent across users. Hence,

the channel gain follows a Bernoulli process. Channels with a more general fading

model will be discussed in Section 4.4. Moreover, the channel state information for

all users are known to the BS at the beginning of the each slot.

4.1.1 Packet Arrival Model

Let ai(k) ∈ {0, 1} be the indicator of a packet arrival for user i ∈ N at the beginning

of the kth slot. {ai(k)} is assumed to be a Bernoulli process with rate λi packets per

slot and assumed to be independent across all users in the system. Packets arriving

at the BS for the RT users are called real-time packets. RT packets have a strict

transmission deadline. If an RT packet is not transmitted by this deadline, this

packet is dropped out of the system and does not contribute towards the throughput

of the user. However, RT user i is satisfied if it receives, on average, more than qi%

of its total number of packets. We refer to this constraint as the QoS constraint for

user i. Here we assume that real-time packets arriving at the beginning of the kth

slot have their deadline at the end of this slot.

On the other hand, packets arriving to the BS for the NRT users can be
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Figure 4.1: In the kth time slot, the BS chooses Nk users to be scheduled. All time
slots have a fixed duration of T seconds.

transmitted at any point in time. Thus, packets for NRT user i are stored, at the BS,

at user i’s (infinite-sized [56]) buffer and served on a first-come-first-serve basis. Since

the arrival rate λi, for NRT user i, might be higher than what the system can support,

we define ri(k) as an admission controller for user i at slot k. At the beginning of

slot k, the BS sets ri(k) to 1 if the BS decides to admit user i’s arrived packet to the

buffer, and to 0 otherwise. The time-average number of packets admitted to user i’s

buffer is

Ai , lim sup
K→∞

1

K

K
∑

k=1

E [ri(k)] , i ∈ NNR. (4.1)

And the queue associated with NRT user i is given by

Qi(k + 1) = (Qi(k) + Lri(k)− µi (k)Ri(k))
+ , i ∈ NNR, (4.2)

where ri(k) is the admission control decision variable for NRT user i at the beginning

of slot k. We note that no admission controller is defined for the RT users since their

buffers cannot build up due to the presence of a deadline.

4.1.2 Service Model

Following [34] we assume that more than one user can be scheduled in one time slot.

However, due to the existence of a single frequency channel in the system, the BS

transmits to the scheduled users sequentially as shown in Fig. 4.1. At the beginning

of the kth slot, the BS selects a set of RT users denoted by SR (k) ⊆ NR and a set of
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NRT users SNR (k) ⊆ NNR to be scheduled during slot k. Thus a total of Nk , |Nk|

users are scheduled at slot k where Nk , SR (k) ∪ SNR (k) (Fig. 4.1). Moreover,

the BS assigns an amount of power Pi (k) for every user i ∈ Nk. This dictates the

transmission rate for each user according to the channel capacity given by

Ri(k) = log (1 + Pi (k) γi(k)) . (4.3)

Finally, the BS determines the duration of time, out of the T seconds, that will be

allocated for each scheduled user. Define the variable µi (k) to represent the duration

of time, in seconds, assigned for user i ∈ N during the kth slot (Fig. 4.1). Hence,

µi (k) ∈ [0, T ] for all i ∈ N . The BS decides the value of this variable for each user

i ∈ N at the beginning of slot k. Unlike NRT users which do not have to transmit

their packets at a particular time slot, RT users have a strict deadline. Hence, if an

RT user was scheduled at slot k, then it should be allocated the channel for a duration

of time that allows the transmission of the whole packet. Thus we have

µi (k) =











L
Ri(k)

if i ∈ SR (k)

0 if i ∈ NR\SR (k)
, (4.4)

where L is the number of bits per packet, that is assumed to be fixed for all packets in

the system. Equation (4.4) means that, depending on the transmission power, if RT

user i is scheduled at slot k, then it is assigned as much time as required to transmit

its L bits. Hence, unlike for the NRT users where µi (k) ∈ [0, T ], µi (k) is further

restricted to the set {0, L/Ri(k)} for the RT users. For ease of presentation, we

denote Q(k) , [Q1(k), · · · , QNNR
(k)]T . The BS’s goal is solve this power allocation

and scheduling problem along with the admission control decisions to maximize the

NRT users’ sum rate under the system constraints. In the next section we present

this problem formally.

81



4.2 Problem Formulation

We are interested in finding the scheduling and power allocation algorithm that maxi-

mizes the sum-rate of all NRT users subject to the system constraints. In this chapter

we restrict our search to slot-based algorithms which, by definition, takes the decisions

only at the beginning of the slots.

Now define the time-average rate, in packets per slot, of user i to be

Ri , lim inf
K→∞

1

LTK

K
∑

k=1

µi (k)Ri(k), i ∈ NNR (4.5)

while the time-average power consumed by the BS is

P̄ , lim sup
K→∞

1

K

K
∑

k=1

P (k) (4.6)

where P (k) is the power consumed by the BS during the kth slot which is given by

P (k) ,
1

T

∑

i∈N

Pi (k)µi (k) . (4.7)

Thus the problem we are interested to solve in this work is to find the scheduling,

power allocation and packet admission decisions at the beginning of each slot, that
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solve the following problem

maximize
∑

i∈NNR

Ri, (4.8)

subject to ri(k) ≤ ai(k) ∀i ∈ NNR, (C1)

lim sup
k→∞

E [Qi(k)] <∞ ∀i ∈ NNR, (C2)

Ri ≥ λiqi ∀i ∈ NR, (C3)

P̄ ≤ Pavg, (C4)

0 ≤ Pi (k) ≤ Pmax ∀i ∈ N , (C5)

∑

i∈N

µi (k) = T ∀k ≥ 1, (C6)

0 ≤ µi (k) ≤ T ∀i ∈ N , (C7)

variables {µ (k) ,P (k) , r (k)}∞k=1,

where µ (k) , [µi(k)]i∈N , P (k) , [Pi(k)]i∈N and r (k) , [Pi(k)]i∈NNR
. Constraint

(C1) says that no packets should be admitted to the ith buffer if no packets arrived

for user i. Constraint (C2) indicates that the queues of the NRT users are stable

when the system reaches steady state. Constraint (C3) indicates that the resources

allocated to a RT user i need to be such that the fraction of packets transmitted

by the deadline are greater than the required QoS qi. Constraint (C4) is an average

power constraint on the BS transmission power. Finally constraint (C6) guarantees

that the sum of durations of transmission of all scheduled users doesn’t exceed the

slot duration T . In this chapter, we assume that the NRT user with the longest

queue has enough packets, at each slot, to fit the whole slot duration which is a valid

assumption in the heavy traffic regime. It will be clear that generalizations to the

non-heavy traffic regime is possible by allowing multiple NRT users to be scheduled

but this is omitted for brevity.
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4.3 Proposed algorithm

We use the Lyapunov optimization technique [21] to find and optimal algorithm that

solves (4.8). We do this on four steps: i) We define, in Section (4.3.1) a “virtual queue”

associated with each average constraint in problem (4.8). This helps in decoupling the

problem across time slots. ii) In Section 4.3.2, we define a Lyapunov function, its drift

and a, per-slot, reward function. The latter is proportional to the objective of (4.8).

iii) Based on the virtual queues and the Lyapunov function, we form an optimization

problem, for each slot k, that minimizes the drift-minus-reward expression the solution

of which is the proposed power allocation and scheduling algorithm. In Section 4.3.3,

we propose an efficient way to solve this problem optimally. iv) Finally, we show that

this minimization guarantees reaching an optimal solution for (4.8), in Section 4.3.5.

4.3.1 Problem Decoupling Across Time Slots

We define a virtual queue associated with each RT user as follows

Yi(k + 1) = (Yi(k) + ai(k)qi − 1i(k))
+ , i ∈ NR, (4.9)

where 1i(k) , 1 (µi (k)) with 1(·) = 1 if its argument is non-zero and 1(·) = 0

otherwise. For notational convenience we denote Y(k) , [Y1(k), · · · , YNR
(k)]T . Yi(k)

is a measure of how much constraint (C3) is violated for user i. We will later show

a sufficient condition on Yi(k) for constraint (C3) to be satisfied. Hence, we say that

the virtual queue Yi(k) is associated with constraint (C3). Similarly, we define the

virtual queue X(k), associated with constraint (C4), as

X(k + 1) =

(

X(k) +

∑

i∈N Pi (k)µi (k)

T
− Pavg

)+

. (4.10)

To provide a sufficient condition on the virtual queues to satisfy the correspond-

ing constraints, we use the following definition of mean rate stability of queues [21,

Definition 1] to state the lemma that follows.
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Definition 4. A random sequence {Yi(k)}∞k=0 is said to be mean rate stable if and

only if lim supK→∞ E [Yi(K)] /K = 0 holds.

Lemma 7. If, for some i ∈ NNR, {Yi(k)}∞k=0 is mean rate stable, then constraint

(C3) is satisfied for user i.

Proof. Proof follows along the lines of Lemma 3 in [21].

Lemma 7 shows that when the virtual queue Yi(k) is mean rate stable, then

constraint (C3) is satisfied for user i ∈ NNR. Similarly, if {X(k)}∞k=0 is mean rate

stable, then constraint (C4) is satisfied. Thus, our objective would be to devise an

algorithm that guarantees the mean rate stability of Yi(k) for all RT users as well as

the mean rate stability for X(k).

4.3.2 Applying the Lyapunov Optimization

The quadratic Lyapunov function is defined as

Lyap (U(k)) ,
1

2

∑

i∈NR

Y 2
i (k) +

1

2

∑

i∈NNR

Q2
i (k) +

1

2
X2(k), (4.11)

whereU(k) , (Y(k),Q(k), X(k)), and the Lyapunov drift as ∆(k) , EU(k)[Lk+1 (U(k + 1))−

Lyap (U(k))] where EU(k) [x] , E [x|U(k)] is the conditional expectation of the ran-

dom variable x given U(k). Squaring (??), (4.9) and (4.10) taking the conditional

expectation then summing over i, the drift becomes bounded by

∆(k) ≤ C1 +Ψ(k), (4.12)
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where C1 ,
(
∑

i∈NR
(q2i + 1) + P 2

max + P 2
avg +NNR [L2 + T 2R2

max]
)

/2 and we useRmax ,

log (1 + Pmax), while

Ψ(k) ,
∑

i∈NR

EU(k) [Yi(k) (λiqi − 1i(k))] +X(k)

(

∑

i∈N

EU(k) [µi (k)Pi (k)]

T
− Pavg

)

+
∑

i∈NNR

Qi(k)
(

EU(k) [Lri(k)− µi (k)Ri(k)]
)

. (4.13)

We define Bmax as an arbitrarily chosen positive control parameter that controls the

performance of the algorithm. We shall discuss the tradeoff on choosing Bmax later

on. Since EU(k) [Lri(k)] represents the average number of bits admitted to NRT user

i’s buffer at slot k, we refer to Bmax

∑

i∈NNR
EU(k) [Lri(k)] as the “reward term”. We

subtract this term from both sides of (4.12), then use (4.13) and rearrange to bound

the drift-minus-reward term as

∆(k)−Bmax

∑

i∈NNR

EU(k) [Lri(k)] ≤ C1+EU(k)

[

∑

i∈NR

ΨR(i, k)

]

+EU(k)

[

∑

i∈NNR

ΨNR(i, k)µi (k)

]

+ EU(k)

[

∑

i∈NNR

(Qi(k)− Bmax)Lri(k)

]

+
∑

i∈NR

Yi(k)λiqi −X(k)Pavg, (4.14)

where ΨR(i, k) and ΨNR(i, k) are given by

ΨR(i, k) ,

(

Yi(k)−
L

TRi(k)
X(k)Pi (k)

)

1i(k), i ∈ NR, (4.15)

ΨNR(i, k) , Qi(k)Ri(k)−
X(k)Pi (k)

T
, i ∈ NNR, (4.16)

respectively, where we used (4.4) in (4.15). The proposed algorithm schedules the

users, allocates their powers and controls the packet admission to minimize the right-

hand-side of (4.14) at each slot. Since the only term in right-hand-side of (4.14) that is

a function in ri(k) ∀i ∈ NNR is the fourth term, we can decouple the admission control

problem from the joint scheduling-and-power-allocation problem. Minimizing this

term results in the following admission controller: set ri(k) = ai(k) if Qi(k) < Bmax
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and 0 otherwise. Minimizing the remaining terms yields

maximizeP(k),µ(k)

∑

i∈SR(k)ΨR(i, k) +
∑

i∈NNR
ΨNR(i, k)µi (k)

subject to (C5), (C6) and (C7).
(4.17)

This is a per-slot optimization problem the solution of which is an algorithm that

minimizes the upper bound on the drift-minus-reward term defined in (4.14). Next

we show how to solve this problem in an efficient way.

4.3.3 Efficient Solution for the Per-Slot Problem

We first solve for the NRT variables then use its result to solve for the RT variables.

4.3.3.1 NRT variables

To solve this problem optimally, we first find the optimal power-allocation-and-

scheduling policy for the NRT users through the following lemma.

Lemma 8. If an NRT user i is scheduled to transmit any of its NRT data during the

kth slot, then the optimum power level for this NRT with respect to (w.r.t.) problem

(4.17) is given by

Pi (k) = min

(

(

Qi(k)

X(k)
− 1

)+

, Pmax

)

. (4.18)

Moreover, in the heavy traffic regime, the optimum NRT user to be scheduled, if any,

w.r.t. problem (4.17) is i∗NR , argmaxi∈NNR
Qi(k).

Proof. We observe that, for any i ∈ NNR, the only term in (4.17) that is a function

in Pi (k) is ΨNR(i, k). Differentiating (4.16) w.r.t. Pi (k) for all i ∈ NNR, equating the

results to 0 and noting the minimum and maximum power constraints (C5), we get

the water-filling power allocation formula (4.18). This completes the first part of the

lemma.

To prove the second part, we substitute by (4.18) in (4.16) to get

Ψ∗
NR(i, k) , Qi(k) log (Qi(k))−Qi(k) +X(k)−Qi(k) log (X(k)) , (4.19)
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then we note that it is easy to show that argmaxi∈NNR
Qi(k) = argmaxi∈NNR

Ψ∗
NR(i, k).

We continue the proof by contradiction. Suppose that the optimal scheduled NRT

set is given by S∗
NR(k) = {i∗NR, j} where j 6= i∗NR and Ψ∗

NR(j, k) < Ψ∗
NR(i

∗
NR, k). Thus,

there exists some values α > 0 and β > 0 such that the corresponding scheduler

would be µi∗NR
(k) = α and µj (k) = β, while µlk(k) = 0 for all lk /∈ {i∗NR, j}. In

other words, α seconds are assigned to i∗NR and β seconds assigned to j. However,

if user i∗NR has enough backlogged data, which happens in the heavy traffic regime,

then we can increase its assigned duration to µi∗NR
= α+ β and thus set µj(k) = 0, to

get an increase in the objective of (4.17) by β (Ψ∗
NR(i

∗
NR, k)−Ψ∗

NR(j, k)) > 0 which

contradicts with the optimality of S∗
NR(k) and completes the proof of the lemma.

Lemma 8 provides the optimal scheduling policy for the NRT users, at the kth

slot, as well as the optimal power allocation w.r.t. problem (4.17). The lemma shows

that if any of the NRT users is going to be scheduled in the kth slot, then only one

of them is going to be scheduled. This means that the scheduling policy for the NRT

users is

µi (k) =











T −∑i∈S∗
R(k) µi (k) i = i∗NR

0 NNR\{i∗NR}
(4.20)

which is a manipulation of (C6). Substituting (4.20) and (4.19) in (4.17), the latter

becomes

maximize
µi∗

NR
(k),[µi(k),Pi(k)]i∈NNR

∑

i∈SR(k)

ΨR(i, k) + Ψ∗
NR(i

∗
NR, k)µi∗NR

(k) (4.21)

subject to (C7), (C5) and µi∗NR
(k) = T −

∑

i∈SR(k)

L

log (1 + Pi (k) γi(k))
,

which is simpler than (4.17) since it is not a function in the NRT variables except

µi∗NR
(k). Finding the optimal value of µi∗NR

(k) solves the NRT scheduling problem.

We will first solve for µi (k) for all RT users then use (4.20) to find µi∗NR
(k).

88



4.3.3.2 RT Variables

To find the scheduler of the RT users that is optimal w.r.t. problem (4.21), we first

solve for [Pi (k)]i∈NR
given a fixed set SR (k), then we discuss the scheduling policy

that solves for this set. To solve for [Pi (k)]i∈NR
, we present the following definition

then present a theorem that discusses the optimum power allocation policy for the

RT users.

Definition 5. We define the Lambert power allocation policy for the RT users as

Pi (k) = min





TΨ∗
NR(i∗NR,k)

X(k)
− 1

W0

([

Ψ∗
NR(i∗NR,k)T

X(k)
− 1
]

e−1
) − 1, Pmax



 , i ∈ SR (k) , (4.22)

where W0(z) is the principle branch of the Lambert W function [47] while Ψ∗
NR(i, k)

is given in (4.19).

Theorem 5. Given any set SR (k), if the Lambert power policy results in
∑

i∈SR(k) L/ log(1+

Pi (k)) ≤ T , then it is the optimum RT-users’ power allocation policy given that SR (k)

is the scheduling set at slot k. Otherwise, the optimum power allocation policy is given

by

Pi (k) = e
|SR(k)|L

T − 1, i ∈ SR (k) . (4.23)

Proof. We prove this theorem by applying the Lagrange optimization [45, Ch. 5]

technique to problem (4.21) then use the complementary slackness condition.

Since µi (k) ≥ 0 for all i ∈ NR (see (4.4)), then we have the constraint

µi∗NR
(k) ≤ T always holds from (4.20). Thus we define the Lagrange multiplier φ

to be the multiplier associated with the constraint µi∗NR
(k) ≥ 0. The Lagrangian
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becomes

Lagr ,
∑

i∈SR(k)

ΨR(i, k) + (Ψ∗
NR(i

∗
NR, k) + φ)



T −
∑

i∈SR(k)

L

log (1 + Pi (k) γi(k))





(4.24)

Differentiating (4.24) with respect to Pi (k) and equating to 0 gives

−
log (1 + Pi (k) γi(k))

X(k)L
T
− (X(k)Pi(k)/T+Ψ∗

NR(i∗NR,k)+φ)γi(k)
1+Pi(k)γi(k)

log2 (1 + Pi (k) γi(k))
= 0. (4.25)

After some manipulations and denoting φ̃ , (Ψ∗
NR(i

∗
NR, k) + φ)T/X(k) we get

log (1 + Pi (k) γi(k)) = 1 +
φ̃γi(k)− 1

1 + Pi (k) γi(k)
, 1 + P̃ . (4.26)

Thus we get P̃ eP̃ =
(

φ̃γi(k)− 1
)

e−1 which has two solutions in P̃ (see [47]), one of

them yields a negative value for Pi (k). Hence, with the help of W0(·), which is the

inverse function of xex, we can write a unique solution for (4.25) as

Pi (k) =
1

γi(k)





φ̃γi(k)− 1

W0

([

φ̃γi(k)− 1
]

e−1
) − 1



 , i ∈ SR (k) . (4.27)

To calculate (4.27), we need to find the value of φ satisfying the complementary

slackness condition φµi∗NR
(k) = 0. Hence we have one of the two following possibilities

might yield the optimal solution: 1) setting φ = 0 and thus µi∗NR
(k) ≥ 0, or 2) setting

µi∗NR
(k) = 0 and thus φ ≥ 0. If setting φ = 0 yields

∑

i∈SR(k) L/ log(1 + Pi (k)) ≤ T

then the Lambert power allocation policy in (4.22) is optimum since there exists

no other non-negative value for φ that yields
∑

i∈SR(k) L/ log(1 + Pi (k)) = T while

satisfying µi∗NR
(k) = 0 (to satisfy the complementary slackness). On the other hand,

if setting φ = 0 yields
∑

i∈SR(k) L/ log(1 + Pi (k)) > T , then φ cannot be 0. Thus

we have µi∗NR
(k) = 0, which means that the time slot will be allocated for RT users

only. The corresponding value of φ should satisfy
∑

i∈SR(k) L/ log(1 + Pi (k)) = T .

From (4.27), we observe that Pi (k) = Pj(k) for all i, j ∈ SR (k) because γi(k) = 1 for
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all i ∈ SR (k). Thus we have L|SR (k) |/ log(1 + Pi (k)) = T . This yields the power

allocation policy (4.23) and completes the proof.

4.3.4 Algorithms

In this subsection, we present two algorithms to solve problem (4.17) optimally. The

first algorithm has a linear complexity while the second one makes use of the structure

of the problem to reduce the complexity even below linear. Although both algorithms

are equivalent, the latter is the one used in the MATLAB simulations.

4.3.4.1 Linear-Complexity Algorithm

Theorem 5 gives closed-form expressions for the power function of the RT users given

any scheduling set SR (k). To find the optimum scheduling set SR (k) that solves

problem (4.21), we present the following definition then mention a theorem that

decreases the complexity of this search.

Definition 6. At slot k, the set SR (k) is said to be a “candidate” set if and only

if Yi(k) ≥ Yj(k) for all i ∈ SR (k) and all j /∈ SR (k). Otherwise it is called a

“non-candidate” set.

We note that the definition of candidate sets assumes that all RT users have

γi(k) = 1. If this assumption does not hold at some time slot k, then we eliminate

the users with γi(k) = 0 from the system for this time slot and consider only those

with γi(k) = 1.

Theorem 6. The optimal RT set that solves (4.21) is one of the candidate sets.

Proof. We prove this theorem by contradiction. Suppose that S∗
R (k) is the optimal

set and that it is not a candidate set. That is, ∃i ∈ SR (k) and j /∈ SR (k) such that

Yi(k) < Yj(k). It is easy to show that the Lambert power policy results in the fact
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that Pi (k) depends on |SR (k) | and not on SR (k) for any i ∈ SR (k) and any SR (k).

Thus, replacing user i with user j results in having Pj(k) = Pi (k) which means that

X(k)Pj(k)µj(k) = X(k)Pi (k)µi (k) holds. But since Yi(k) < Yj(k), swapping the

two users increases the objective function of (4.21) and results in a candidate set.

This contradicts with the fact that SR (k) is optimal while being non-candidate.

Theorem 6 says that there will be no scheduled RT users having a value of Yj(k)

smaller than any of the unscheduled RT users. This theorem suggests an algorithm

to reduce the complexity of scheduling the RT users from O
(

2NR
)

to O (NR). This

algorithm is to list the RT users in a descending order of their Yi(k). Without loss of

generality, in the remaining of this paper, we will assume that Y1 > Y2 · · · > YNR
.

We now propose Algorithm 3 which is the scheduling and power allocation

algorithm for problem (4.8). Algorithm 3 is executed at the beginning of the kth

slot and, without loss of generality, it assumes: 1) all RT users in the system have

received a packet at the beginning of the kth slot, 2) all users in the system have

an “on” channel. If, at some slot, any of these assumptions does not hold for some

users, these users are eliminated from the system for this slot. That is, they will not

be scheduled. In addition, we assume heavy traffic regime, thus the NRT user with

the longest queue has enough data to fill the entire time slot. We define the set SRT
to be the set of all candidate sets.

4.3.4.2 Simpler Algorithm used in MATLAB Simulations

Under the Lambert power policy let’s define l as the number of RT users can be

scheduled in slot k under the Lambert policy. l is given by

l ,

⌊

T

µi (k)

⌋

(4.28)
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Algorithm 3 Scheduling and Power Allocation Algorithm

1: Define the auxiliary functions ΨX(·) : SRT → R+ and PX(·, ·) : SRT ×NR → R+.
2: Initialize PX(S, i) = 0 for all S ∈ SRT and all i ∈ NR.
3: Sort the RT users in a descending order of Yi(k). Without loss of generality,

assume that Y1 > Y2 · · · > YNR
.

4: Find the user i∗NR with longest queue Qi(k) and set SR (k) to be an empty set.
5: while i ≤ NR do

6: SR (k) = SR (k) ∪ {i} and set the power according to (4.22) ∀i ∈ SR (k).
7: Calculate µi (k) and µi∗NR

(k) according to (4.4) and (4.20), respectively.
8: if µi∗NR

(k) < 0 then

9: Set µi (k) = 0 for all i ∈ NNR and set the power allocation for all i ∈ SR (k)
according to (4.23) and recalculate µi (k) according to (4.4).

10: end if

11: Set ΨX(SR (k)) =
∑

i∈SR(k) (Yi(k)−Xi(k)µi (k)) + Ψ∗
NR(i

∗
NR, k)µi∗NR

(k).

12: Set PX(SR (k) , i) = Pi (k), ∀i ∈ SR (k).
13: i← i+ 1.
14: end while

15: Set the optimum scheduling set S∗
R (k) = argmaxSR(k)ΨX(SR (k)).

16: Set P ∗
i (k) = PX (S∗

R (k) , i) for all i ∈ NR, and set the NRT scheduler according
to (4.20).

17: For each i ∈ NNR, set ri(k) = ai(k) if Qi(k) < Bmax and 0 otherwise.
18: Update equations (??), (4.9) and (4.10) at the end of the kth slot.

Before presenting the algorithm that solves problem (4.21) and the theorem behind

it we present the following two conditions on l that will facilitate the understanding

of the algorithm and the presentation of the theorem.

Condition 1. l = 0.

Condition 2. 0 < l ≤ NR and the following two inequalities hold

Yl(k) > [X(k)Pl(k) + Ψ∗
NR(i

∗
NR, k)]µl(k) (4.29)

Yl+1(k) ≥ X(k)
[

T
(

e
(l+1)L

T − 1
)

− Pl(k)lµl(k)
]

+Ψ∗
NR(i

∗
NR, k) (T − lµl(k))(4.30)

Condition 1 means that the duration µi (k) of one RT user is greater than the

slot duration under the Lambert policy. On the other hand, Condition 2 means that,
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roughly speaking, the Yi(k) values are very high to the extent that the RT users are

suffering more than the NRT users during slot k. The next theorem shows that when

any of Conditions 1 or 2 holds, the BS should schedule only RT users during slot k.

Theorem 7. To solve (4.21), if either Condition 1 or Condition 2 holds, then the

optimal scheduling for the RT users is given by

SR (k) =
{

i : Yi > X(k)T
(

e
iL
T − e (i−1)L

T

)}

. (4.31)

On the other hand if neither of these conditions holds, then the optimal scheduling

policy for the RT users is

SR (k) = {i : Yi > [X(k)Pi (k) + Ψ∗
NR(i

∗
NR, k)]µi (k)} (4.32)

while the optimum NRT user is i∗NR with its duration calculated from (4.20).

Proof. To find the optimum set SR (k), we assume, for simplicity of presentation,

that Y1 > Y2 > · · · > YNR
. Given two sets SR (k) ⊂ NR and S ′

R(k) , SR (k) ∪ {j}

for some j ∈ NR\SR (k), if we find that the inequality
∑

i∈SR(k) L/ log(1 + Pi (k)) >

T holds under the Lambert power policy, then it is easy to show that inequality
∑

i∈S′
R(k) L/ log(1 +Pi (k)) > T still holds, under the Lambert power policy. We note

that inequality
∑

i∈SR(k) L/ log(1 + Pi (k)) > T means that the sum of durations of

the RT users exceeds the slot duration which indicates that no NRT users can be

scheduled. This means that, according to Theorem 5, if no NRT users are going to

be scheduled given some set SR (k), then adding more users to this set would not

result in scheduling any NRT users. Similarly, we can show that if NRT user i∗NR is

scheduled under set SR (k), then removing any users from this set would not let this

NRT user become not scheduled.

We now propose Algorithm 4 which is the scheduling and power allocation

algorithm for problem (4.8). Algorithm 4 is executed at the beginning of the kth
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slot and, without loss of generality, it assumes: 1) all RT users in the system have

received a packet at the beginning of the kth slot and 2) all users in the system have

an “on” channel. If, at some slot, any of these assumptions does not hold for some

users, these users are eliminated from the system for this slot. That is, they will not

be scheduled.

Algorithm 4 MATLAB Simulation Algorithm

1: Sort the RT users in a descending order of Yi(k). Without loss of generality,
assume that Y1 > Y2 · · · > YNR

.
2: Find the user i∗NR with longest queue Qi(k).
3: Set the power according to (4.22) for all RT users.
4: For the RT users calculate µi (k) and l according to (4.4) and (4.28), respectively.
5: if Condition 1 OR Condition 2 holds then
6: Set µi (k) = 0 for all i ∈ NNR and set the scheduling and power allocation of

the RT users according to (4.31) and (4.23), respectively.
7: else

8: Schedule the RT users according to

µi (k) =

{

1 i ∈ SR (k)
0 otherwise

(4.33)

where SR (k) is given in (4.32) and set the RT users’ powers according to (4.22).
9: Schedule the NRT users according to (4.20) and set user i∗NR’s power Pi∗NR

(k)
via (4.18).

10: end if

11: For each i ∈ NNR, set ri(k) = ai(k) if Qi(k) < Bmax and 0 otherwise.
12: Update equations (4.2), (4.9) and (4.10) at the end of the kth slot.

4.3.5 Optimality of Proposed Algorithm

We first define R
(opt)
i to be the throughput of NRT user i under the optimal algorithm

that solves (4.8). We define this algorithm to be the one that sets, at each time slot

k, the variables Pi (k), µi (k), 1i(k) and Ri(k) to the values P̃i(k), µ̃i(k), 1̃i(k) and
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R̃i(k), respectively, where the latter values satisfy

lim supK→∞
1
K

∑K−1
k=0 E

[

1̃i(k)
]

≥ λiqi, ∀i ∈ NR, (4.34)

lim supK→∞
1
K

∑K−1
k=0

∑

i∈N E

[

µ̃i(k)P̃i(k)
T

]

≤ Pavg, (4.35)

lim supK→∞
1
K

∑K−1
k=0 E

[

µ̃i(k)R̃i(k)
L

]

= R
(opt)
i , ∀i ∈ NNR, (4.36)

where R
(opt)
i is the optimal rate for user i ∈ NNR with respect to solving (4.8). The

following theorem gives a bound on the performance of Algorithm 3 compared to the

optimal algorithm that has a genie-aided knowledge of R
(opt)
i which, we show that,

due to this knowledge it can solve the problem optimally.

Theorem 8. If γi(k) ∈ {0, 1} for all i ∈ N and all k ≥ 1, then for any Bmax > 0

Algorithm 3 results in satisfying all constraints in (4.8) and achieves an average rate

satisfying
∑

i∈NNR

Ri ≥
∑

i∈NNR

R
(opt)
i − C1

LBmax

. (4.37)

Proof. See Appendix G

Theorem 8 says that Algorithm 3 yields an objective function (4.8) that is

arbitrary close to the performance of the optimal algorithm that solves (4.8).

4.4 Continuous Fading

In the case of continuous fading, i.e. γi(k) ∈ [0, γmax] where γmax <∞ is the maximum

channel gain that γi(k) can take, we expect the power allocation to depend on the

channel gain. An algorithm that solves this case is a generalization of Algorithm 3

that assumes γi(k) ∈ {0, 1}. However, as will be demonstrated later, the scheduling

algorithm of the RT users has a higher complexity order than the special case of on-off

channel gains.
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4.4.1 System Model and Problem Formulation

We adopt the same model as in Section 4.1 except that we allow γi(k) to take any

value in the interval [0, γmax], for all i ∈ N . The transmission rate for this case is

still given by (4.3), and the optimization problem is the same as (4.8) with the new

definition of γi(k).

4.4.2 Derivation of Algorithm

Algorithm 5 is based on the same Lyapunov optimization procedure as in Section

4.3.2. Following this procedure, we reach optimization problem (4.17).

Lemma 9. If user i ∈ NNR is scheduled to transmit any of its NRT data during

the kth slot, then the optimum power level for this NRT w.r.t. problem (4.17) in the

continuous fading case is given by

Pi (k) = min

(

(

Qi(k)

X(k)
− 1

γi(k)

)+

, Pmax

)

. (4.38)

Moreover, in the heavy traffic regime, the scheduled NRT user, if any, that optimally

solves problem (4.8) is given by

i∗NR = arg max
i∈NNR

Ψ∗
NR(i, k), (4.39)

with ties broken randomly uniformly, while

Ψ∗
NR(i, k) , Qi(k) log (Qi(k))−Qi(k) +

X(k)

γi(k)
−Qi(k) log

(

X(k)

γi(k)

)

. (4.40)

Proof. The proof is similar to that of Lemma 8 and is omitted for brevity.

Lemma 9 presents the optimal power and scheduling policy for the NRT users.

To solve for the RT users, we assume a fixed subset SR (k) ⊆ NR of RT users to be
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scheduled during the kth slot and find the power allocation of these users. Conse-

quently, the optimum set S∗
R (k) is the one that maximizes (4.17). We present this

algorithm and its optimality in Section 4.4.3. Motivated by the high complexity of

this algorithm, we present, in Section 4.4.4, a heuristic to schedule the RT users and

show its performance to the optimal one by simulations.

Assuming that the users in the set SR (k) are scheduled at the kth slot, the

problem is to find the transmission power levels for all the users in this set. We answer

this question in the following theorem.

Theorem 9. In the continuous-fading channel model, given some non-empty set

SR (k), the power allocation policy

Pi (k) = min





1

γi(k)





φ̃γi(k)− 1

W0

([

φ̃γi(k)− 1
]

e−1
) − 1



 , Pmax



 , i ∈ SR (k) ,

(4.41)

with φ̃ , (Ψ∗
NR(i

∗
NR, k) + φ)T/X(k) and Ψ∗

NR(i
∗
NR, k) given by (4.40), is optimal w.r.t.

(4.17) when φ is set to a non-negative value that satisfies (C6). Moreover, an upper-

bound on the lagrange multiplier φ can be given by

φ ≤ φmax , −Ψ∗
NR(i

∗
NR, k) +

e
L|SR(k)|

T L|SR (k) |X(k)Pmax

e
L|SR(k)|

T − 1
(4.42)

Proof Sketch: The proof is similar to that of Theorem 5. The only difference

is that we have to obtain the optimum value of φ satisfying (C6). We note that

instead of finding φ > 0 using a 1-dimensional grid search, we can use the bisection

method [48, Ch.9] which requires the monotonicity of the left-hand-side of (C6), a

fact that can be shown easily by showing that the derivative, of this left-hand-side,

with respect to φ is always negative. Moreover, since the bisection algorithm needs a

bracketing interval, it can be easily shown that the optimum φ satisfies φ ≤ φmax.
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It is clear that the Lambert power policy in (4.41) has a totally different

structure than the water-filling policy in (4.38). The reason is because the former is

for the RT users while the later is for the NRT users. We plot the two policies in Fig.

4.2 with L = 1, T = 1, Pmax = 20 while Qi(k)/X(k) = 15. The Lambert policy is

plotted assuming a single RT user is scheduled at slot k while the water-filling policy

is plotted assuming a single NRT user is scheduled at slot k. We note that when a

RT user i is the only scheduled user, (4.41) is equivalent to

Pi (k) = min

(

eL/T − 1

γi(k)
, Pmax

)

, (4.43)

We demonstrate that, while the water-filling is an increasing function in the channel

gain, the Lambert is a decreasing function in the channel gain. This is because the

RT user has a single packet of a fixed length to be transmitted. If the channel gain

increases, then the power decreases to keep the same transmission rate resulting in

the same transmission duration of one slot. This result holds when multiple RT users

are scheduled as well as demonstrated in the following theorem.

Theorem 10. Let Nk be some scheduling RT set for (4.17) at slot k. For a fixed

set Nk, the power Pi (k) given by (4.41) is monotonically decreasing in γi(k) ∀i ∈

SR (k) ⊆ Nk.

Proof Sketch: Proof follows by differentiating (4.41) with respect to γi(k) for

some user i, while having φ satisfying (C6), and showing that the resulting derivative

is always non-positive for γi(k) ≥ 0.

The optimum scheduling algorithm for the RT users is to find, among all

subsets of the set NR, the set that gives the highest objective function of (4.17).
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Figure 4.2: The Lambert power policy decreases with the channel gain, while the
water-filling policy increases with the gain.

4.4.3 Proposed Algorithm and Proof of Optimality

The exhaustive approach to the scheduling problem is to evaluate the objective func-

tion of (4.21) for all 2NR possible sets and choose the set that gives the highest

objective function. This may be not practical when the number of RT users is large.

Observing the approach in the special on-off case and inspired by Theorem 6 that

reduces the search space, we provide here a similar approach. We first provide the

following definition which is analogous to Theorem 6.

Theorem 11. At slot k, for any set SR (k), if there exists some i /∈ SR (k) and some

j ∈ SR (k) such that Yi(k) > Yj(k) and γi(k) > γj(k), then SR (k) cannot be an

optimal RT set, with respect to problem (4.21), for the continuous channel model.
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Proof Sketch: The proof is carried out by contradiction. We can show that

if Yi(k) > Yj(k) and γi(k) > γj(k) for some i /∈ SR (k) and some j ∈ SR (k), then

we could form another set S ′(k) by swapping users i and j and thus increase the

objective function of (4.21).

This theorem provides a sufficient condition for non-optimality. In other words,

we can make use of this theorem to restrict our search algorithm to the sets that do

not satisfy this property. Before presenting the proposed algorithm, we define the set

SRT as the set of all possible subsets of the set NR.

Theorem 12. If γi(k) ∈ [0, γmax] for all i ∈ N and all k ≥ 1, then for any Bmax > 0

and any ǫ ∈ (0, 1] there exists some finite constant C2 such that Algorithm 5 satisfies

all constraints in (4.8) and achieves an average sum throughput satisfying

∑

i∈NNR

Ri ≥
∑

i∈NNR

R
∗

i −
C2

LBmax

, (4.47)

where R
∗

i is the optimal rate for user i w.r.t. (4.8).

Proof. The proof is similar to that of Theorem 8 and C2 is defined as C1 but with

Rmax , log (1 + Pmaxγmax). We omit the proof for brevity.

Due to the problem being a combinatorial problem with a huge amount of

possibilities, we could not reach a closed-form expression for the complexity order of

this algorithm. However, simulations will show its complexity improvement over the

exhaustive search algorithm.

4.4.4 Heuristic

In some time slots, where the condition in step 5 of Algorithm 5 is not satisfied for all

sets S ∈ SRT, the complexity is 2NR . This could be not practical when the number of

RT users is large. Observing the approach in the special on-off case and motivated
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Algorithm 5 Lambert-Strict Algorithm

1: Define the auxiliary functions ΨX(·) : SRT → R+ and PX(·, ·) : SRT ×NR → R+.
2: Initialize PX(S, i) = 0 for all S ∈ SRT and all i ∈ NR.
3: Find the user i∗NR given in (4.39) and calculate its power given by (4.38).
4: for S ∈ SRT do

5: if ∃ some i /∈ S and some j ∈ S such that Yi(k) > Yj(k) and γi(k) > γj(k)
then

6: Set ΨX(S) = −∞.
7: Skip this iteration and go to step 4 to continue with the next set in SRT.
8: end if

9: φ← φmax +∆φ
10: while φµi (k) 6= 0 do

11: φ← φ−∆φ
12: Calculate Pi (k) given by (4.41) for all i ∈ S and set µi∗NR

(k) = T −
∑

i∈S µi (k).

µi∗NR
(k) = T −

∑

i∈S

µi (k) (4.44)

13: end while

14: Set

ΨX(S) =
∑

i∈S

(Yi(k)−Xi(k)µi (k)) + Ψ∗
NR(i

∗
NR, k)µi∗NR

(k) , (4.45)

and PX(S, i) = Pi (k) , i ∈ S. (4.46)

15: i← i+ 1.
16: end for

17: Set the optimum scheduling set S∗
R (k) = argmaxS ΨX(S).

18: Set P ∗
i (k) = PX (S∗

R (k) , i) for all i ∈ NR, and set the NRT scheduler according
to (4.20).

19: For each i ∈ NNR, set ri(k) = ai(k) if Qi(k) < Bmax and 0 otherwise.
20: Update equations (4.2), (4.9) and (4.10) at the end of the kth slot.
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by Lemma 6, we find that RT users who have a higher value for Yi(k) tend to be

scheduled more since higher Yi(k) indicates more violation for the QoS constraint

(C3). However, having a higher Yi(k) is not a sufficient condition for scheduling user

i. That is, we might have Yi(k) > Yj(k) for some i, j ∈ NR but the optimum scheduler

schedules user j but not user i. This could be the case only if user j gives a higher

objective function in problem (4.17). This happens only if the inequality Pj(k)µj(k)

is sufficiently smaller than Pi (k)µi(k) (see (4.17)).

These two arguments are contradicting; on one hand we should favor users

who have higher Yi(k) values, while on the other we should favor those who have

a lower Pi (k)µi(k). Hence, the heuristic proposed in Algorithm 6 applies the first

argument in the odd time slots and the second argument in the even ones. In other

words, in the odd time slots it assigns higher scheduling priorities to users with higher

Yi(k) over those with lower ones. While in the even time slots, users with a lower

value of Pi (k)µi(k) have higher scheduling priorities.

Before presenting the proposed algorithm, we note that sorting the users in

a descending order of γi(k) is equivalent to sorting them in an ascending order of

the quantity Pi (k)µi(k). This result decreases the complexity since we do not have

to calculate the quantity Pi (k)µi(k) which needs the calculation of the Lambert W

function as well as the value of φ.

Algorithm 6 has a similar structure as Algorithm 5. The difference is in sorting

the users where the former sorts them according to Yi(k) and γi(k) in the odd and

even time slots, respectively, while the latter does not sort them. Moreover, the search

for the scheduling set of the RT users is of O(NR) as compared to the exponential

complexity of O(2NR) of Algorithm 5.

103



Algorithm 6 Scheduling and Power Allocation Algorithm

1: if k is odd then

2: Sort the RT users in a descending order of Yi(k). Without loss of generality,
assume that Y1(k) > Y2(k) · · · > YNR

(k).
3: else

4: Sort the RT users in a descending order of γi(k). Without loss of generality,
assume that γ1(k) > γ2(k) · · · > γNR

(k).
5: end if

6: Define the auxiliary functions ΨX(·) : SRT → R+ and PX(·, ·) : SRT ×NR → R+.
7: Initialize PX(S, i) = 0 for all S ∈ SRT and all i ∈ NR.
8: Find the user i∗NR given in (4.39) and calculate its power given by (4.38).
9: Set i = 1 and S = {}.

10: while i ≤ NR do

11: Set S = S ∪ {i} and φ← φmax +∆φ
12: while φµi (k) 6= 0 do

13: φ← φ−∆φ
14: Calculate Pi (k) given by (4.41) for all i ∈ S and set µi∗NR

(k) according to
(4.44).

15: end while

16: Set ΨX(S) and PX(S, i) according to (4.46) and (4.45), respectively.
17: end while

18: Set the optimum scheduling set S∗
R (k) = argmaxS ΨX(S).

19: Set P ∗
i (k) = PX (S∗

R (k) , i) for all i ∈ NR, and set the NRT scheduler according
to (4.20).

4.5 Capacity Region

In Section 4.4, Algorithm 5 is shown to maximize the NRT sum-throughput subject

to the system constraints. In this section we want to study the stability of the system.

Specifically, we are interested to answer the following two questions:

1. What is the capacity region of the system under the continuous fading model?

2. What scheduling and power-allocation algorithms can achieve this capacity re-

gion?
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Studying the system’s capacity region means that we need to find all arrival

rate vectors λNR under which the NRT users’ queues are stable (i.e. have a stationary

distribution). This needs to be studied assuming that all arriving packets are admitted

to their respective buffers. Hence we first eliminate the admission controller r (k) by

replacing the queue equation (4.2) with

Qi(k + 1) = (Qi(k) + Lai(k)− µi (k)Ri(k))
+ . (4.48)

More formally, the first question now becomes: what is the closure of all admissible

arrival rate vectors? An admissible arrival rate vector is defined next.

Definition 7. An arrival rate vector λNR is said to be admissible if there exists a

power-allocation and scheduling algorithm under which constraints (C3) and (C2) are

satisfied given the power and scheduling constraints (C4), (C5), (C6) and (C7).

For simplicity we henceforth assume that the channel gain γi(k) ∈ M where

M is a discrete finite set, the elements of which are in the range [0, γmax]. With a

slight abuse in notation, we define γi(m, k) , γi(k) to be the gain of user i when the

channel is in fading state m , [γ1(m), · · · , γN(m)]T ∈ MN during slot k. We also

define µi (m, k) and Pi (m, k) to be, respectively, the duration and power allocated

to user i ∈ N when the channel is in fading state m , [γ1(m), · · · , γN(m)]T ∈ MN

during slot k, and πm to be the probability of occurrence of fading state m. We

now mention the following definition then state Theorem 13 that answers the first

question.

Definition 8. An arrival rate vector λNR is said to belong to the “Lambert Region”

RLamb if and only if there exists a sequence of time duration vectors {µ (m, k)} and

a power allocation policy {P (m, k)} that make λNR satisfy

λi =
1

L

∑

m∈MN

µi (m, k) log (1 + Pi (m, k) γi(m, k)) πm, i ∈ NNR, (4.49)
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while having {µ (k)} and {P (k)} satisfy

qiλi ≤
∑

m∈MN µi (m, k) log (1 + Pi (m, k) γi(m, k)) , i ∈ NR, (4.50)

∑

i∈N µi (m, k) ≤ T, ∀k ≥ 1,m ∈MN , (4.51)

lim sup
K→∞

1
K

∑K
k=1

∑

i∈N

∑

m∈M µi (m, k)Pi (m, k) ≤ Pavg, (4.52)

µi (m, k) ≥ 0, i ∈ N , ∀k ≥ 1,m ∈MN , (4.53)

Pi (m, k) ≥ 0, i ∈ N , ∀k ≥ 1,m ∈MN . (4.54)

Theorem 13. If λNR(1+ǫ) ∈ RLamb then Algorithm 5 satisfies (C2)-(C7). Otherwise,

then problem (4.8) is infeasible.

Proof. See Appendix H

Theorem 13 says that RLamb is in fact the system’s capacity region. This

answers the first question. Moreover, the second question is answered in the proof,

as shown in Appendix H. In the proof, we show that with a simple modification

to Algorithm 5 we can achieve this capacity region. The modification is by setting

ri(k) = ai(k) for all i ∈ NNR.

4.6 Simulation Results

We simulate the system for the on-off channel model as well as the continuous channel

model. For both models, we assume that all channels are statistically homogeneous,

i.e. γ̄i = γ̄ for all i ∈ N where γ̄ is a fixed constant. Moreover, all RT users

have homogeneous delivery ratio requirements, thus qi = q for all i ∈ NR for some

parameter q. All parameter values are summarized in Table 4.1 for all simulation

figures unless otherwise specified.

We compare the throughput of the RT users, which is the objective of problem

(4.8), to that of a simple power allocation and scheduling algorithm that we call
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Table 4.1: Simulation Parameter Values

Parameter Value Parameter Value
L 1 bit/packet Pmax 200

Bmax 104 γ̄i, ∀i 1
{qi}i∈NR

0.3 T 1

“FixedP” algorithm. In the FixedP algorithm, all scheduled users transmit with the

maximum power, i.e. Pi (k) = Pmax for all i ∈ N and all k ≥ 1, while the scheduling

policy is to flip a biased coin and choose to schedule either the NRT users or the

RT users. The coin is set to schedule the RT users with probability q (the delivery

ratio requirement for all users), at which case the RT users are sorted according to

Yi(k) and scheduled one by one until the current slot ends. On the other hand, when

the coin chooses the NRT users, the FixedP policy assigns the entire time slot to the

NRT user with the longest queue.

4.6.0.1 On-Off Channel Model

We assume that we have N = 20 users that is split equally between the RT and NRT

users, i.e. NR = NNR = 20. Fig. 4.3 shows a substantial increase in the average

rate of the proposed algorithm over the FixedP algorithm with over 200% at low Pavg

values and 60% at high Pavg values.

In Fig. 4.4, the sum of average NRT users’ throughput is plotted while keep-

ing Pavg = 10 but changing q. We can see that the FixedP algorithm results in a

large degradation in the throughput compared to Algorithm 3 which allocates the

power and schedules the users optimally with respect to (4.8). The decrease in the

throughput observed in both curves of Fig. 4.4 is due to the increase in the parameter

q. This increase makes constraint C3 more stringent and thus decreases the feasible

region decreasing the throughput.

In Fig. 4.5 we show the effect of increasing the number of users on the system’s
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Figure 4.3: Sum of average throughput for all NRT users. The FixedP algorithm
assigns a fixed power to all users set at Pmax.

throughput. As the number of users increase, more RT users have to be scheduled.

This comes at the expense of the time allocated to the NRT users thus decreasing the

throughput for the two plotted algorithms.

4.6.0.2 Continuous Channel Fading Model

In this simulation setup, we assume the channels are fading according to a Rayleigh

fading model with avg power gain of γ̄ = 1.

In Fig. 4.6, we plot the average rate performance of the optimal (Algorithm

5) as well as the suboptimal (Algorithm 6) algorithms versus the number of users

NNR = NR. As the number of users increase more RT users are scheduled, on average,
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Figure 4.4: As q increases, the RT users are assigned the channel more frequently.
This comes at the expense of the NRT’s throughput. However, the proposed algorithm
outperforms the FixedP algorithm.

per time slot. This comes at the expense of the NRT users’ throughput. Although the

number of NRT users increase as well creating multi-user diversity effect, we do not

observe an increase in the throughput. This is because NRT users are not scheduled

based on the channel gain only but on the queue length as well.

In Fig. 4.7, we plot the complexity of the Lambert-Strict algorithm as well as

the exhaustive search algorithm with exponential complexity versus the number of

users NR. The complexity is measured in terms of the average number of iterations,

per-slot, where we have to evaluate the objective function of (4.21). Since this com-

plexity changes from a slot to the other, we plot the average of this complexity. As the

number of users increases, the Lambert-Strict algorithm has an average complexity

close to linear.
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Figure 4.5: As N increases, the RT users are allocated the channel more at the
expense of the NRT users’ throughput.

4.7 Conclusions

We discussed the problem of throughput maximization in downlink cellular systems

in the presence of RT and NRT users. We formulated the problem as a joint power-

allocation-and-scheduling problem. Using the Lyapunov optimization theory, we pre-

sented two algorithms to optimally solve the throughput maximization problem. The

first algorithm is optimal under the on-off channel fading model, while the second is

for the continuous channel fading model. The power allocations for both algorithms

are in closed-form expressions for the RT as well as the NRT users. We showed that

the NRT power allocation is water-filling-like which is monotonically increasing in

the channel gain. On the other hand, the RT power allocation has a totally different

structure that we call the “Lambert Power Allocation”. It is found that the latter is
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Figure 4.6: As the number of NRT users in the system increase the throughput of
the RT users decrease since this constitutes more load to the system.

a decreasing function in the channel gain.

The two algorithms differ in the complexity of the adopted scheduling poli-

cies. The first algorithm that assumes on-off channel model has a polynomial-time

complexity. While the second algorithm that works for on-off as well as continuous

channel models has an exponential scheduling complexity. Motivated by this large

complexity, we present a heuristic algorithm that is shown, through simulations, to

give at least as half as the throughput of the optimal algorithm. We presented the

capacity region of the problem and showed that the proposed algorithms achieve the

capacity region.
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Chapter 5

DISSERTATION CONCLUSIONS

In this dissertation I have studied the joint scheduling and power allocation problem

of a cellular CR system. The main goal of this work is to present low-complexity

joint power allocation and scheduling algorithms that provide acceptable quality of

service (QoS) for the real-time packets of the SUs while protecting the PU. I have

studied two well-known frameworks, namely, the average-delay framework where a

constrained is imposed on the average delay of each packet, and the hard-deadline

framework where a constraint is imposed on the instantaneous delay of each packet.

Since the service time is a common factor in both frameworks, I studied the

delay due to the service time in a single SU multichannel system first where the SU

senses the channels sequentially and stops to transmit at the first channel that gives

the highest throughput. The goal was to find the optimal power that maximizes

the SU’s throughput as well as guaranteeing that the SU’s service time is below

some prespecified threshold. I formulated the problem as an optimal stopping rule

problem and presented a closed-form expression for the stopping rule. The algorithm

was proven to guarantee that the PU is protected from harmful interference and its

performance was compared to numerous baseline algorithms.

Then, I studied the problem under the average-delay framework. The problem

was formulated as a delay minimization problem in the presence of average and in-

stantaneous interference constraints to the PU, as well as an average delay constraint

for each SU that needs to be met. Most of the existing literature that studies this

problem either assume on-off fading channels or does not provide a delay-optimal

algorithms which is essential for real-time applications. I proposed the DOAC pol-

icy that dynamically updates the power allocation of the SUs as well as finding the
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optimal scheduling policy. The scheduling policy is found by dynamically updating

a priority list based on the statistics as well as the history of the arrivals, departures

and channel fading realizations. The proposed algorithm updates the priority list on

a per-frame basis while controlling the power on a per-slot basis. I showed, through

the Lyapunov optimization, that the proposed DOAC policy is asymptotically de-

lay optimal. That is, it minimizes the sum of any convex increasing function of the

average delays of the SUs as well as satisfying the average interference and average

delay constraints. However, it is found that when the number of SUs N in the sys-

tem is large, the complexity of the DOAC policy scales as O(MN2N), where M is

the number of points required to solve a one-dimensional search. Hence, I propose a

suboptimal policy with a complexity of O(N log(N)) that does not sacrifice the per-

formance. Extensive simulation results showed the robustness of the DOAC policy

against CSI estimation errors.

Finally, I modeled the problem using hard-deadline framework where a strict

deadline was imposed on each packet. As long as the percentage of packets that are

transmitted by these deadlines exceed a prespecified threshold, the corresponding user

is considered satisfied. I presented a potential joint power allocation and scheduling

algorithm to this problem that works in the presence of both real-time and non-real-

time users. The power allocation proposed for both kinds of users are in closed-

form expressions. The scheduling algorithm is shown to have a linear complexity,

in the number of users, for on-off fading channels and a strictly sub-exponential for

continuous ones.
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Proof. We carry out the proof by contradiction. Assume, for some i, that γ∗th(i) <

λ∗P. Thus the reward starting from channel i, Ui

(

[γ∗th(i), γ
∗
th(i+ 1), ..., γ∗th(M)]T ,P∗

i

)

,

becomes

θici

∫ ∞

γ∗
th(i)

log(1 + P ∗
1,iγ)fγ(γ) dγ + θiU

∗
i+1

∫ γ∗
th(i)

0

fγ(γ) dγ

+ (1− θi)U∗
i+1 (A.1)

≤θici
∫ ∞

λ∗
P

log(1 + P ∗
1,iγ)fγ(γ) dγ + θiU

∗
i+1

∫ λ∗
P

0

fγ(γ) dγ

+ (1− θi)U∗
i+1 (A.2)

=Ui

(

[λ∗P, γ
∗
th(i+ 1), ..., γ∗th(M)]T ,P∗

i

)

. (A.3)

Where inequality (A.2) follows by adding the term θi

(

∫ λ∗
P

γ∗
th(i)

fγ(γ) dγ
)

U∗
i+1 to (A.1)

while (A.3) follows by the definition of the right-hand-side of (A.2). Using equation

(2.2), we can calculate the reward Ui−1 for both the left-hand-side and right-hand-side

of the previous inequality. Thus the following inequality holds

Ui−1

(

[γ∗th(i− 1), γ∗th(i), ..., γ
∗
th(M)]T ,P∗

i−1

)

≤

Ui−1

(

[γ∗th(i− 1), λ∗P, ..., γ
∗
th(M)]T ,P∗

i−1

)

. (A.4)

Carrying out the last step recursively i− 2 more times, we find the relation

U1

(

[γ∗th(1), ..., γ
∗
th(i− 1), γ∗th(i), ..., γ

∗
th(M)]T ,P∗

1

)

≤

U1

(

[γ∗th(1), ..., γ
∗
th(i− 1), λ∗P, ..., γ

∗
th(M)]T ,P∗

1

)

, (A.5)

which contradicts with the fact that γ∗th(i) is optimal.
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Proof. We first get S∗
i , U

∗
i and p∗i by substituting by equations γ∗th (i) and P

∗
1,i(γ) in

the three equations (2.1), (2.2) and (2.3), respectively. Then we differentiate with

respect to λ∗P, treating λ
∗
D as a constant, yielding

∂S∗
i

∂λ∗P
=− θifγ(γ∗th (i))

∂γ∗th (i)

∂λ∗P

(

ciP
∗
i (γ

∗
th (i))− S∗

i+1

)

−

θici
F̄γ(γ

∗
th (i))

(λ∗P)
2 +

(

1− θiF̄γ(γ
∗
th (i))

) ∂S∗
i+1

∂λ∗P
, (B.1)

∂U∗
i

∂λ∗P
=− θifγ(γ∗th (i))

∂γ∗th (i)

∂λ∗P
×

[

λ∗P
(

ciP
∗
i (γ

∗
th (i))− S∗

i+1

)

− λ∗D
(

1− p∗i+1

)]

−

θici
F̄γ(γ

∗
th (i))

λ∗P
+
(

1− θiF̄γ(γ
∗
th (i))

) ∂U∗
i+1

∂λ∗P
, (B.2)

∂p∗i
∂λ∗P

=− θifγ(γ∗th (i))
∂γ∗th (i)

∂λ∗P

(

1− p∗i+1

)

+ (B.3)

(

1− θiF̄γ(γ
∗
th (i))

) ∂p∗i+1

∂λ∗P
, (B.4)

respectively. Multiplying equation (B.1) by −λ∗P and equation (B.3) by λ∗D then

adding them to equation (B.2) we can easily show that, for all i ∈M,

∂U∗
i

∂λ∗P
− λP

∂S∗
i

∂λ∗P
+ λD

∂p∗i
∂λ∗P

= 0. (B.5)

We now find the derivative of γ∗th (i) with respect to λ∗P by differentiating both

sides of equation (2.7) with respect to λ∗P, while treating λ
∗
D as a constant,then using

equation (B.5), then rearranging we get

∂γ∗th (i)

∂λ∗P
=
ciP

∗
i (γ

∗
th (i))− S∗

i+1

ci
λ∗
P

γ∗
th(i)

P ∗
i (γ

∗
th (i))

. (B.6)

Substituting by equation (B.6) in (B.1) we get

∂S∗
i

∂λ∗P
=− αi

[

ciP
∗
i (γ

∗
th (i))− S∗

i+1

]2 − θici
F̄γ(γ

∗
th (i))

(λ∗P)
2 +

(

1− θiF̄γ(γ
∗
th (i))

) ∂S∗
i+1

∂λ∗P
, (B.7)
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where αi is given by

αi =
θifγ(γ

∗
th (i))

ci
λ∗
P

γ∗
th(i)

P ∗
i (γ

∗
th (i))

≥ 0, (B.8)

Now evaluating (B.7) at i =M and i =M − 1 we get

∂S∗
M

∂λ∗P
= −αM [cMP

∗
M (γ∗th (M))]2 − θMcM

F̄γ(γ
∗
th (M))

(λ∗P)
2 , (B.9)

and
∂S∗

M−1

∂λ∗P
= −αM−1

[

cM−1P
∗
M−1 (γ

∗
th (M − 1))− S∗

M

]2

− θM−1cM−1
F̄γ(γ

∗
th (M − 1))

(λ∗P)
2

+
(

1− θM−1F̄γ(γ
∗
th (M − 1))

) ∂S∗
M

∂λ∗P
, (B.10)

respectively. We can see that
∂S∗

M

∂λ∗
P
< 0, hence

∂S∗
M−1

∂λ∗
P

< 0. By induction, let’s assume

that
∂S∗

i+1

∂λ∗
P
< 0. From (B.7) we get that

∂S∗
i

∂λ∗P
=− αi

(

ciP
∗
i (γ

∗
th (i))− S∗

i+1

)2 − θici
F̄γ(γ

∗
th (i))

(λ∗P)
2 +

(

1− θiF̄γ(γ
∗
th (i))

) ∂S∗
i+1

∂λ∗P
< 0 (B.11)

since all its terms are negative. Finally we find that
∂S∗

1

∂λ∗
P
< 0 indicating that S∗

1 is

monotonically decreasing in λ∗P given any fixed λ∗D ≥ 0.

Now, to get an upper bound on λ∗P, we know that

S∗
i = θici

∫ ∞

γ∗
th(i)

(

1

λ∗P
− 1

γ

)

fγ(γ) dγ +
[

1− θiF̄γ(γ
∗
th (i))

]

S∗
i+1. (B.12)

We can upper bound the first term in (B.12) by θici/λ
∗
P, while

[

1− θiF̄γ(γ
∗
th (i))

]

< 1.

Using these two bounds we can write S∗
1 <

∑M
i=1 θici/λ

∗
P. But since S∗

1 = Pavg, the

upper bound on λ∗P, mentioned in Theorem 1, follows.
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Proof. We provide a proof sketch for this bound. We know that at the optimal point

p∗1 =
1

D̄max
and that p∗1 = θ1F̄γ (γ

∗
th (1)) +

(

1− θ1F̄γ (γ
∗
th (1))

)

p∗2. But since the second

term in the latter equation is always positive, then

θ1F̄γ (γ
∗
th (1)) <

1

D̄max

. (C.1)

Substituting by (2.12) in (C.1) and rearranging we can upper bound λ∗D by

c1

(

log

(

λ∗
P

F̄−1
γ

(

1
θ1D̄max

)

)

− λ∗
P

F̄−1
γ

(

1
θ1D̄max

) + 1

)

+ U∗
2 − λ∗PS∗

2

1− p∗2

We can easily upper bound log
(

λ∗P/F̄
−1
γ

(

1/
(

θ1D̄max

)))

− λ∗P/F̄−1
γ

(

1/
(

θ1D̄max

))

by

substituting λmax
P for λ∗P when λ∗P < F̄−1

γ

(

1/
(

θ1D̄max

))

and by 1 otherwise. Moreover,

it can also be shown that U∗
2 < Umax

2 , p∗2 < pmax
2 and that λ∗PS

∗
2 > 0 and from Theorem

1 we have λ∗P < λmax
P , the proof then follows.
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Proof. In this proof, we show that the drift-plus-penalty under this algorithm is upper

bounded by some constant, which indicates that the virtual queues are mean rate

stable [61, 62].

We define the Lyapunov function as L(k) , 1
2

∑N
i=1 Y

2
i (k) and Lyapunov drift

to be

∆(k) , EY(k) [L(k + 1)− L(k)] , (D.1)

Squaring equation (3.10) then taking the conditional expectation we can write the

following bound

1

2
EY(k)

[

Y 2
i (k + 1)− Y 2

i (k)
]

≤ Yi(k)EY(k) [Tk]λi

(

EY(k)

[

W
(j)
i

]

− ri(k)
)

+ CYi
.

(D.2)

where we use the bound EY(k)

[

(

∑

j∈Ai(k)
W

(j)
i

)2
]

+EY(k)

[

(

∑

j∈A(k)
ri(k)

)2
]

< CYi
.

The derivation is similar to that in [21, Lemma7]. Given some fixed control parameter

V > 0, we add the penalty term V
∑

i EY(k) [ri(k)Tk] to both sides of (D.1). Using

the bound in (D.2) the drift-plus-penalty term becomes bounded by

∆ (U(k)) + V

N
∑

i=1

EY(k) [ri(k)Tk] ≤ CY + EY(k) [Tk] Φ where (D.3)

Φ ,

N
∑

i=1

(V − Yi(k)λi) ri(k) +
N
∑

j=1

Yπj
(k)λπj

EY(k)

[

W (j)
πj

]

, (D.4)

We define the DOIC policy to be the policy that finds the values of πππ(k), {P(t)} and

r(k) vector that minimize Φ subject to the instantaneous interference, the maximum

power and the single-SU-per-time-slot constraints in problem (3.6). We can observe

that the variables r(k), {P(t)} and πππ(k) can be chosen independently from each other.

Step 4.a in the DOIC policy finds the optimum value of ri(k), ∀i ∈ N . Moreover,

since EY(k)

[

W
(j)
i

]

is decreasing in P
(t)
i ∀t ∈ F(k), the optimum value for P

(t)
i is

equation (3.15). Finally, from [59] the cµ-rule can be applied to find the optimum

priority list πππ(k) which is given by Step 1 in the DOIC policy.
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Now, since the proposed DOIC policy minimizes Φ, this gives a lower bound

on Φ compared to any other policy including the optimal policy that solves (3.6).

Hence, we now evaluate Φ at the optimal policy that solves (3.6) with the help of

a genie-aided knowledge of ri(k) = W̄ ∗
i yielding Φopt = V

∑N
i=1 W̄

∗
i , where we use

EY(k)

[

W
(j)
i

]

= W̄ ∗
i . Substituting by Φopt in the right-hand-side (r.h.s.) of (D.3)

gives an upper bound on the drift-plus-penalty when evaluated at the DOIC policy.

Namely

∆ (Y(k)) + V
N
∑

i=1

EY(k) [ri(k)Tk] ≤ CY + V
N
∑

i=1

W̄ ∗
i EY(k) [Tk] (D.5)

Taking E [·], summing over k = 0, · · · , K − 1, denoting Yi(0) , 0 for all i ∈ N , and

dividing by V
∑K−1

k=0 E [Tk] we get

N
∑

i=1

E [Y 2
i (K)]

∑K−1
k=0 E [Tk]

+
N
∑

i=1

∑K−1
k=0 E [ri(k)Tk]
∑K−1

k=0 E [Tk]

(a)

≤ aCY

V
+

N
∑

i=1

W̄ ∗
i , C1. (D.6)

where in the r.h.s. of inequality (a) we used E [Tk] ≥ E [I(k)] = 1/a, and C1 is some

constant that is not a function in K. To prove the mean rate stability of the sequence

{Yi(k)}∞k=0 for any i ∈ N , we remove the first and third terms in the left-side of (D.6)

as well as the summation operator from the second term to obtain E [Y 2
i (K)] /K ≤ C1

∀i ∈ N . Using Jensen’s inequality we note that

E [Yi(K)]

K
≤
√

E [Y 2
i (K)]

K2
≤
√

C1

K
. (D.7)

Finally, taking the limit when K → ∞ completes the mean rate stability proof. On

the other hand, to prove the upper bound in Theorem 3, we use the fact that ri(k)

and |Ai(k)| are independent random variables (see step 4-a in DOIC ) to replace

E [|Ai(k)|ri(k)] by λi E [Tkri(k)] in equation (3.13), then we take the limit of (3.13)

as K →∞, use the mean rate stability theorem and sum over i ∈ N to get

N
∑

i=1

E

[

∑K−1
k=0

(

∑

j∈Ai(k)
W

(j)
i

)]

E

[

∑K−1
k=0 |Ai(k)|

] ≤
N
∑

i=1

∑K−1
k=0 E [ri(k)Tk]
∑K−1

k=0 E [Tk]

(b)

≤ aCY

V
+

N
∑

i=1

W̄ ∗
i , (D.8)
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where inequality (b) comes from removing the first summation in the left-side of (D.6).

Taking the limit when K →∞ and using equation (3.9) completes the proof.
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Lemma 10. Given any distribution for P
(t)
i γ

(t)
i the inequality E [sni ] <∞ holds ∀n ≥

1. Moreover, when the power is given by P
(t)
i = min

(

Iinst/g
(t)
i , P

)

for some fixed

parameter P ∈ [Pmin
i , Pmax], the inequality E [s2i ] ≤

(

L2 + L
(

1− pi(Pmin
i )

))

/p2i (P
min
i )

holds with pi(P ) , 1−Pr [Ri(P ) = 0].

Proof. We carry out the proof by bounding the moments of si by the respective

moments of the random variable sB,i which is the service time for a system with a

binary transmission rate, i.e. a system with R
(t)
i ∈ {0, 1}. The proof of the first part

of the lemma follows by showing that all the moments of sB,i are finite. The second

part of the lemma is a special case where we set P
(t)
i = min

(

Iinst/g
(t)
i , P

)

.

In this proof we drop the index i for simplicity whenever it is clear from the

context. Given some, possibly random, power allocation policy P
(t)
i define the i.i.d.

random process R
(t)
B,i ∈ {0, 1}, t ≥ 1, with Pr

[

R
(t)
B,i = 0

]

= Pr
[

R
(t)
i = 0

]

. Dropping

the index i, the following inequality holds for any x ≥ 1

Pr

[

x
∑

t=1

R
(t)
B ≤ L

]

≥ Pr

[

x
∑

t=1

R(t) ≥ L

]

, (E.1)

which says that the probability of transmitting L bits or more in x time slots is higher

if the transmission process is R(t) compared to the binary transmission process R
(t)
B .

Defining sB , {min x :
∑x

t=1R
(t)
B ≥ L} as the binary service time which is the number

of time slots required to transmit L bits given that the transmission process is R
(t)
B ,

we can write

Pr [sB ≤ x] = Pr

[

x
∑

t=1

R
(t)
B ≥ L

]

(E.2)

≥ Pr

[

x
∑

t=1

R(t) ≥ L

]

(E.3)

= Pr [s ≤ x] (E.4)
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According to the theory of stochastic ordering, when two random variables have

ordered cumulative distribution functions, their respective moments are ordered [63,

equation (2.14) pp. 16]. In other words, if Pr [s ≤ x] ≥ Pr [sB ≤ x], then E [sn] ≤

E [snB], ∀n ≥ 1. It suffices to show that the moments of sB are finite.

Define sNB as a random variable following the negative binomial distribution

[64, pp. 297] with success probability 1−Pr
[

R
(t)
B = 0

]

while the number of successes

equals L. sNB refers to the number of time slots having R
(t)
B = 0 before transmitting

the Lth bit. We can see that sB = sNB + L. Thus we have

E [snB] =
n
∑

j=0

(

n

j

)

E
[

sjNB

]

Ln−j <∞, (E.5)

where the inequality follows since all the moments of the negative binomial distribu-

tion exist [64, pp.297]. The first part of the lemma holds.

For the second part of the lemma, we set P
(t)
i = min

(

Iinst/g
(t)
i , P

)

for some

deterministic parameter P ≥ Pmin
i and define pi(P ) , 1−Pr [Ri(P ) = 0] with Ri(P )

defined in (3.14). Given the moment generating function of sNB as [64, pp. 894]

E [exsNB ] =
pLi (P )

(1− (1− pi(P )ex))L
, (E.6)

the first two moments of sNB can be derived as

E [sNB] =
(1− pi(P ))L

pi(P )
, and (E.7)

E
[

s2NB

]

=
(1− pi(P ))2 L2 + (1− pi(P ))L

p2i (P )
. (E.8)

These two moments can be shown to be decreasing in pi(P ). The proof of the second

part of the lemma follows using the bound pi(P ) ≥ pi(P
min
i ) and the inequality

E [s2] ≤ E [s2B] = E [s2NB] + 2LE [sNB] + L2.
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Proof. This proof is similar to that in Appendix D. We define U(k) , [X(k),Y(k)]T ,

the Lyapunov function as L(k) , 1
2
X2(k) + 1

2

∑N
i=1 Y

2
i (k) and Lyapunov drift to be

∆(k) , EU(k) [L(k + 1)− L(k)] . (F.1)

Squaring equation (3.19) then taking the conditional expectation we can get the

bound

EU(k) [X
2(k + 1)−X2(k)]

2
≤ CX +X(k)



EU(k)





∑

t∈F(k)

P
(t)
i g

(t)
i



− Iavg EU(k) [Tk]



 ,

(F.2)

where we use the bound EU(k)

[

(

∑N
i=1

∑

t∈F(k) P
(t)
i g

(t)
i

)2

+ (IavgTk)
2

]

< CX in equa-

tion (F.2) and omit the derivation of this bound. Given some fixed control parameter

V > 0, we add the penalty term V
∑

i EU(k) [ri(k)Tk] to both sides of (F.1). Using

the bounds in (D.2) and (F.2), the drift-plus-penalty term becomes bounded by

∆ (U(k)) + V
N
∑

i=1

EU(k) [ri(k)Tk] ≤ C + EU(k) [Tk]χ(k), (F.3)

where χ(k) ,
N
∑

i=1

(V − Yi(k)λi) ri(k) + φ (F.4)

with φ ,

N
∑

l=1



Yπl
(k)λπl

EU(k)

[

W (j)
πl

]

+X(k)





EU(k)

[

∑

t∈F(k) P
(t)
πl g

(t)
πl

]

EU(k) [Tk]
− Iavg







 ,

(F.5)

We define the DOAC policy to be the policy that jointly finds r(k), {P(t)} and

πππ(k) that minimize χ(k) subject to the instantaneous interference, the maximum

power and the single-SU-per-time-slot constraints in problem (3.8). Step 5-a in the

DOAC policy minimizes the first summation of χ(k). For {P(t)} and πππ(k), we can

see that φ is the only term in the right side of equation (F.4) that is a function

of the power allocation policy {P(t)}, ∀t ∈ F(k). For a fixed priority list πππ(k),

using the Lagrange optimization to find the optimum power allocation policy that
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minimizes φ subject to the aforementioned constraints yields equation (3.20), where

Pπj
(k), ∀i ∈ N , is some fixed power parameter that minimizes Ψ subject to the

maximum power constraint only. Substituting by equation (3.20) in φ and using the

bound EU(k)

[

W
(j)
πl

]

= Wπl
(Pπl

(k)) ≤ W up
πl
(Pπl

(k)) we get Ψ that is defined before

equation (3.21). Consequently, P∗(k) and π∗(k), the optimum values for P(k) and

πππ(k) respectively, are ones that minimize Ψ as given by Algorithm 2.

Since the optimum policy that solves (3.8) satisfies the interference constraint,

i.e. satisfies EU(k)

[

∑

t∈F(k) P
(t)
πl g

(t)
πl

]

≤ EU(k) [Tk] Iavg, we can evaluate χ(k) at this

optimum policy with a genie-aided knowledge of ri(k) = W̄ ∗
i to get χopt , V

∑N
i=1 W̄

∗
i .

Replacing χ(k) with χopt in the r.h.s. of (F.3) we get the bound

∆ (U(k)) + V

N
∑

i=1

EU(k) [ri(k)Tk] ≤ C + EU(k) [Tk]V
N
∑

i=1

W̄ ∗
i . (F.6)

Taking E [·] over this inequality, summing over k = 0, · · · , K − 1, denoting X(0) ,

Yi(0) , 0 for all i ∈ N , and dividing by V
∑K−1

k=0 E [Tk] we get

E [X2(K)]
∑K−1

k=0 E [Tk]
+

N
∑

i=1

E [Y 2
i (K)]

∑K−1
k=0 E [Tk]

+
N
∑

i=1

∑K−1
k=0 E [ri(k)Tk]
∑K−1

k=0 E [Tk]
≤ CK

V
∑K−1

k=0 E [Tk]
+

N
∑

i=1

W̄ ∗
i .

(F.7)

Similar steps to those in Appendix D can be followed to prove the mean rate stability

of {X(k)}∞k=0 and {Yi(k)}∞k=0 as well as the bound in Theorem 4, and thus are omitted

here.
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Proof. We divide the proof into two parts. First, we show that the virtual queues are

mean rate stable. This proves that constraints (C3) and (C4) are satisfied. Second,

through the Lyapunov optimization technique we show that the drift-minus-reward

term is within a constant gap from the performance of the optimal, genie-aided algo-

rithm [61, 62].

Mean Rate Stability: According to (4.17), Algorithm 3 minimizes Ψ(k)

where the minimization is taken over all possible scheduling and power allocation

algorithms including the optimal algorithm that solves (4.8). We define Ψ∗(k) ,

minΨ(k). Thus we can write

Ψ∗(k) ≤ Ψ̃(k) (G.1)

where Ψ̃(k) is the value of Ψ(k) evaluated at the optimal algorithm and is given by

Ψ̃(k) ,
∑

i∈NR

EU(k)

[

Yi(k)
(

λiqi − 1̃i(k)
)]

+X(k)





∑

i∈N

EU(k)

[

µ̃i(k)P̃i(k)
]

T
− Pavg





+
∑

i∈NNR

Qi(k)
(

EU(k)

[

LR
(opt)
i − µ̃i(k)R̃i(k)

])

. (G.2)

where P̃i(k), µ̃i(k), 1̃i(k) and R̃i(k) satisfy (4.34), (4.35) and (4.36). Taking E [·] to

(G.2), summing over k = 0 · · ·K − 1, dividing by K, taking the limit as K →∞ and

using (4.34), (4.35) and (4.36) gives

lim sup
K→∞

1

K

K−1
∑

k=0

E

[

Ψ̃(k)
]

≤ 0 (G.3)

Evaluating by Algorithm 3 in (4.12), and taking E [·] gives

1

2

∑

i∈NR

E
[

Y 2
i (k)

]

+
1

2

∑

i∈NNR

E
[

Q2
i (k)

]

+
1

2
E
[

X2(k)
]

≤ C1 + E [Ψ∗(k)] . (G.4)
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Summing over k = 0 · · ·K − 1, dividing by K then taking the limit as K →∞ yields

∑

i∈NNR

lim sup
K→∞

E [Q2
i (K)]

2K
+
∑

i∈NR

lim sup
K→∞

E [Y 2
i (K)]

2K
+ lim sup

K→∞

E [X2(K)]

2K

≤ C1 + lim
K→∞

1

2K

K−1
∑

k=0

E [Ψ∗(k)]
(a)

≤ C1 + lim
K→∞

1

2K

K−1
∑

k=0

E

[

Ψ̃(k)
] (b)

≤ C1. (G.5)

where inequalities (a) and (b) in (G.5) follow from (G.1) and (G.3), respectively.

To prove the mean rate stability of the sequence {Yi(k)}∞k=0 for any i ∈ NNR, we

remove the second and third terms in the first line of (G.5) as well as the summation

operator from the second term to obtain E [Y 2
i (K)] /K ≤ 2C1 ∀i ∈ N . Using Jensen’s

inequality we note that

E [Yi(K)]

K
≤
√

E [Y 2
i (K)]

K2
. (G.6)

Finally, taking the limit when K → ∞ completes the mean rate stability proof.

Similarly we can show the mean rate stability of X(k).

Objective Function Optimality: Evaluating the right-hand-side of (4.14)

at the optimal policy that has a genie-aided knowledge of the optimum reward ri(k) =

R
(opt)
i we get

∆(k)− Bmax

∑

i∈NNR

EU(k) [Lri(k)] ≤ C1 + Ψ̃(k)−Bmax

∑

i∈NNR

R
(opt)
i . (G.7)

Taking the E [·] and the time average for both sides of (G.7) and using (G.3) yields

lim sup
K→∞

1

K

K−1
∑

k=0

∆(k)− Bmax lim sup
K→∞

1

K

K−1
∑

k=0

∑

i∈NNR

EU(k) [Lri(k)] ≤

C1 − Bmax

∑

i∈NNR

LR
(opt)
i . (G.8)

Removing the first term in (G.8) and rearranging gives

lim sup
K→∞

1

K

K−1
∑

k=0

∑

i∈NNR

EU(k) [ri(k)] ≥ −
C1

LBmax

+
∑

i∈NNR

R
(opt)
i . (G.9)

Using (4.1) and (C2) completes the proof of (4.37).
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Proof. We divide our proof into two parts. In the first part (Achievability), we show

that if λNR is strictly within the region RLamb, then the queues can be stabilized.

And the algorithm that stabilizes these queues is a modified version of Algorithm 5.

We show this using the Lyapunov optimization technique [60, pp.120]. In the second

part (Converse), we show that if λNR is outside the region RLamb, then there exists

no algorithm that guarantees the stability of the NRT queues.

Achievability: We will show here that the following inequality holds under

Algorithm 5 which is the key to the proof.

∑

i∈NNR

λiQi(k) +
∑

i∈NR

λiqiYi(k)−
∑

i∈N

X(k)Pavg ≤

EU(k)

[

∑

i∈NNR

Qi(k)Di(k) +
∑

i∈NR

Yi(k)Di(k)−
∑

i∈N

X(k)µi (k)Pi (k)

T

]

, (H.1)

where Bi(k) , µi (k) log (1 + Pi (k) γi(k)). Once this inequality is proven, the rest of

the achievability proof works similar to Theorem 5.3.2 in [60, pp.120].

Since λNR(1 + ǫ) ∈ RLamb, to prove (H.1) we multiply (4.49) by λi, (4.50) by

λi, and (4.52) by (−Pavg), then add the three inequalities after summing the first over

i ∈ NNR and the second over i ∈ NR yielding

∑

i∈NNR

λiQi(k) +
∑

i∈NR

λiqiYi(k)−
∑

i∈N

X(k)Pavg ≤
∑

m∈MN

(

∑

i∈NNR

Qi(k)Di(m, k)+

∑

i∈NR

Yi(k)Di(m, k)−
∑

i∈N

X(k)µi (m, k)Pi (m, k)

T

)

πm

(H.2)

≤
∑

m∈MN

[

∑

i∈NNR

Ψ∗
NR(i, k) +

∑

i∈NR

Ψ∗
R(i, k)

]

πm, (H.3)

where Di(m, k) , µi (k) log (1 + Pi (k) γi(k)) while inequality (H.2) follows since the

objective of problem (4.17) is an upper bound on (H.2). But since the right-hand-side
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of (H.1) can be manipulated to give

EU(k)

[

∑

i∈NNR

Qi(k)Di(m, k) +
∑

i∈NR

Yi(k)Di(m, k)−
∑

i∈N

X(k)µi (k)Pi (k)

T

]

=
∑

i∈NNR

EU(k)

[

Qi(k)Di(m, k)− X(k)µi (k)Pi (k)

T

]

+
∑

i∈NR

EU(k)

[

Yi(k)Di(m, k)− X(k)µi (k)Pi (k)

T

]

(H.4)

=
∑

m∈MN

[

∑

i∈NNR

Ψ∗
NR(i, k) +

∑

i∈NR

Ψ∗
R(i, k)

]

πm (H.5)

≥
∑

i∈NNR

λiQi(k) +
∑

i∈NR

λiqiYi(k)−
∑

i∈N

X(k)Pavg (H.6)

where (H.5) follows by evaluating (H.4) at Algorithm 5 while (H.6) follows from (H.3)

which completes the proof of (H.1).

Converse: The converse is done by showing that the upper bound of the sum

of the number bits served from all NRT buffers under the best, possibly genie-aided,

policy is less than the sum of bits arriving to the NRT buffers if the arrival rate does

not satisfy (4.50) through (4.54).

From the strict separation theorem [60, pp.10], if λ /∈ RLamb then there exists a vector

β , [β1, · · · βNNR
]T ∈ RNNR and a constant δ > 0 such that for any vector x ∈ RLamb

the following holds
∑

i∈NNR

βiλi ≥
∑

i∈NNR

βixi + δ (H.7)

Define H(k + 1) = H(k) +
∑

i∈NNR
βi (Lai(k)−Bi(k)) as the weighted sum of the

queues where Bi(k) , µi (k)Ri(k) is the number of bits transmitted to user i at slot

k. Hence we have

H(K) =
K−1
∑

k=0

∑

i∈NNR

βi (Lai(k)− Bi(k)) . (H.8)

Define the set KK(l) , {k : m(k) = l, 0 ≤ k < K} we can bound the second term in
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(H.8) as follows

∑

i∈NNR

βi lim sup
K→∞

K−1
∑

k=0

Bi(k)

K
≤
∑

i∈NNR

βi lim sup
K→∞

M
∑

l=1

∑

k∈KK(l)

B̃i(k)

|KK(l)|
|KK(l)|
K

(H.9)

=
∑

i∈NNR

βi

M
∑

l=1

B̃
(l)
i πl =

∑

i∈NNR

βi

M
∑

l=1

Lxiπl. (H.10)

Adding Lδ to both sides of (H.10) and using (H.7) yields

∑

i∈NNR

βi lim sup
K→∞

K−1
∑

k=0

Bi(k)

K
+ Lδ ≤ L

(

M
∑

l=1

πl
∑

i∈NNR

βixi + δ

)

≤
∑

i∈NNR

βiLλi

= lim
K→∞

K−1
∑

k=0

Lai(k)

K
. (H.11)

Combining (H.11) and (H.8) we conclude that lim supK→∞H(K) =∞ which means

that the weighted sum of the queues is unbounded, under the best possible policy,

when λNR /∈ RLamb which completes the proof.
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